
Department of Computing and Software

Faculty of Engineering --- McMaster University

A Polynomial Time Jacobi Method

for Lattice Basis Reduction

by

Zhaofei Tian, Wen Zhang, and Sanzheng Qiao

CAS Report Series CAS-12-04-SQ

Department of Computing and Software Sept. 2012
Information Technology Building
McMaster University
1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1

A Polynomial time Jacobi Method
for Lattice Basis Reduction

Zhaofei Tian
Department of Computing and Software, McMaster University

Hamilton, Ontario, L8S 4K1, Canada
Wen Zhang

Institute of Mathematics, School of Mathematical Science
Fudan University, Shanghai, 200433, P.R.China

Sanzheng Qiao
Department of Computing and Software, McMaster University

Hamilton, Ontario, L8S 4K1, Canada

Abstract

Among all lattice reduction algorithms, the LLL algorithm is the first and perhaps the most fa-
mous polynomial time algorithm, and it is widely used in many applications. In 2012, S. Qiao [24]
introduced another algorithm, the Jacobi method, for lattice basis reduction. S. Qiao and Z. Tian [25]
improved the Jacobi method further to be polynomial time but only produces a Quasi-Reduced ba-
sis. In this paper, we present a polynomial time Jacobi method for lattice basis reduction (short as
Poly-Jacobi method) that can produce a reduced basis. Our experimental results indicate that the
bases produced by Poly-Jacobi method have almost equally good orthogonality defect as the bases
produced by the Jacobi method.

1 Introduction

Recently, mathematical methods connecting different research fields are more and more popular. A typ-
ical example is the lattice based method, which connects lattices with many other fields, and hence
involved in many applications, such as Cryptography [10, 3], Global Positioning System (GPS) [29, 8] and
Wireless Communications [28]. A lattice is an infinite set of discrete points (or vectors from the origin)
in Euclidean Space. Those points can be represented by integer linear combinations of a finite set of lin-
early independent vectors [17] called a basis. We define the number of vectors in a basis the dimension
of the lattice, which is fixed for a lattice. A lattice of dimension at least 2 has infinitely many bases [10].
We say a lattice vector is shorter than another vector, if the Euclidean length of this vector is less than the
length of the other vector. A non-zero vector is called a shortest vector if its length is the shortest among
the lengths of all other lattice vectors. The goal of lattice basis reduction algorithms is to find a basis with
more orthogonal (or shorter) vectors, depending on different measurements.

In 1850’s, in his second letter to Jacobi, Hermite gave the first formal definition of a reduced basis for a
lattice. Korkine and Zolotareff [15] strengthened the definition based on the Hermite’s original definition
in 1870’s, which is now called the HKZ reduced basis. In 1890’s, Minkowski introduced a reduced basis

1

[19, 5, 14], known as the Minkowski reduced basis later. It requires the shortest vectors that can form a
basis for the lattice. Thus, the definition of the Minkowski reduced basis is the strongest one among all
the definitions.

The problem is NP-complete [1] to find a Minkowski reduced basis for the lattices of dimension at least
3. Even to find a weaker HKZ reduced basis needs exponential time [1]. In 1983, R. Kannan presented
an algorithm that computes a HKZ reduced basis [13], which used lattice bases projection strategy. B.
Helfrich [9] in 1985 and R. Kannan in 1987 [14] improved this algorithm to computes both Minkowski
reduced bases and HKZ reduced bases, respectively. Practical algorithms for computing Minkowski re-
duced and HKZ reduced lattice bases can be found in [27], which use sphere decoding technique to find
a shortest vector in a lattice.

All of the above defined reduced bases need exponential time to be computed. Another category of the
reduced bases is the bases that can be computed in polynomial time. The LLL reduced basis is a typical
reduced basis, named after the three authors A. Lenstra, W. Lenstra, and L. Lovász, which can be found
by a polynomial time algorithm presented in 1982 [16]. It is commonly believed that the LLL algorithm
is the first polynomial time algorithm for lattice basis reduction. Theoretically, it can produce only an
approximate shortest vector which is about a factor of at most O (2n) [2] times longer than a shortest vec-
tor of the lattice. However, it performs well in practice. Hence the LLL algorithm becomes an important
tool in many applications, such as cryptography [21], sphere decoding [23], integer programming [22],
and so on. There are also many other algorithms based on the LLL algorithm, improving the original LLL
algorithm in either efficiency or accuracy.

