
A Complexity Analysis of a Jacobi Method

for Lattice Basis Reduction

Zhaofei Tian

Department of Computing and Software, McMaster University

Hamilton, Ontario, L8S 4K1, Canada

Sanzheng Qiao

Department of Computing and Software, McMaster University

Hamilton, Ontario, L8S 4K1, Canada

Abstract

The famous LLL algorithm is the first polynomial time lattice reduction algorithm which is

widely used in many applications. In this paper, we prove the convergence of a novel polyno-

mial time lattice reduction algorithm, called the Jacobi method introduced by S. Qiao [23], and

show that it has the same complexity as the LLL algorithm. Our experimental results show that

the Jacobi method outperforms the LLL algorithm in not only efficiency, but also orthogonality

defect of the bases it produces.

Categories and Subject Descriptors

General Terms Algorithms and Theory

Keywords Lattice, basis, Jacobi method, Lagrange algorithm, lattice basis reduction, LLL.

1



1 Introduction

In recent years, lattice based methods are more and more involved in many applications, such as

cryptography [9, 3], Global Positioning System (GPS) [27, 7] and wireless communications [26].

A lattice is a set of discrete points in Euclidean Space, represented by integer linear combinations

of a set of linearly independent vectors [16]. The set of independent vectors that generate the lattice

is called a basis for the lattice. The number of vectors in a basis is defined as the dimension of the

lattice.

Given a lattice L of dimension n (n≥ 2), its basis is not unique. In fact, it has infinitely many bases

[9]. The Lattice Reduction Problem is to find the bases whose vectors are more orthogonal to each

other (or shorter) than the given basis, depending on different measurements.

Minkowski introduced a reduced basis [18, 4, 13] in 1890’s, which is now called Minkowski re-

duced basis. Minkowski reduced basis is the strongest definition for lattice bases. It requires the

shortest vectors that can form a basis for the lattice. A weaker notation called HKZ reduced basis

is introduced in 1870’s by Korkine and Zolotareff [14], which is based on Hermite’s first formal

definition of lattice reduction in 1850’s.

There are many lattice reduction algorithms. Roughly speaking, the lattice reduction algorithms

can be grouped into two catagories according to their complexity : exponential time algorithms

and polynomial time algorithms. There are no known polynomial time algorithms for producing

Minkowski reduced bases and HKZ reduced bases [1]. In 1983, R. Kannan gave an algorithm

for constructing HKZ reduced bases [12]. The algorithm was further refined to construct both

Minkowski reduced bases and HKZ reduced bases by B. Helfrich [8] in 1985 and R. Kannan

in 1987 [13]. Practical algorithms for computing Minkowski reduced and HKZ reduced lattice

bases can be found in [25], which use sphere decoding strategies to find a shortest vector in a

lattice.

The first polynomial time lattice reduction algorithm was presented in 1982 [15], known as LLL

2



reduced bases , named after the three authors A. Lenstra, W. Lenstra, and L. Lovász. Theoreti-

cally, the LLL reduction algorithm can produce an approximate shortest vector that is at most a

factor of O(2n) times longer than a real shortest vector of the lattice [2]. However, it performs

well in practice. This extraordinary practical performance of LLL algorithm makes the algorithm

an important tool in cryptography [20], sphere decoding [22], integer programming and other ap-

plications [21]. There are also many other algorithms based on LLL algorithm, improving the

original LLL algorithm in either efficiency or accuracy.

The Jacobi lattice reduction algorithm (short as Jacobi method in the following sections) pre-

sented in [23] adopts a different strategy from the LLL algorithm to construct a reduced basis in

polynomial time. It embeds the Lagrange reduction algorithm [19] to reduce every pair of two

vectors and produces a reasonably good basis for the given lattice. Another advantage of Jacobi

method is that it inherits parallel computing. Therefore, the algorithm can be implemented on

multi-processor computers to achieve high performance. Out experimental results show that the

Jacobi method without parallel computing outperforms the LLL algorithm in both orthogonality

defect and running time.

