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Abstract—Lattice reduction aided decoding has been suc- proposed, such as zero-forcing (ZF) decoding and suceessiv
cessfully used in wireless communications. In this paper, & interference cancellation (SIC) decoding [2], [18], [2Zhe
propose a Jacobi method for lattice basis reduction. Jacobi performance of an approximate detector is highly related to

method is attractive, because it is inherently parallel. Thuis high ) .
performance can be achieved by exploiting multiprocessorrad/or the structure ofA. It is well known that the closer to being

multicore architectures. We also present our experimentatesults ~ Orthogonal the column vectors of are, the lower BER the
on the convergence of our method and the comparison with the approximate detector has [18], [20]. A lattice basis reiturct

LLL algorithm, a lattice basis reduction method widely usedin algorithm can improve the orthogonality of the columnsAaf
wireless communication applications. thus improve the performance of an approximate detector.
|. INTRODUCTION Suppose thaf is anm-by-n, m > n, real matrix of full

Lattice reduction has been successfully used in sign%(flgmn rank, then #attice generated byA is defined by the

processing applications, such as global positioning aysté N
(GPS), frequency estimation, and particularly data ditect L(A)={Az | zeZ"},

and precoding in wirelegs communicatior_ls. In thjs Paper, Weherez» denotes the set of integervectors. The columns of
present a novel Jacobi method for lattice basis rEdUCt'Oﬂ'form abasisfor the latticeL(B), and the value of is called

In this section, we briefly introduce the data detection in e dimensionof L(A). Whenn > 2, the lattice L(A) can
multiinput multioutput (MIMO) system and lattices and b%‘Sehave infinitely many different basis m’atrices other tlarTwo

The details of lattice reduction with applications in wess basis matricesA andA’ generate a same lattice, if and only if

cogmur:jlcatlons can,\;b”ergund tm [21]. isting of, t it A’ = AZ, whereZ, called a unimodular matrix, is an integer
ton3| er adr;n xn tsys em %Jlnss Imtg h.ranbsr?' matrix with | det(Z)| = 1. Thus the inverse of a unimodular
antennas anan receive antennas. the relationsnip DEWegf, .y s g integer matrix. Given a lattice basis matrix

then x 1 transm|tt_ed signal vectae and them x 1 received A, a lattice basis reduction algorithm finds a basis for the
signal vectory is given by lattice L(A) consisting of relatively short and more orthogonal
y = Ax +n, vectors. In other words, a lattice reduction algorithm proes
) _ ) ~aunimodular matriXZ such thatAZ is reduced. In addition to
where A is anm x n matrix representing the channel matrixyyireless communications, lattice reduction plays an intguar
andn is anm x 1 vector representing the additive noisgqe in many fields of mathematics and computer science [3],
vector. In afull-ra.nlfflat—fgdmg MIMO systerd is a complex [5], [10], [19], particularly in communications [1], [4],2]
matrix, h_owever, it is straightforward to transform t_he qqﬂm( and cryptology [9], [17].
problem into a real one, see [21] for example. So, in this pape |, this paper, we present a Jacobi method for lattice basis
we assume is real. The optimum maximum-likelihood (ML) reqyction. Jacobi method is attractive, because it is ey
decoding selectscy,y, that is a solution for the following araiie| [6]. Parallel lattice basis reduction algorithraee
minimization problem as the transmit signal: useful. By exploiting multiprocessor/multicore architees,
XL = argmin |y — Ax||s, they can make it possible to solve large size problems oc-
x€A curring in cryptography, also they can improve performance
where A denotes the finite set of real-valued modulation aWwhich is essential in real-time applications such as wa=le
phabet being used. Assume that the constellatios of lattice communications. We have compared our method with the LLL
type, such as PAM or QAM, then upon scaling and shifting thegorithm, which is widely used in wireless communications
above problem can be transformed into an integer least sguadrecause it is the only method that produces reasonably good
problem. The complexity of solving integer least squaragesults in reasonable time. Our experimental results show
problems grows exponentially with the number of transmihat our Jacobi method computes lattice bases with better
antennas [1], [7], [8]. So ML decoding is not feasible forgar orthogonality in less time than the LLL algorithm.
number of transmit antennas or fast fading situation whieee t The rest of the paper is organized as follows. In Section II,
received signal changes rapidly. To reduce the detectisty cave describe the Lagrange’s algorithm for computing reduced
many approximate algorithms with low-complexity have beeases for lattices of dimension two. A row-cyclic version of



our Jacobi method is presented in Section Ill. Finally, wevsh 7 — 0 1

our experimental results in Section V. L —q |
[a; a;] — [a; a;]Z;
Il. LAGRANGE S ALGORITHM Z,; — Z;;7;