In 2012, S. Qiao [24] presented a Jacobi method for lattice basis reduction (short as Jacobi method in the
following sections) to produce a reduced basis, which adopts a different strategy from the LLL algorithm.
It chooses the Lagrange reduction algorithm [20] as a reduction tool for every two vectors in a basis and
produces a reasonably good basis. A Quasi-Jacobi method [25] for lattice basis reduction based on the
Jacobi method is introduced further, which is proved to be a polynomial time algorithm, but only pro-
duces a weaker Quasi-Reduced basis [25]. In this paper, we present a polynomial time Jacobi algorithm
(short as the Poly-Jacobi method) that produces a reduced basis defined in [24]. It is shown in our exper-
imental results that the two algorithms, the Poly-Jacobi method presented in this paper and the Jacobi
method introduced by S. Qiao [24], produce almost equally good bases according to the measurement
criteria.

The paper is organized as follows. In this section, we introduce some basic concepts including lattice,
bases and lattice reduction algorithms. In the next section, the Lagrange reduction algorithm and the
Jacobi reduction algorithm are presented. The polynomial time Jacobi method is given in section 3. In
section 4, we compare the Poly-Jacobi method with the Jacobi method in terms of orthogonality defect
(or Hadamard Ratio) and running time. Finally, the paper is concluded in section 5.

2 Jacobi Methods for Lattice Basis Reduction

We recall in detail the Lagrange reduction algorithm [20] for two dimensional lattices and the Jacobi
reduction algorithm [24] in this section. The two algorithms use a matrix transformation technique for
vector operations called the unimodular transformation [27], which is also recalled in the first part of this

2

section. The unimodular transformation is also used in the Poly-Jacobi method introduced in the next
section.

2.1 Unimodular Transformation

We use the matrix form of a basis called a basis matrix, or a lattice generator matrix in this paper. That
is, we construct a matrix by forming its columns with the vectors in a basis. Let A be a basis matrix for a
given lattice L. If the dimension of the lattice L is at least 2, we know there are more than one bases for L.
A nice property for the bases is that the volumes of the parallelepipeds they generate are equal [17, 10].
We call this volume the determinant of the lattice, denoted by det(L), or |det(A)| in terms of the basis
matrix.

Let B be another basis matrix for the lattice L, then |det(A)| = |det(B)|. Since B is a basis matrix for L,
the columns of A can be represented by the integer linear combinations of columns in B . Thus we can
always find an integer coefficient matrix Z , called a unimodular matrix, such that B = AZ . Similarly,
there exists another integer coefficient matrix Z̄ such that A = B Z̄ . Obviously, Z̄ is the inverse of the
matrix Z . Since |det(A)| = |det(B)|, we have det(Z) =±1.

Definition 2.1 (Unimodular). A nonsigular integer matrix M is called Unimodular if det(M) =±1.

Having this definition, the purpose of lattice reduction algorithms can be regarded as to find a unimod-
ular matrix that transforms the given basis into a more orthogonal one.

Since there are more than one basis for a lattice of dimension greater than or equal to 2, it is necessary to
define a measurement of the orthogonality of a basis. In this paper, the measurement we adopt is called
the Hadamard Ratio [10] or the orthogonality defect.

Definition 2.2 (Hadamard Ratio [10]). Given a basis matrix A = [a1,a2, . . . ,an] for a lattice L, the Hadamard
Ratio of the basis matrix A is defined as

H (A) = (
det(L)

||a1||2 · ||a2||2 · · · ||an ||2
)

1
n . (2.1)

According to the Hadamard’s Inequality [11], we always have det(L) ∑ ||a1||2 · ||a2||2 · · · ||an ||2. Hence we
get 0 < H (A) ∑ 1. The above equality holds if and only if ai (1 ∑ i ∑ n) are orthogonal to each other.
Geometrically, the Hadamard Ratio measures the scaled geometric mean of the lengths of columns in A.
Therefore, the shorter the mean of the columns is, the closer the Hadamard Ratio (2.1) is to 1, and the
more orthogonal the columns in A are.