The paper is organized as follows. In this section, we give several basic concepts about lattice,

bases and lattice reduction algorithms. In the next section, the Lagrange reduction algorithm and

Jacobi reduction algorithm are presented. The convergence proof and complexity analysis of Jacobi

method are given in section 3. In section 4, we compare the Jacobi method with widely used LLL

algorithm [15] in terms of orthogonality defect (or Hadamard Ratio) and running time. Finally, the

paper is concluded in section 5.

2 Jacobi Method for Lattice Basis Reduction

In this section, we recall in detail the Lagrange reduction algorithm [19] and the Jacobi method

for lattice basis reduction [23]. A unimodular transformation [25] is also recalled in this section,

which will be used in the Lagrange algorithm and the Jacobi method.

3



2.1 Unimodular Transformation

Given a lattice L and a basis matrix A, we know there are more than one bases for L. Those bases

have a property that the volumes of the parallelepipeds they generate are equal [16, 9]. We call the

volume of those parallelepipeds the determinant of the lattice L.

Assume B is another basis matrix for the lattice L, then we have |det(A)| = |det(B)|. For the

two basis matrices A and B for the given lattice, we can always find an integer matrix Z, called a

unimodular matrix, such that B = AZ. Since B is a basis matrix for L, the columns in A can be

represented by the integer linear combinations of columns in B. Hence, there exists another integer

matrix Z̄ such that A = BZ̄. Obviously, Z̄ is the inverse of Z. Since |det(A)| = |det(B)|, we know

that det(Z) =±1.

Definition 2.1 (Unimodular). A nonsigular integer matrix M is called Unimodular if det(M) =±1.

The purpose of lattice reduction algorithm is to find a unimodular matrix that transforms the given

basis into a more orthogonal one.

Since there are more than one basis for a lattice of dimension greater than or equal to 2, it is

necessary to define a measurement of the orthogonality of a basis. In this paper, we adopt the

measurement called Hadamard Ratio [9] or orthogonal defect.

Definition 2.2 (Hadamard Ratio [9]). Given a basis matrix A = [a1,a2, . . . ,an] for a lattice L, the

Hadamard Ratio of the basis matrix A is defined as

H (A) = (
det(L)

||a1||2 · ||a2||2 · · · ||an||2
)

1
n . (2.1)

According to the Hadamard’s Inequality [10], we always have det(L) ≤ ||a1||2 · ||a2||2 · · · ||an||2,

hence 0 < H (A) ≤ 1, and the equality holds if and only if ai (1 ≤ i ≤ n) are orthogonal to each

other. Geometrically, the Hadamard Ratio measures the scaled geometric mean of the lengths of

columns in A. Therefore, the shorter the mean of the columns is, the closer the Hadamard Ratio

(2.1) is to 1, and the more orthogonal the columns in A are.

4



2.2 Lagrange Reduction Algorithm

Given two integers, the Euclidean Algorithm [24] computes their greatest common divisor in poly-

nomial time. The Lagrange’s lattice reduction algorithm [23] uses a similar idea. It computes an

optimally (Minkowski) reduced basis for two dimensional lattices in polynomial time [5, 19].

Definition 2.3 (Lagrange Reduced Basis [23]). Given a two-dimensional lattice L and its basis

matrix A = [a1,a2], A is called Lagrange-Reduced (or L-Reduced), if it satisfies

||a1||2 ≤ ||a2||2 and |aT
1 a2| ≤

1
2
||a1||22. (2.2)

The Lagrange reduced basis is a Minkowski reduced basis in two dimensional case [20]. The angle

of two vectors in the produced bases is located in [π/3,2π/3] [23]. Because if we denote θ the angle

between a1 and a2, we have |cos(θ)|= |aT
1 a2|/(||a1||2||a2||2)≤ |aT

1 a2|/||a1||22 ≤ 1/2.

Given a lattice L and its basis matrix A = [a1,a2], the following Lagrange reduction algorithm

produces a unimodular matrix Z12, such that [a1,a2]Z12 forms a Lagrange reduced basis matrix for

the lattice L.

