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Abstract. In signal and image processing, regularization often requires a rank-revealing decomposition
of a symmetric Toeplitz matrix with a small rank deficiency. In this paper, we present an efficient
factorization method that exploits symmetry as well as the rank and Toeplitz properties of the given

matrix.
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1. Introduction

In signal and image processing applications [5], [6],
a noisy and distorted signal vector Z is given by

=Tz +w, (1)

where z and w represent an unknown original sig-
nal vector and a noise vector, respectively, and T
is a predetermined matrix describing the spread
of signals. This problem arises often in array pro-
cessing, where the matrix 7" may be real, symmet-
ric, and Toeplitz. Assuming the dimensions of T’
to be n X n, we have

tq to t3 C. tn

to tq to e thoq
T = t3 to i R Y

tn tho1 th_o ... tq

To restore the original signal vector x from z, we
should invert T'. Quite frequently, cf. [1], T is ill-
conditioned and regularization is required. One
popular method is the truncated singular value
decomposition (TSVD) [4], which requires O(n?)
floating-point operations (flops) because it is not
known how to compute the singular value decom-
position (SVD) of a Toeplitz matrix in fewer flops.

For general matrices, less expensive rank-
revealing methods like the URV decomposition
have been developed by Stewart [7] and others
to replace the SVD. But O(n?*) flops are still re-
quired. If the matrix is Toeplitz and banded
with bandwidth b, Nagy [6] proposed an O(bn?)
method for computing an approximate URV de-
composition. However, no one has shown how to
exploit the symmetry of 7. We suggest a possible
approach in Section 2.

In addition, assume that T has a small rank
deficiency, viz.,

rank(T) = n — k,

where k denotes a small integer. We will present
an O(kn?) method in Sections 3 to 5 for comput-
ing a rank-revealing factorization. Our other con-
tribution is to show how to avoid complex arith-
metic in the computation. The examples in Sec-
tion 6 show that our new method restores the sig-
nal almost as accurately as the TSVD approach.

The paper is organized as follows. We present
an extension of rank-revealing factorizations to
symmetric matrices in Section 2. In Section 3 we
sketch a fast O(n?) triangularization scheme based
on hyperbolic rotations, and in Section 4 we show
how to avoid the use of complex arithmetic when
these rotations are applied. Lastly, in Sections 5
and 6, we discuss rank-revealing techniques and
present simulation results.
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2. Use Symmetry

Many popular regularization techniques are based
on an SVD of T

T=Uxv",

where U and V' are orthogonal, and ¥ = diag(o;)
with

o1 220, 20.
Select a tolerance 7 to find k£ such that
Opn—k >T 2 On—k+1-

We may say that 7" has k£ small singular values, or
that T has a numerical rank of n — k. Let

Y = diag(o1, ..., 0p_,0,...,0).
We restore the original signal z via
z=VStuTs,

where 3t = diag(o;") denotes the pseudo-inverse
of 3.

Although the TSVD is stable, it is expensive to
compute. Since regularization does not require the
diagonalization of T', we may pick the less costly
URYV decomposition:

T =URVT,

where U and V are orthogonal, and R is upper
triangular, viz.,

R E
r=(4 &)
The three submatrices R, E and G (k x k) possess

the special properties that ||R|| is large, and || E]||
and ||G|| are small:

Umin(R) N On—k

(2)

IEIE + 1GIF ~ o gy + -+ 05

A regularized solution to (1) is obtained from

We wish to exploit the symmetry of T' to save
on storage and work. Start by computing a sym-
metric eigenvalue decomposition:

T=VAVT,

where V' is orthogonal, and A = diag(};), with
[Ad] > > ]Au] > 0.

