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Abstract—Lattice reduction aided decoding has been suc-
cessfully used in wireless communications. In this paper, we
propose a Jacobi method for lattice basis reduction. Jacobi
method is attractive, because it is inherently parallel. Thus high
performance can be achieved by exploiting multiprocessor and/or
multicore architectures. We also present our experimentalresults
on the convergence of our method and the comparison with the
LLL algorithm, a lattice basis reduction method widely used in
wireless communication applications.

I. I NTRODUCTION

Lattice reduction has been successfully used in signal
processing applications, such as global positioning system
(GPS), frequency estimation, and particularly data detection
and precoding in wireless communications. In this paper, we
present a novel Jacobi method for lattice basis reduction.
In this section, we briefly introduce the data detection in a
multiinput multioutput (MIMO) system and lattices and bases.
The details of lattice reduction with applications in wireless
communications can be found in [21].

Consider anm× n MIMO system consisting ofn transmit
antennas andm receive antennas. The relationship between
the n× 1 transmitted signal vectorx and them× 1 received
signal vectory is given by

y = Ax + n,

whereA is anm×n matrix representing the channel matrix,
and n is an m × 1 vector representing the additive noise
vector. In a full-rank flat-fading MIMO system,A is a complex
matrix, however, it is straightforward to transform the complex
problem into a real one, see [21] for example. So, in this paper,
we assumeA is real. The optimum maximum-likelihood (ML)
decoding selectsxML that is a solution for the following
minimization problem as the transmit signal:

xML = arg min
x∈A
‖y −Ax‖2,

whereA denotes the finite set of real-valued modulation al-
phabet being used. Assume that the constellationA is of lattice
type, such as PAM or QAM, then upon scaling and shifting the
above problem can be transformed into an integer least squares
problem. The complexity of solving integer least squares
problems grows exponentially with the number of transmit
antennas [1], [7], [8]. So ML decoding is not feasible for large
number of transmit antennas or fast fading situation where the
received signal changes rapidly. To reduce the detection cost,
many approximate algorithms with low-complexity have been

proposed, such as zero-forcing (ZF) decoding and successive
interference cancellation (SIC) decoding [2], [18], [22].The
performance of an approximate detector is highly related to
the structure ofA. It is well known that the closer to being
orthogonal the column vectors ofA are, the lower BER the
approximate detector has [18], [20]. A lattice basis reduction
algorithm can improve the orthogonality of the columns ofA,
thus improve the performance of an approximate detector.

Suppose thatA is an m-by-n, m ≥ n, real matrix of full
column rank, then alattice generated byA is defined by the
set:

L(A) = {Az | z ∈ Z
n},

whereZ
n denotes the set of integern-vectors. The columns of

A form abasisfor the latticeL(B), and the value ofn is called
the dimensionof L(A). When n ≥ 2, the latticeL(A) can
have infinitely many different basis matrices other thanA. Two
basis matricesA andA′ generate a same lattice, if and only if
A′ = AZ, whereZ, called a unimodular matrix, is an integer
matrix with | det(Z)| = 1. Thus the inverse of a unimodular
matrix is an integer matrix. Given a lattice basis matrix
A, a lattice basis reduction algorithm finds a basis for the
latticeL(A) consisting of relatively short and more orthogonal
vectors. In other words, a lattice reduction algorithm produces
a unimodular matrixZ such thatAZ is reduced. In addition to
wireless communications, lattice reduction plays an important
role in many fields of mathematics and computer science [3],
[5], [10], [19], particularly in communications [1], [4], [21]
and cryptology [9], [17].

In this paper, we present a Jacobi method for lattice basis
reduction. Jacobi method is attractive, because it is inherently
parallel [6]. Parallel lattice basis reduction algorithmsare
useful. By exploiting multiprocessor/multicore architectures,
they can make it possible to solve large size problems oc-
curring in cryptography, also they can improve performance,
which is essential in real-time applications such as wireless
communications. We have compared our method with the LLL
algorithm, which is widely used in wireless communications
because it is the only method that produces reasonably good
results in reasonable time. Our experimental results show
that our Jacobi method computes lattice bases with better
orthogonality in less time than the LLL algorithm.

The rest of the paper is organized as follows. In Section II,
we describe the Lagrange’s algorithm for computing reduced
bases for lattices of dimension two. A row-cyclic version of



our Jacobi method is presented in Section III. Finally, we show
our experimental results in Section IV.

II. L AGRANGE’ S ALGORITHM

Lagrange’s algorithm [11] computes a reduced basis for
a lattice of dimension two. A two-dimensional latticeL(A)
generated byA = [a1 a2] is said to beLagrange-reduced(or
L-reduced) if

‖a1‖2 ≤ ‖a2‖2 and |aT

1
a2| ≤ ‖a1‖

2

2
/2. (1)

Intuitively, if θ denotes the angle betweena1 anda2, then the
condition (1) means that

π/3 ≤ θ ≤ 2π/3,

since

| cos θ| = |aT

1
a2|/(‖a1‖2‖a2‖2) ≤ |a

T

1
a2|/‖a1‖

2

2
≤ 1/2.

For any two-dimensional lattice, an L-reduced basis always
exists and is optimal in the sense that it consists of shortest
possible basis vectors [19].

The Lagrange’s algorithm can be viewed as a generalization
of the following centered variant of Euclid’s algorithm for
computing the greatest common divisor (gcd) of a pair of
integersa andb.

Algorithm 1 (Euclid): Given two integersa and b, this
algorithm overwritesa with their gcd.

1. if |a| < |b|
2. swapa andb;
3. endif
4. while b 6= 0
5. q = ⌊a/b⌉;
6. r = a− qb;
7. a = b;
8. b = r;
9. endwhile.