5



Algorithm 1: Lagrange reduction algorithm for two dimensional lattices
Input : A lattice basis matrix [a1,a2]

Output: A Lagrange reduced basis matrix [a1,a2]Z12

1 if ||a1||2 < ||a2||2 then

2 SWAP(a1, a2) ;

3 Set q = baT
1 a2/||a2||22e ;

4 Z12 =

0 1

1 −q

 ;

5 [a1,a2]← [a1,a2]Z12 ;

6 while ||a1||2 > ||a2||2 do

7 Set q = baT
1 a2/||a2||22e ;

8 Z12 =

0 1

1 −q

 ;

9 [a1,a2]← [a1,a2]Z12 ;

When the algorithm terminates, the given basis matrix [a1,a2] above is overwritten by a Lagrange

reduced basis. The notation b·e in line 3 represents the nearest integer rounding. The algorithm

keeps reducing the longer vector a1, until it cannot be reduced.

The Lagrange algorithm is proved to be a greedy algorithm [19]. In each iteration, the locally

optimal choice of the integer scalar q helps us to find a global optimum of the two vectors reduced.

Thus the algorithm produces a Minkowski reduced basis.

2.3 Jacobi Reduction Algorithm

The Jacobi method is originally proposed by C. Jacobi in 1846 for solving eigenvalue problems of

real symmetric matrices [11, 6]. The method iteratively performs a singular value decomposition

on every 2× 2 submatrix until the symmetric matrix becomes almost diagonal. A Jacobi method

6



for lattice basis reduction introduced by S. Qiao [23] embeds the Lagrange algorithm as a tool

worked on every 2× 2 submatrix to reduce every pair of vectors. Hence it produces a reduced

basis for the given lattice.

For a given general n dimensional lattice, the Jacobi method produces a reduced basis defined as

follows.

Definition 2.4 ([23]). Given an n dimensional lattice L and its basis matrix A = [a1,a2, . . . ,an], A

is called reduced if

||ai||2 ≤ ||a j||2 and |aT
i a j| ≤

1
2
||ai||22, for all 1≤ i < j ≤ n. (2.3)

It is not hard to see that the vectors in the above reduced basis are sorted by their lengths. The

definition focuses on every pair of vectors locally. We introduce a modified Lagrange reduction

algorithm [23] first as a tool to reduce each pair of vectors. It works on every 2× 2 submatrix of

a given lattice basis matrix A = [a1,a2, . . . ,an]. Gram Matrix G = AT A is used in the following

algorithm. The elements in the Gram matrix G = [gi j] have some special properties, such as

gi j = g ji = aT
i a j and gii = ||ai||22.

The following algorithm runs the Lagrange reduction algorithm on a given pair (i, j) of indices.

7



Algorithm 2: Lagrange2(G, i, j)
Input : A Gram matrxi G = AT A and two indices i, j

Output: An unimodular matrix Zi j such that the pair of ith, jth vectors in AZi j is L-reduced

1 Zi j = In ;

2 if gii < g j j then

3 Swap G(:, i) and G(:, j) ;

4 Swap G(i, :) and G( j, :) ;

5 Swap Z(:, i) and Z(:, j) ;

6 Set q = bgi j/g j je ;

7 Set Z to be In except zii = 0,z j j =−q and zi j = z ji = 1;

8 G← ZT GZ ;

9 Zi j← Zi jZ ;

10 while gii > g j j do

11 Set q = bgi j/g j je ;

12 Set Z to be In except zii = 0,z j j =−q and zi j = z ji = 1;

13 G← ZT GZ ;

14 Zi j← Zi jZ ;

Using Algorithm-2 as a reduction tool in 2×2 submatrices, the following algorithm (3) introduced

by S. Qiao [23] computes a reduced basis defined in Definition-2.4.

8



Algorithm 3: Jacobi reduction algorithm
Input : A basis matrix A = [a1,a2, . . . ,an]

Output: An unimodular matrix Z such that AZ forms a Jacobi reduced basis

1 Z = In ;

2 G = AT A ;

3 while not all pairs (ai,a j) satisfy the Jacobi reduced condition-(2.3) do

4 for i← 1 to n−1 do

5 for j← i+1 to n do

6 [G,Zi j]← Lagrange2(G, i, j) ;

7 Z← ZZi j ;

Given a lattice basis matrix A, the Algorithm-3 computes a Gram matrix G and applies Lagrange

reduction algorithm to all possible pairs of the basis in the while loop from line 3 to 7. A proof

of convergence and a complexity analysis of the algorithm is presented in the next section.