Choose a tolerance 7 to find k& such that
An—k| > 7> [An—pt1ls

i.e., T has a numerical rank of n — k. Let

7Anfk707'“70)'

A = diag(\, - - -
The original signal is restored by the formula:
x=VAtV";.

where AT = diag(At).
We propose to generalize the URV decomposi-
tion as follows:

T=vsv’, (3)

where V' is orthogonal and S symmetric. We shall
call (3) a V.SV decomposition. Partition S:

s=(gr 6) (@

where the three submatrices S, E and G (k x k)
possess similar norm properties as in (2):

/\min(S) ~ /\nfk )
(5)

B2 + |trin(G)[[2 m A2 oy + -+ A2

We use triu(G) to denote the upper triangular
part of G. The signal vector z can be restored
by a truncated VSV decomposition:

. St 0 T A
m—V<0 0>V T.

Note that (5) is not an obvious extension of (2)
to the symmetric case. Why do we use triu(G)?
Roughly speaking, since E, ET and G in (4) are
small and G is symmetric, it is reasonable to ex-
clude the redundant data and consider only E and
triu(G). A more rigorous argument will be given
at the end of Section 5.
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3. Fast Triangular Factorization

In this section we discuss a fast O(n?) triangular-
ization of an n x n symmetric Toeplitz matrix.

First, assume that ¢; # 0 and #; > 0; otherwise
consider —T'. Use a displacement representation
for T [2]:

T = R/ R, — Ri Ry, (6)

where R; and R, are Toeplitz matrices:

t1 1o t3 ... th_1 tn
0 & s ... tho tna
1 0 0 t1 AN tn,3 tn,Q
R = — ) ) }
Vi :
0 0 O t1 to
0 0 O 0 t
and
0 to t3 th_1 tn
0 0 s lnoo tp_1
R 1 0 0 0 tn,3 tn,Q
SRV IR . :
0O 0 0 ... 0 ta
0O 0 0 ... 0 0

Rewrite (6) to get

T = (RT R) (é 01) @2)

and apply 2 x 2 real transformations (details in
Section 4) to eliminate Ry:

T = (R" 0) (% £2> (?) = R"DR, (7)

where R is upper triangular, and D; and D, are
signature matrices (diagonal matrices with £1 on
the diagonal). We take care to eliminate Ry in a
special order, so as to maintain the Toeplitz struc-
tures of Ry and R,. Rotating the second row of
R, against the first row of Ry, we zero out the
(1,2)-entry of Ry. But a whole super-diagonal of
R5 can be annihilated by applying this same rota-
tion to the (i + 1)-st row of R; and the i-th row of
Ry, for i =1,...,n — 1. The key is that we store
and operate upon R; and R, as vectors, in view of

their Toeplitz structures. The calculation of the
RDR decomposition defined by (7) requires only
O(n?) flops.

It is well known that the RDR decomposition
without pivoting is numerically unstable. Let

1.00 0999 —0.602
T'=1 0999 1.00 0.999
—0.602 0.999 1.00

Using three-decimal-digit arithmetic with round-
ing, the procedure computes D = diag(1,1,—1)

3

1.00 0.999 —0.602
R=1{ 0 00447 358 |,
0 0 35.8

and

0 0 0
T=R'DR+ (0 0 0
0 0 0.638
The matrix T has a small condition number of
2.88; its eigenvalues are 2.14, 1.60, and —0.746.
The problem is that its leading 2 x 2 principal
submatrix is ill-conditioned. Pivoting can im-
prove the stability, but it destroys the Toeplitz
and symmetry structure, resulting in a slow algo-
rithm. Since we are primarily interested in sepa-
rating small eigenvalues from large ones, we can
apply a moderately small shift to T to improve
the numerical stability. For the above example,
we may apply the procedure to a shifted T, e.g.,
T+ 0.11. Then

. 1.05 0.951 -0.573
R= 0 0444 347
0 0 3.36

and
- 0 0 0
T+01I=R"DR+[0 0 0.004
0 0.004 0.02

So the factorization error is much smaller.

Second, when t; = 0, the RDR decomposition
does not exist. We may use the above shifting
technique to overcome the difficulty. However, the
choice of an appropriate shift can be a delicate
matter.
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4. Avoid Complex Arithmetic

Since the given matrix 7" is real and the resultant
matrices R and D are real, we want to restrict the
computation to real arithmetic. In this section,
we present details on how to construct a sequence
of 2 x 2 real transformations Y to eliminate R».
Given two real quantities a and 3, and two
scalars d; = £1 and dy = %1, consider the prob-
lem of finding a real transformation Y so that

()02

rfdi 0\y.1_ [(d 0
Y < 0 &)Y “lo a) O
where (il = +1 and &2 = +1. Then we get
Tv—1 (di 0 1y [ @
(a /Y'Y <0 d Y 'Y 3

=oo(s ) ()

For simplicity, we will assume that

and

di=1.