2.2 Lagrange Reduction Algorithm

Given two integers, the Euclidean algorithm [26] can compute their the greatest common divisor in poly-
nomial time. The similar idea is borrowed in the Lagrange lattice reduction algorithm [24]. For a given
two dimensional lattice, the algorithm computes an optimally (Minkowski) reduced basis in polynomial
time [6, 20].

3

Definition 2.3 (Lagrange Reduced Basis [18, 24]). Given a two-dimensional lattice L and its basis matrix
A = [a1, a2], A is called Lagrange reduced (or L-Reduced), if it satisfies

||a1||2 ∑ ||a2||2 and |aT
1 a2|∑

1
2
||a1||22, (2.2)

where aT
1 a2 represents the inner product of a1 and a2.

For two dimensional lattices, a Lagrange reduced basis is also a Minkowski reduced basis [21]. If we
denote µ the angle between a1 and a2, we have |cos(µ)| = |aT

1 a2|/(||a1||2 · ||a2||2) ∑ |aT
1 a2|/||a1||22 ∑ 1/2.

Thus, the angle between the two vectors in a Lagrange reduced basis is located in the range [º/3,2º/3]
[24].

Let A = [a1, a2] be a basis matrix for a given a lattice L, the following Lagrange reduction algorithm
produces a Lagrange reduced basis matrix [a1,a2] for the lattice L, which overwrites the original input
matrix [a1,a2].

Algorithm 1: Lagrange reduction algorithm for two dimensional lattices
Input : A lattice basis matrix [a1,a2]
Output: A Lagrange reduced basis matrix [a1,a2]

1 if ||a1||2 < ||a2||2 then
2 SWAP(a1, a2) ;

3 repeat

4 Set q = baT
1 a2/||a2||22e ;

5 Z12 =
∑

0 1
1 °q

∏
;

6 [a1,a2] √ [a1,a2]Z12 ;
7 until ||a1||2 ∑ ||a2||2;

When the algorithm terminates, the given basis matrix [a1,a2] above is overwritten by a Lagrange reduced
basis matrix in line 6. The notation b·e in line 4 represents the nearest integer rounding. The algorithm
keeps reducing the length of the longer vector a1 and swapping the two vectors by computing [a1,a2]Z12,
until it cannot be reduced by introducing an integer scalar q , i.e., ||a1||2 ∑ ||a2||2. In each iteration from
line 4 to line 6, the length of a1 is reduced with a factor of at least

p
3, except the first and the last iterations

[25]. The uncertainty of those two iterations make the complexity analysis of the Jacobi method to be
difficult.

In fact, the Lagrange algorithm is a greedy algorithm [20]. It finds an integer scalar q that minimizes
||a1°qa2||2 in each iteration. Thus, a global optimum is produced when the algorithm terminates, which
is also a Minkowski reduced basis.

2.3 Jacobi Method for Lattice Basis Reduction

In 1846, C. Jacobi originally proposed a method for solving eigenvalue problems of real symmetric ma-
trices [12, 7], which is called the Jacobi method later. The Jacobi method iteratively performs a symmetric

4

eigenvalue decomposition on every 2£2 submatrix until the symmetric matrix becomes almost diago-
nal. In 2012, S. Qiao [24] introduces a Jacobi method for lattice basis reduction, which is similar as the
process that the original Jacobi method does for solving the eigenvalue problem. Given a lattice basis,
it invokes the Lagrange algorithm to reduce every pair of vectors, and hence produces a reduced basis.
Each pair of vectors in the new basis is Lagrange reduced.

For a given general n dimensional lattice, the Jacobi method produces a reduced basis defined as fol-
lows.

Definition 2.4 ([24]). Given an n dimensional lattice L and its basis matrix A = [a1,a2, . . . ,an], A is called
reduced if

||ai ||2 ∑ ||a j ||2, (2.3)

|aT
i a j |∑

1
2
||ai ||22, (2.4)

for all 1 ∑ i < j ∑ n.

The condition (2.3) in the above definition implies that the vectors of the reduced basis are sorted by
their Euclidean lengths. Since the condition (2.4) focuses on every two vectors locally, we firstly present
a modified Lagrange reduction algorithm [24] as a procedure to reduce each pair of vectors. For a given
lattice basis matrix A = [a1,a2, . . . ,an], we construct a Gram Matrix G = AT A. Denote [gi j] the elements
in the Gram matrix, they have some special properties, such as gi j = g j i = aT

i a j and gi i = ||ai ||22. The
Lagrange procedure will be called on every 2£2 submatrix of G .