3 Convergence and Complexity Analysis of Jacobi Method

In the first part of this section, we present a formal proof of the convergence of the Lagrange

reduction algorithm. In the second part, we analyze the complexity of the Jacobi method based on

the proof of the convergence in the first part, and show that the complexity of the Jacobi method is

the same as the LLL algorithm. Our experimental results in the next section show that the Jacobi

method is significantly faster than the LLL algorithm in practice.

3.1 Convergence of the Jacobi method

Since the Jacobi method is based on Lagrange reduction algorithm, we first prove the convergence

of the Lagrange algorithm. The proof is partially based on some ideas in [5][Lemma 17.1.9] and

9



[19] and the behaviour analysis of the Euclidean Algorithm [24].

Given two vectors a1 and a2 of size n, we assume ||a1||2 ≥ ||a2||2 without loss of generality. Let

(a′1,a
′
2) and (a′′1,a

′′
2) be the vectors produced after one and two iterations of the Lagrange algorithm,

respectively. The key point in the proof is that the situation ||a′2||2 >
1√
3
||a1||2 will occur only in

the first or the last two iterations in the Lagrange algorithm. All other iterations lead to the result

||a′2||2 ≤
1√
3
||a1||2. Hence we can safety use the factor

√
3 in proving convergence and evaluating

complexity.

Proposition 3.1. The Lagrange reduction algorithm-(2) Lagrange2(G, i, j) is convergent, and

each iteration step will reduce the vectors with a factor of at least
√

3 except the first and the last

two iterations.

Proof. Given two vectors a1 and a2 (assume ||a1||2 ≥ ||a2||2), let µ =
aT

1 a2

||a2||22
, we have the integer

scalar

q = bµe= µ− ε, where |ε| ≤ 1/2. (3.1)

Assume the Lagrange algorithm does not terminate after the first iteration, the vectors produced

after an iterations are:

t1 :

 a′1 = a2

a′2 = a1−q ·a2

, where ||a′2||2 ≤ ||a2||2.

For convenience, we call this iteration t1 in the rest of the proof. Then we have the following cases

according to the possible values of the integer scalar q. The values of q will lead the algorithm to

different branches in the next iteration.

• Case 1: q = 0

There is no further reduction needed. Hence the Lagrange reduction algorithm terminate

after t1.

• Case 2: |q| ≥ 2

10



We show the iteration reduces the vectors by a factor of at least
√

3 in this case. Let

a∗2 = a1−µa2, (3.2)

we know that a∗2 is orthogonal to a2 according to Equation-(3.1) and the Gram–Schmidt

method [10], as the following Figure-(1) shows.

Figure 1: Single step Lagrange reduction

Thus we have a′2 = a∗2 + εa2, which means

||a
′
2||22 ≤ ||a∗2||22 +

1
4
||a2||22 , (3.3)

since |ε| ≤ 1/2.

Therefore we have

a1 = µa2 +a∗2

⇒ a1 = (q+ ε)a2 +a∗2

⇒ ||a1||22 = (q+ ε)2||a2||22 + ||a∗2||22 (since a2 is orthogonal to a∗2)

⇒ ||a1||22 ≥
9
4
||a2||22 + ||a∗2||22

⇒ ||a1||22 ≥ 2||a2||22 +
1
4
||a2||22 + ||a∗2||22

⇒ ||a1||22 ≥ 2||a2||22 + ||a
′
2||22 (since (3.3))

⇒ ||a1||22 ≥ 3||a
′
2||22 (since ||a2||2 ≥ ||a

′
2||2)

Thus, the factor
√

3 holds for this case.

11



• Case 3: q = 1

In this case, we show the Lagrange algorithm either reduces the vectors with a factor of at

least
√

3, or terminates in the following iteration.