Written in matrix form, the three lines 6–8 can be replaced
by

[

a
b

]

←

[

0 1
1 −q

] [

a
b

]

.

The Lagrange’s algorithm is analogous to the above algo-
rithm.

Algorithm 2 (Lagrange):Given a basis{ai aj} for a two-
dimensional lattice, this algorithm overwrites the basis with
an L-reduced basis and computes a two-by-two unimodular
matrix Zij so that the columns of[ai aj ]Zij form an L-
reduced basis.

Zij = I2;
if ‖ai‖2 < ‖aj‖2

swapai andaj ;
swap the columns ofZij ;

endif
repeat

q = ⌊aT

i aj/‖aj‖
2

2
⌉;

Z =

[

0 1
1 −q

]

;

[ai aj ]← [ai aj ]Z;
Zij ← ZijZ;

until ‖ai‖2 ≤ ‖aj‖2.

The matrixZij can be viewed as the product of a permu-
tation and a Gauss transformation [6] (elementary matrix):

[

0 1
1 −q

]

=

[

0 1
1 0

] [

1 −q
0 1

]

.

Let a lattice generator matrixA = [a1 a2 ... an], we
consider B = [bij ] = ATA. Noting that bii = ‖ai‖

2

2

and bij = aT

i aj , we have the following squared version of
Algorithm 2.

Algorithm 3 (Lagrange2(B, i, j)): Given B = ATA,
whereA is a lattice generator matrix, this algorithm computes
a unimodular matrixZij such that theith andjth columns of
AZij are L-reduced and updatesB accordingly.

Zij = In;
if bii < bjj

swap theith andjth rows ofB;
swap theith andjth column ofB;
swap the columns ofZij ;

endif
repeat

q = ⌊bij/bjj⌉;
setZ to the same asIn except
zii = 0, zjj = −q, andzij = zji = 1;
B← ZTBZ;
Zij ← ZijZ;

until bii ≤ bjj .

III. JACOBI METHOD

Applying Algorithm 3 for two-dimensional sublattice to all
possible pairs of columns ofA in row-by-row fashion, we
present the cyclic-by-row version of the Jacobi method for
lattice basis reduction.

Algorithm 4 (Jacobi):Given a lattice generator matrixA,
this algorithm computes a unimodular matrixZ such that the
columns ofAZ form a reduced basis.

Zij = In; B = ATA;
repeat

for i = 1 to n− 1
for j = i + 1 to n

Zij = Lagrange2(B, i, j);
Z← ZZij ;

endfor
endfor

until all pairs (ai,aj) satisfy (1);

Due to the outer repeat-loop in the above algorithm, the
repeat-loop in Lagrange2 can be removed to improve the
efficiency.



TABLE I
MAXIMAL AND AVERAGE NUMBER OF SWEEPS TAKEN BYALGORITHM 4

OUT OF TEN RANDOM MATRICES OF EACH SIZE.

size maximal average
50 8 6.4

100 8 6.5
200 8 6.2

TABLE II
ORTHOGONAL DEFECTδ(A) OF THE ORIGINAL MATRIX AND THOSE

PRODUCED BY OURJACOBI METHOD AND THE LLL ALGORITHM .

size δ(A) Jacobi LLL
50 3.0230 1.9959 2.0578

100 3.1560 2.0902 2.3705
200 3.2370 2.1638 2.4046

IV. EXPERIMENTAL RESULTS

We programed our algorithms in MATLAB. The orthogo-
nality of the columns of am× n lattice basis matrixA was
measured by the orthogonality defectδ(A), defined by

δn(A) =

∏

j ‖aj‖2
√

det(ATA)
.

It is also called linear independence number [14] or Hadamard
ratio. From the Hadamard’s inequality,δ(A) ≥ 1, and the
equality holds if and only if the columnsaj are orthogonal
each other.

How fast does Algorithm 4 terminate? We experimented on
various sizes of random matrices and found that it terminates
in less than ten sweeps, where one sweep is the double for-
loop, that is, the program sweeps through all pairs(ai,aj)
once. Table I shows the maximal number of sweeps and
average number of sweeps out of 10 random matrices of each
size.

The LLL algorithm [12], [13], [15] is widely used in lattice
reduction aided decoding, because it practically produces
reasonably good results with low complexity. A matrix form
of the LLL algorithm can be found in [14].

We generated random matrices and compared the orthogo-
nality of the reduced bases computed by our Jacobi method
with those produced by the LLL algorithm. The parameter
ω (0.25 < ω < 1.0) in the LLL algorithm was set to
0.99. The larger theω, the better orthogonality the LLL
algorithm produces. The orthogonality defects of the bases
computed by our Jacobi method were consistently smaller
than those computed by the LLL algorithm. Table II lists our
experimental results. Each figure is an average of ten random
matrices of the same size.

We also compared the running times of our Jacobi method
and the LLL algorithm. To be consistent with the comparison
in the orthogonality, the parameterω in the LLL algorithm
was also set to0.99, which means that the LLL algorithm
required more time to produce better results. Table III shows
that our method is significantly faster than the LLL algorithm.

TABLE III
CPUTIMES, IN SECONDS, OF JACOBI METHOD AND THE LLL

ALGORITHM . EACH FIGURE IS AN AVERAGE OF TEN RANDOM MATRICES

OF THE SAME SIZE.

size Jacobi LLL
50 0.040 0.229

100 0.147 0.528
200 0.432 3.159

V. CONCLUSION

This paper presents a Jacobi method for lattice basis re-
duction. It is inherently parallel, so it can be developed into
various parallel algorithm. Our experimental results showthat
the algorithm terminates in less than ten sweeps, runs much
faster, and produces better results, measured by orthogonality
defect, than the widely used LLL algorithm. Further speedup
is expected from parallel implementations of our algorithm.
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