If needed, we can factor out a minus sign to force
dy = 1.

1. Q-Rotate ( a, 8, dy)

2. check that 8 # 0 and |a| # —ds|f];
3. if |a| > |B| then

4. h:=1+dx(8/a)%

5. r:=+vh-|al;

6. else

7. h = (a/B)* + dy;

8. r:=/Ih|-16];

9. c:=afr; s:=p/r;

10. if hh > 0;

11. yi=T; dy == 1; dy = ds;

12. else

13. v i=—r; dy = —1; dy = —ds;
14. return( 7y, dv, ds, c, s ).

15. End Q-Rotate

Fig. 1. Generate Y for relations (8) and (9).

To zero out 3 in (8), we choose

Z = ( ¢ d25> , (10)

—S c

with ¢ = a/r and s = 3/r, where

r=+va?+d3%.

So c? +dys? =1, and

1 [c —dss
o (t )

We see that (9) is satisfied:

(1 0\, (1 0
20 )2 = (0 4):

When dy = 1, we get a circular (also known as
Givens) rotation Z, where

Z:(C S), Zz ' =277
—S C

and ¢? + s = 1. When dy, = —1, we get a hyper-
bolic rotation Z satisfying

Z:(C s>7Z1:(c .s)’
—S C s C

and ¢® — s?> = 1. Thus, our new transformation Z
unifies the circular and hyperbolic rotations. We
refer to Z as a quadratic rotation.

When Z is real, viz., a® + d28% > 0, the choice
is clear:

Y =27

But Z is complex when dy = —1 and |a| < |8, in
which case we calculate

F=+/—(a? +dy3?) > 0,

as well as ¢ = /7 and § = /7. Defining

v — ( ¢ d2~§> 7
-5 ¢
we see that Y is real and satisfies (8). So 7 = ir,
where ¢ = /—1. Thus,

Y = —iZ,

and (il = —1, Cig = —dg.
We summarize our results on quadratic rota-
tions in a procedure called Q-Rotate in Figure 1.



Symmetric Rank-Revealing Toeplitz Decomposition )

5. Reveal Rank

Suppose that we have decomposed T into the tri-
angular factorization of (7):

T = RT"DR.

In this section, we show how to use it to compute
a rank-revealing factorization.

We start by finding a normalized vector z that
approximates the eigenvector z, corresponding to
the smallest (in magnitude) eigenvalue A,,. Then

Z=2zZptu,
where u denotes an error vector satisfying
lulls < €

for some small quantity €. Use the technique in
[7] to find circular rotations (call the product V')
that transform z into the n-th unit vector e,:

VTz=e,.

Apply the transpose of these rotations from the
right on R. However, when a circular rotation is
applied to the i-th and (i + 1)-st columns of R, it
creates a nonzero (i+ 1,4) subdiagonal entry in R.
To restore the triangular structure of R, apply a
quadratic rotation from the left to annihilate the
newly created nonzero element. We have

T=vsvT,
where
S = RT"DR,

with R and D denoting, respectively, the resultant
triangular and signature matrices. To reveal rank,
we partition

s=(3 %) (1)

where S is (n — 1) x (n — 1); we also let
V = (V1 Z),

where V; is nx (n—1). Now, we show that the ma-
trix S satisfies the norm properties (5) with k& = 1.
First, since A = el Se,,, we get

[An] <[]