The following procedure runs the Lagrange reduction algorithm on a given pair of vectors of indices
(i , j).

Algorithm 2: Lagrange2(G , i , j)

Input : A Gram matrix G = AT A and two indices i , j
Output: A unimodular matrix Zi j such that the pair of i th, j th vectors in AZi j is L-reduced

1 Zi j = In ;

2 if gi i < g j j then
3 Swap G(:, i) and G(:, j) ;
4 Swap G(i , :) and G(j , :) ;
5 Swap Z (:, i) and Z (:, j) ;

6 repeat

7 Set q = bgi j /g j j e ;
8 Set Z to be In except zi i = 0, z j j =°q and zi j = z j i = 1;
9 G √ Z T G Z ;

10 Zi j √ Zi j Z ;
11 until gi i ∑ g j j ;

Using the Algorithm 2 as the reduction procedure in 2£2 submatrices of the Gram matrix G , the following
Algorithm 3 introduced by S. Qiao [24] computes a reduced basis defined in the Definition 2.4.

5

Algorithm 3: Jacobi reduction algorithm
Input : A basis matrix A = [a1,a2, . . . ,an]
Output: A unimodular matrix Z such that AZ forms a Jacobi reduced basis

1 Z = In ;
2 G = AT A ;

3 while not all pairs (ai ,a j) satisfy the Jacobi reduced condition (2.4) do
4 for i √ 1 to n °1 do
5 for j √ i +1 to n do
6 [G,Zi j] √ Lagrange2(G, i , j) ;
7 Z √ ZZi j ;

Given a lattice basis matrix A, the Algorithm 3 reads a Gram matrix G and computes a reduced basis we
defined. It applies the Lagrange reduction algorithm to all possible pairs of vectors in the basis during
the while loop. It has been showed [24] that the bases it produced are reasonably good comparing with
the widely used LLL algorithm.

The convergence of the Jacobi reduction algorithm is proved in [25]. However, due to the unconcerned
reduction factor in the last iteration of the Lagrange algorithm, the Jacobi method cannot be proven to
be a polynomial time algorithm. For example, we are given a basis A = [a1,a2,a3]. For the first round of
the while loop, the execution of the Jacobi method might invoke the Lagrange reduction algorithm to
reduce every pair of vectors in the order (a1,a2), (a1,a3), (a2,a3). If the calls of Lagrange2(G,i,j) in
line 6 only involve the first and last iterations, we cannot guarantee a fixed factor for the reduction of any
two vectors, even though their lengths are reduced. Hence the call of (a1,a2), (a1,a3), (a2,a3) may repeat
exponential times. Thus the complexity of the Jacobi method may not be polynomial.

3 A Polynomial Time Jacobi Algorithm to Produce a Reduced Basis

The paper [25] also introduces a weaker Jacobi reduction algorithm called the Quasi-Jacobi reduction
algorithm (short as the Quasi-Jacobi method). However, even though the Quasi-Jacobi method is poly-
nomial time, it can only produce a quasi-reduced basis. In this section, we present a polynomial time
algorithm that produces a reduced basis.

3.1 Quasi-Lagrange Reduction Algorithm

A weaker Lagrange reduced basis for a two dimensional lattice is defined as the following.

Definition 3.1 (Quasi-Lagrange Reduced Basis [25]). A basis matrix A = [a1,a2] for a two dimensional
lattice L is called Quasi-Lagrange Reduced (or QL-Reduced), if it satisfies

w ||a1||2 ∑ ||a2||2, (3.1)

|aT
1 a2|∑

1
2
||a1||22 and |aT

1 a2|∑
1
2
||a2||22, (3.2)

6

where 1p
3
∑ w < 1.

Comparing with the definition of the Lagrange reduced basis, the Quasi-Lagrange reduced basis adds
a parameter w , which makes it weaker because in a Lagrange reduced basis the first vector will always
strictly less or equal than the second vector. Since the domain of the parameter w is defined as 1p

3
∑

w < 1, so a Lagrange reduced basis must be a Quasi-Lagrange reduced basis. It has been proven that
each iteration of the Lagrange reduction algorithm can reduce the length of one of the two vectors with
a factor of at least

p
3, except the first and the last iterations [25]. The lower bound 1p

3
is chosen for w to

guarantee that the last iteration will reduce the vectors with a factor of at least w , and hence a polynomial
time algorithm, the Poly-Jacobi method, can be designed.