If ||a′2||2 ≤
1√
3
||a1||2, we have gotten the reduced factor

√
3 for this case. Thus it suffices to

show that if

||a′2||2 >
1√
3
||a1||2 ≥

1√
3
||a2||2 , (3.4)

the algorithm terminates in the following iteration. Now we assume the Lagrange algorithm

doesn’t terminate in t1. Then the vectors produced in t1 and the next iteration, we call it

t2, are

t1 :

 a′1 = a2

a′2 = a1−a2

and t2 :

 a′′1 = a′2
a′′2 = a′1−q′ ·a′2

,

where

||a′2||2 ≤ ||a2||2 and ||a′′2||2 ≤ ||a′2||2. (3.5)

To determine the value of the integer scalar q′ in t2, we have

|µ|=
|a′T1 a′2|
||a′2||22

=
|aT

2 (a
∗
2 + εa2)|
||a′2||22

(a∗2 is defined in (3.2))

=
ε||a2||22
||a′2||22

(since a2 is orthogonal to a∗2)

<
3
2

(since the assumption(3.4) and |ε| ≤ 1/2).

Therefore, the only possible values for q′ are−1,0 and 1, which gives us the following cases

for t2. We prove that all the following cases will lead the algorithm to terminate. Therefore,

if the reduced factor
√

3 does not hold, the Lagrange algorithm terminates in t2.

– If q′ = 0

This means the vector a2 cannot be reduced. Hence the Lagrange algorithm terminates

in t2.

12



– If q′ =−1

Substituting a′1 and a′2 in the iteration t1 into the vectors produced in iteration t2, a′′2
can be simplified as

a′′2 = a′1−q′ ·a′2

= a2−q′ · (a1−a2)

=−q′ ·a1 +(1+q′) ·a2 (3.6)

= a1.

This is obviously a contradiction. Hence the Lagrange algorithm should terminates

before t2.

– If q′ = 1

Substituting q′ into Equation-(3.6), we get a′′2 = −a1 + 2a2. According to inequation-

(3.5), we have

||a′′2||2 ≤ ||a′2||2

⇒||−a1 +2a2||2 ≤ ||a1−a2||2

⇒||a1−2a2||2 ≤ ||a1−a2||2 (3.7)

If the equality in (3.7) holds, that is ||a′′2||2 = ||a′2||2 = ||a′′1||2, the Lagrange terminates,

since the while loop condition in Algorithm-2 is f alse.

We prove, by contradiction, that the inequality in (3.7) does not hold. If the inequality

holds, the value of q in t1 should have been 2, since the Lagrange algorithm is a

greedy algorithm (as the section 2.2 shows), which always chooses the locally optimal

q in each iteration. In this case, q equals 2 will produce a shorter a′2 than q equals 1.

Hence it is a contradiction against our assumption.

Therefore, case q = 1 tells us that the Lagrange algorithm either reduces the vectors with a

factor of at least
√

3, or terminates in the following iteration.

13



• Case 3: q =−1

Similar with the previous case q = 1, we can arrive at the conclusion that the Lagrange al-

gorithm either reduces the vectors with a factor of at least
√

3, or terminates in the following

iteration.

To sum the proof up, each iterations of the Lagrange reduction algorithm reduces the two vectors

with a factor of at least
√

3, except the first and last two iterations before the algorithm terminates.

3.2 Complexity analysis of the Jacobi method

To give precise running time estimations of the Jacobi Method, we first analyze the complexity of

the Jacobi method globally with two main issues and several trivial parts. The two main issues are

the complexity of a single iteration step in the Lagrange reduction algorithm and the maximum

while loop rounds of the Jacobi Method.

1. Complexity of one single Lagrange iteration step

The single step iteration of Lagrange reduction algorithm involves line 11 to 14 in the pro-

cedure Lagrange2(G, i, j). It takes O(1) to calculate and round the scalar q in line 6 and

11. Line 12 to 14 cost O(n) arithmetic operations, since the algorithm implemented can use

vector operations to update the matrix G and Z.

Therefore, the total cost of one single Lagrange iteration is O(n).

2. while loop analysis of the Jacobi Method

The while loop starts at line 3 and ends at line 7 in algorithm Jacobi. Each round of

while loop invokes the algorithm Lagrange2(G, i, j) at most O(n2) times. It has been

proved in the previous section that every single iteration of the Lagrange reduction algorithm

reduces a pair of vectors with a factor of at least
√

3. Since we use the Gram matrix G = AT A

in the Jacobi Method, we can safely use the factor 3 in the complexity analysis of the while

14



loop.