Also, since S = VI'TV and Ve,, = z, we have
AN=2TTz= An + 2)\nuTzn + uTTu,
and so
A< Pl +2[An] € + [ T]|2 €.
Second, check the vector:
y=VITz =V T(z, +u) = NV, 2, + V' T
Since V,Tz = 0, we have
Vilzn = V.
It follows that
y=ViI(T =\, )u
and
lyllz < 1Vi"(T = AaD)llze < T = A2 e.
Consequently, when z = z,, we get
lyll3 + A% = A7
Third, check Apin(S). Let
5= VDV
be an eigenvalue decomposition of S. Then

_ T _ S Y T
T=VSV _V<yT A\ 1%

and so

V o D VTy\ (V" 0\..r
T_V<0 1)(ny/ A )(0 1)V
Gerschgorin theorem states that if € is sufficiently
small and if the eigenvalues of T are distinct, then

Auin(S) = Ana| SNV yllz < AT = A2,

showing that

Amin(S) ~ >‘n71 .

In summary, if z = z, and the eigenvalues of T
are distinct, then

yll5 + A% = A7,

)‘min(s) ~ )‘nfl 3

which are simply the properties (5) when k& = 1.
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If the estimated smallest eigenvalue is less than
the preset tolerance, we deflate T and repeat the
procedure on S in (11). As before, we get

= - S g\ o
s=v($ 1) -
and
15113 + X = X2,
)\min(S) ~ >‘n72 .
Now,

lyll3 + 19113 + A2 + 22 = ATy + A7
Combining (11) and (12), we get

o S E\gr
T=V (5 o)V

where (G is 2 x 2. Then we have
B3 + [Itrin(G)]1F = A2, + A2,

)\min(S) ~ >‘n72 3

which are precisely (5) for the case where k = 2.
This also justifies the use of triu(G) in (5).

We continue the deflation procedure until the
estimated eigenvalue exceeds the tolerance. Con-
sequently, we obtain the desired V.SV decomposi-
tion of (3). This factorization, including the eigen-
vector estimation, costs O(kn?) flops.

Fig. 2. The 48 smallest eigenvalues in Example 3.

6. Examples

We present three examples to show how our new
method performs as well as the SVD approach.
The three models of T are adopted from [6]. We
wrote a program in MATLAB and ran it on a
SUN/Sparc2000 computer. Each estimated eigen-
vector was computed using seven inverse power it-
erations [3], and the singular value decomposition
was computed using the MATLAB function SVD.

In our examples, we calculate the condition
number of T, viz. k9(T), and determine its nu-
merical rank n — k using the tolerance

=103,

The matrices are ill-conditioned (calling for regu-
larization), and our new technique always calcu-

lates the numerical rank correctly. After comput-
ing the rank-revealing decomposition

T=vVSsvT,

S E
S_<ET G>:

we partition

where

V =(Vs, Vn),

where Vi is n X k. Denote by zg the restored
signal vector computed by our new symmetric de-
composition. Then

rs = VsS'V{ 4.
Correspondingly, in the SVD

T=Usw7,
we partition

W = (Ws, Wy) and U = (Us, Un),
where Wy and Uy are n x k matrices; similarly,

Y= diag(Zs, ES) s

where

ES = diag(ol, .. -;Unfk) y

EN = diag(an,kﬂ, ey O'n) .



Symmetric Rank-Revealing Toeplitz Decomposition 7

Since T is symmetric, U and W are the same ex-
cept for signs in their columns. Let zp denote
the restored signal vector computed by the TSVD
method. Then

zp = WsEg' UL,
We use the parameter
e = [[VN Wsll2

to measure the distance between the two sub-
spaces Range(Vs) and Range(Ws) [3].

Ezxample 1.  We pick a 250 x 250 banded sym-
metric Toeplitz matrix 7"
1, ifm=1;
-2 _
= ¢ UM =/2) iy <
((m = 1)/w)
0, otherwise;

with w = 4.0. The matrix is ill-conditioned:
ko (T) ~ 2.2 x 108,

Its numerical rank equals 248, as detected by both
methods; hence

k=2,

a small rank deficiency. After regularization, we
get a much better conditioned matrix S:

k2 (S) = 3.5 x 102

In Table 1, we present the three (= k + 1) small-
est (in magnitude) eigenvalues A; computed by the
MATLAB SVD routine and \; computed by our new
algorithm.