Lagrange’s algorithm [11] computes a reduced basis for until fla;lz < [layll2-

a lattice of dimension two. A two-dimensional lattidg A) The matrixZ;; can be viewed as the product of a permu-

genzrateg ?SA = [a; ap] is said to beLagrange-reducedor tation and a Gauss transformation [6] (elementary matrix):
L-reduced i

0 1 0111 —q
Joulls < ool and Jafa| <l (@ =] T

Intuitively, if # denotes the angle betwean andas, then the

condition (1) means that Let a lattice generator matrdA = [a; as ... a,], we
considerB = [b;;] = ATA. Noting thatb; = |a;|3
/3 <0 <27/3, andb;; = ala;, we have the following squared version of
) Algorithm 2.
since Algorithm 3 (LagrangedB, i, j)): Given B = ATA,
|cos O] = |aTas|/(||lar]2]|az]l2) < |aTas|/||a1]|2 < 1/2. whereA is a lattice generator matrix, this algorithm computes

a unimodular matriXZ;; such that theth and;th columns of
For any two-dimensional lattice, an L-reduced basis alwayﬁzij are L-reduced and updat®s accordingly.

exists and is optimal in the sense that it consists of shiortes

possible basis vectors [19]. Z;; =1y;
The Lagrange’s algorithm can be viewed as a generalization if bii < bj;
of the following centered variant of Euclid's algorithm for swap theith and;th rows of B;
computing the greatest common divisor (gcd) of a pair of swap theith and;jth column ofB;
integersa andb. swap the columns dZ;;;
Algorithm 1 (Euclid): Given two integersa and b, this endif
algorithm overwritesz with their gcd. repeat
. q = [bij/bj;1;
1. if fa| <] setZ to the same a$,, except
g _Swapa and b; zii = 0, Zji = —4q, andzij = Zj; = 1;
endif B — Z"BZ;
4. whileb#0 Zij — Zi;Z;
6. r=a— qb,
; Z;f I11. JAcoBI METHOD
9. endwhile. Applying Algorithm 3 for two-dimensional sublattice to all
Written in matrix form, the three lines 6-8 can be replacd@Ssible pairs of columns oA in row-by-row fashion, we
b present the cyclic-by-row version of the Jacobi method for
a 0 1 a lattice basis reduction.
{ b } - [ 1 —q ] [ b } : Algorithm 4 (Jacobi): Given a lattice generator matriA,

: ) this algorithm computes a unimodular matxsuch that the
The Lagrange’s algorithm is analogous to the above alg@sjumns ofAZ form a reduced basis.

rithm.

Algorithm 2 (Lagrange):Given a basiga; a;} for a two- Z;;=1,, B=A"TA;
dimensional lattice, this algorithm overwrites the basishw repeat
an L-reduced basis and computes a two-by-two unimodular fori=1ton—1
matrix Z;; so that the columns ofa; a;]Z;; form an L- forj=i+1ton
reduced basis. Z;; = LagrangeZB, i, j);
Zij = Ip; endfor

if flagll2 < flajll2

swapa; andaj;

swap the columns oZ;;;
endif Due to the outer repeat-loop in the above algorithm, the
repeat repeat-loop in Lagrange2 can be removed to improve the

q = |afa;/|la;]3]; efficiency.

endfor
until all pairs (a;, a;) satisfy (1);



TABLE |
MAXIMAL AND AVERAGE NUMBER OF SWEEPS TAKEN BYALGORITHM 4
OUT OF TEN RANDOM MATRICES OF EACH SIZE

TABLE Il
CPUTIMES, IN SECONDS OF JACOBI METHOD AND THELLL
ALGORITHM. EACH FIGURE IS AN AVERAGE OF TEN RANDOM MATRICES

OF THE SAME SIZE

size | maximal | average
50 8 6.4 size | Jacobi| LLL
100 8 6.5 50 | 0.040 | 0.229
200 8 6.2 100 | 0.147 | 0.528
200 | 0.432 | 3.159
TABLE I

ORTHOGONAL DEFECTS(A) OF THE ORIGINAL MATRIX AND THOSE

PRODUCED BY OURJACOBI METHOD AND THE LLL ALGORITHM. V. CONCLUSION

= 35820 fagcg;’;’g' 2"(')‘;)‘78 This paper presents a Jacobi method for lattice basis re-
100 | 3.1560 | 2.0002 | 2.3705 duction. It is inherently parallel, so it can be developetbin
200 | 3.2370 | 2.1638 | 2.4046 various parallel algorithm. Our experimental results shbuat

the algorithm terminates in less than ten sweeps, runs much
faster, and produces better results, measured by orthétyona
defect, than the widely used LLL algorithm. Further speedup
is expected from parallel implementations of our algorithm
We programed our algorithms in MATLAB. The orthogo-
nality of the columns of an x n lattice basis matrixA was
measured by the orthogonality defetA ), defined by

IV. EXPERIMENTAL RESULTS
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