Denote B = max1≤i≤n(gii) and D = Πn
i=1(gii), it is easy to check that λ2n

1 ≤ D≤ B2n, where

λ1 is the first Minkowski’s minima [17] or the length of a shortest nonzero lattice vector.

Then D is decreased at least a factor of 3 in each iteration of the Lagrange algorithm. Hence,

we can calculate the maximum rounds of the while loop, which is O(nlog3
B
λ1
), or simply

O(nlogB). The interesting case is the lower bound of while loop rounds. It is O(logB) in

ideal situations, which indicates that the while loop will end in constant times ideally.

Therefore, the while loop involves a complexity factor of O(n3logB) for the worst case,

and O(n2logB) under the ideal situation.

3. Computing the Gram Matrix G

The computation of G takes O(n3) arithmetic operations.

To sum up, the Jacobi method takes an upper bound of O(n4logB) arithmetic operations, and

ideal lower bound of O(n3logB) arithmetic operations. We can see the complexity of the Jacobi

method is the same as the complexity of the LLL algorithm, which is also O(n4logB) [15]. Ac-

cording to our experimental data, the Jacobi method takes an average of 8 rounds for matrices of

dimension less than 200. Hence, the Jacobi method most likely runs in lower bound for random

matrices.

4 Experimental Result

Because of the extraordinary efficiency in practice, the LLL algorithm is widely used in many

applications. To evaluate the practical efficiency of the Jacobi method, we compared the Jacobi

method with the LLL algorithm. The two algorithms are implemented in MATLAB R2010b run-

ning on a Linux 32-bit version machine. The LLL algorithm is chosen as the vector-operated

version [22] to avoid unnecessary operations and hence achieves high efficiency.

15



The dimension of experimental lattices varies as 10, 50, 100, 150 and 200. MATLAB function

rand() is invoked to generate random lattice basis matrices for each dimension. In each chosen

dimension, we run the two algorithms 100 times to get average result from the output.

Hadamard Ratio Runtime

Dimention Jacobi LLL Jacobi LLL

10 0.7621 0.8458 0.0013 0.0064

50 0.4992 0.4650 0.0655 0.3565

100 0.4756 0.4221 0.2180 0.6512

150 0.4673 0.4181 0.3762 1.1870

200 0.4615 0.4158 0.4856 1.8557

Table 1: Hadamard Ratio and Runtime of Jacobi method and LLL algorithm

1. Orthogonality defact

The experimental data shows the Jacobi method produces more orthogonal bases than the

LLL algorithm for the lattices whose dimension is large than or equals 50.

2. Running time

The data of running time also indicates the higher performance of the Jacobi method com-

paring with the LLL algorithm, which usually performs well in practical applications.

Our experimental data illustrates the advantages of the Jacobi method in both orthogonality defect

and running time comparing with the widely used LLL algorithm. The Figure-(1) tells us that the

Jacobi method is signaficantly faster than the LLL algorithm, which makes the Jacobi method a

valuable algorithm for lattice basis reduction, especially the LLL algorithm is commonly regarded

as the fastest lattice reduction algorithm.

16



5 Conclusion and Future Work

In this paper, we proved the convergence of a novel lattice reduction algorithm, called the Jacobi

method [23], and evaluated its complexity. The complexity analysis shows that the Jacobi method

has same complexity as the widely used LLL algorithm.

Our experimental results supported our analysis, which showed that the bases constructed by the

Jacobi method were better than the bases produced by the LLL algorithm in terms of Hadamard

Ratio, when the dimensions of lattices are greater than or equal 50. Besides, the Jacobi method is

inherently parallel. The performance compare between Jacobi method and LLL algorithm illus-

trated that the former one is much faster than the other, even without parallel computing enabled.

Therefore, the Jacobi method makes itself a better algorithm for lattice reduction required applica-

tions.

Further work includes more detailed investigation on performance, since our experimental data

shows that the Jacobi method runs on the low bound of complexity for randomly generated matri-

ces. Hence potential speedup of the Jacobi method is possible.