Since the eigenvalues are well isolated, the esti-
mates are accurate. As predicted by the analysis
in Section 5, the off-diagonal blocks E and triu(G)
are small:

|E||p = 7.45 x 10712

[trin(G) || F = 1.19 x 10~ & \/AZy5 + Adg -

Furthermore, the error € equals 4.0 x 1077, and
so the subspace approximation of Range(Ws) by
Range(Vs) is also very good.

Ezample 2. Consider a band Toeplitz matrix T
of order 150:
2w, ifm=1;
t, = sin(27w(m — 1))7 f2<m<o.
w(m — 1)
0, otherwise;

with w = 0.05. While the condition number of the
given matrix 7T is large:

ko (T) ~ 1.2 x 10%,

the condition number of the regularized matrix S
is acceptable:

Ko (S) =~ 9.5 x 107,
Both methods computed the rank deficiency as
k=5.

Table 2 lists the six smallest (in magnitude) eigen-
values as computed by the MATLAB routine and as
estimated by our procedure.

Since the three smallest eigenvalues are closely
clustered, the approximate eigenvalues ;\148 and
A14g are inaccurate and

IE|lp =136 x 107!,

|triu(G)||Fr = 7.46 x 1073

The error € equals 1.4 x 1072 and so the estimation
of Range(Ws) by Range(Vs) is off.

Ezample 3. We choose a 120 x 120 positive defi-
nite Toeplitz matrix 7'

1 (m-1)?
——e 2.2 if 1<m <8
tm =< V2mo?
0, otherwise;

with o = 2.0. The matrix 7T is ill-conditioned:
ko (T) =~ 1.6 x 106,

Note that
k=47

with both methods and

k2 (S) ~ 1.1 x 10%.
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Table 1. Three smallest eigenvalues in Example 1.

7 248 249 250
A 2.26e —2 1.19e—4 3.5le—6
Ai 217e—2 1.19e—4 3.5le—6

Table 2. Six smallest eigenvalues in Example 2.

i 145 146 147
Ai 1.19e—3 4.88e—4 1.7le—4
Ai 1.19e -3 4.86e—4 1.50e—4
i 148 149 150
Ai  2.76e—5 1.00e—-5 9.37e—6
Ai 583e—-5 594e—-5 9.43e—6

Figure 2 plots the forty-eight (= k + 1) smallest
eigenvalues computed by the MATLAB SVD routine
(represented by a solid line) against those esti-

mated by our symmetric rank-revealing program
(represented by a dashed line).

As shown in Figure 2, the eigenvalues decrease
gradually and A,,_j, is close to Aj,_g41. Just as in
Example 2, we observe sizable errors:

|E|r=526x 102,

|triu(G)||F = 3.97 x 1072

The error € equals 4.8 x 1071, So, Range(Vs) does
not estimate Range(Wg) very well.

What have we learned from these three exam-
ples? The TSVD and our method perform well
when there is a significant gap between the large
eigenvalues and the small ones (such as in Exam-
ple 1), and may not work well otherwise. In Ex-
ample 4, we show that even in the case where the
eigenvalues decrease gradually (as in Examples 2
and 3) both the TSVD and our new approach still
do good jobs in restoring the original signal vector.

Fig. 3. Original signal vector z (left) and noisy signal vector & (right) in Example 4.

Ezample 4. We stay with the same matrix as in
Example 3. In addition, we choose an original sig-
nal vector € R'? given by Nagy [6]. The noise
vector w is a random vector generated in MATLAB
by a normal distribution with zero mean and unit
variance. The noise is scaled so that

l[wll2/ | Tz]l2 = 0.001.

We use this ratio as the tolerance 7 for the nu-
merical rank. Figure 3 depicts the original signal
vector  on the left and the noisy signal vector &
on the right, and Figure 4 presents the signal vec-
tor zp restored by the TSVD method (left) and
vector xg restored by our method (right). The re-
sults show that the restoration capabilities of both
methods are comparable.
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Fig. 4. Vector zr restored via TSVD (left) and vector g restored via our new scheme (right) in Example 4.
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