References

[1] Dorit Aharonov and Oded Regev. Lattice problems in NP and co-NP. J. ACM, 52:749–765,

September 2005.

[2] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,

6:1–13, 1986.

[3] Dan Boneh, The Rsa Cryptosystem, Invented Ron Rivest, Adi Shamir, Len Adleman, and

Was Rst. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS, 46:203–

213, 1999.

17



[4] John L. Donaldson. Minkowski reduction of integral matrices. j-MATH-COMPUT,

33(145):201–216, jan 1979.

[5] Steven Galbraith. Mathematics of Public Key Cryptography. An unpublished edited version,

April 2012.

[6] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins Univer-

sity Press, 3rd edition, 1996.

[7] Babak Hassibi and Haris Vikalo. On the sphere-decoding algorithm i. expected complexity.

IEEE Trans. Sig. Proc, pages 2806–2818, 2005.

[8] Bettina Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced lattice

bases. Theoretical Computer Science, 41:125 – 139, 1985.

[9] J. Hoffstein, J.C. Pipher, and J.H. Silverman. An introduction to mathematical cryptography.

Undergraduate texts in mathematics. Springer, 2008.

[10] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press, New

York, NY, USA, 1986.

[11] C.J.G. Jacobi. Über ein leichtes verfahren, die in der theorie der säkularstörungen vorkom-

menden gleichungen numerisch aufzulösen. Journal für reine und angewandte Mathematik,

30:51–95, 1846.

[12] Ravi Kannan. Improved algorithms for integer programming and related lattice problems.

In Proceedings of the fifteenth annual ACM symposium on Theory of computing, STOC ’83,

pages 193–206, New York, NY, USA, 1983. ACM.

[13] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper.

Res., 12:415–440, August 1987.

18



[14] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Mathematische Annalen, 6:366–

389, 1873. 10.1007/BF01442795.

[15] A.K. Lenstra, H.W.jun. Lenstra, and Lászlo Lovász. Factoring polynomials with rational

coefficients. Math. Ann., 261:515–534, 1982.

[16] Franklin T. Luk, Sanzheng Qiao, and Wen Zhang. A lattice basis reduction algorithm. Tech-

nical report, Institute for Computational Mathematics Hong Kong Baptist University, 2010.

[17] Romanos Malikiosis. An optimization problem related to Minkowski’s successive minima.

Discrete Comput. Geom., 43:784–797, June 2010.

[18] H. Minkowski. Discontinuity region for arithmetical equivalence. J. reine Angew, (129):220–

274, 1905.

[19] P. Q. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited. ACM Trans-

actions on Algorithms, 2009. To appear.

[20] Phong Nguyen. Lattice reduction algorithms: Theory and practice. In Kenneth Paterson,

editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Com-

puter Science, pages 2–6. Springer Berlin / Heidelberg, 2011.

[21] Phong Q. Nguyen and Brigitte Valle. The LLL Algorithm: Survey and Applications. Springer

Publishing Company, Incorporated, 1st edition, 2009.

[22] Sanzheng Qiao. Integer least squares: sphere decoding and the LLL algorithm. In Proceed-

ings of the 2008 C3S2E conference, C3S2E ’08, pages 23–28, New York, NY, USA, 2008.

ACM.

[23] Sanzheng Qiao. A Jacobi method for lattice basis reduction. In Proceedings of 2012 Interna-

tional Conference on Wireless Communications and Networks, Xi’an China, May 2012. To

appear.

19



[24] I. M. Vinogradov. Elements of number theory. Dover Publications Inc., New York, 1954.

Translated by S. Kravetz.

[25] Sanzheng Qiao Wen Zhang and Yimin Wei. Practical algorithms for constructing HKZ and

Minkowski reduced bases. Technical report, McMaster University, 2011. CAS-11-04-SQ.

[26] D. Wübben, D. Seethaler, J. Jaldén, and G. Matz. Lattice reduction: A survey with appli-

cations in wireless communications. IEEE Signal Processing Magazine, 28(3):70–91, May

2011.

[27] P. Xu, C. Shi, and J. Liu. Integer estimation methods for GPS ambiguity resolution: an

applications oriented review and improvement. Survey Review, 44:59–71, Jan. 2012.

20