Let A = [a1,a2, . . . ,an] to be a lattice generator matrix, and let G = AT A to be a Gram matrix. Based on the
Lagrange reduction algorithm, the following Algorithm 4 constructs a pair of Quasi-Lagrange reduced
vectors on the given indices (i , j) for the two dimensional sublattice of the lattice generated by A in
polynomial time.

Algorithm 4: Quasi-Lagrange2(G , i , j , w)

Input : A Gram matrix G = AT A, two indices i , j and w
Output: A unimodular matrix Zi j such that the pair of i th, j th vectors in AZi j is QL-reduced

1 Zi j = In ;

2 if gi i < g j j then
3 Swap G(:, i) and G(:, j) ;
4 Swap G(i , :) and G(j , :) ;
5 Swap Z (:, i) and Z (:, j) ;

6 repeat

7 Set q = bgi j /g j j e ;
8 if |q|∑ 1^w2gi i ∑ g j j then
9 Break the repeat loop;

10 Set Z to be In except zi i = 0, z j j =°q and zi j = z j i = 1;
11 G √ Z T G Z ;
12 Zi j √ Zi j Z ;
13 until gi i ∑ g j j ;

It is worth to mention that the new Quasi-Lagrange Algorithm 4 adds one more terminating condition
inside thewhile loop on line 12 and 13. The convergence proof [25] of the Lagrange reduction algorithm
tells us that the integer scalar |q| ∑ 1 indicates the last iteration of the algorithm. Hence the condition
|q|∑ 1^w2gi i ∑ g j j can reduce the lengths of vectors maximumly.

3.2 A Polynomial Time Jacobi Method

Using the Algorithm 4 as a reduction tool in every 2£2 submatrix, the following Algorithm 5, the Poly-
Jacobi method, computes a reduced basis defined in Definition 2.4.

7

Algorithm 5: A polytime algorithm to produce a reduced basis
Input : A basis matrix A = [a1,a2, . . . ,an] and w
Output: A unimodular matrix Z such that AZ forms a reduced basis

1 Z = In ;
2 G = AT A ;

3 while not all pairs (ai ,a j) satisfy the Quasi-Lagrange reduced condition (3.2) do
4 for i √ 1 to n °1 do
5 for j √ i +1 to n do
6 [G,Zi j] √ Quasi-Lagrange2(G, i , j , w) ;
7 Z √ ZZi j ;

8 Set G √ ZT
s GZs such that the diagonal of G is sorted ;

9 Z √ ZZs

There are two differences between the Jacobi reduction algorithm 3 [25] and the above Poly-Jacobi re-
duction algorithm 5. Firstly, in line 6, the Jacobi method invokes the Lagrange reduction algorithm, but
the Poly-Jacobi method invokes the Quasi-Lagrange reduction algorithm, which makes the Poly-Jacobi
method to be polynomial, as shown in the section 3.3. Secondly, the Poly-Jacobi method sorts the vectors
by their lengths in line 8 and 9.

To show the basis produced by the Algorithm 5 is reduced, we can check the two conditions in the defi-
nition 2.4. The condition (2.3) requires all vectors in a reduced basis should be sorted, which is satisfied
by the line 8 and 9. The other condition (2.4) is similar with the condition (3.2) of a Quasi-Lagrange re-
duced basis 2.4. Hence it is satisfied as well. Therefore, in the end of the Algorithm 5, a reduced basis is
generated.

3.3 Complexity Analysis

To show the Poly-Jacobi method is polynomial time, we analyze its complexity globally including the
complexity of a single iterative step in the Quasi-Lagrange reduction algorithm, the maximum rounds of
the while loop in the Poly-Jacobi method and the complexity of sorting vectors.

1. Complexity of one single step Quasi-Lagrange iteration

The convergence proof in [25] tells us that the total cost of one single step of the Quasi-Lagrange
iteration is O (n).

2. while loop analysis of the Poly-Jacobi method

By the Definition 3.1, we have 1/w2 ∑ 3. So each iteration in the Quasi-Lagrange algorithm will
reduce the length of one of the two vectors with the factor at least

p
3. In each round of the while

loop, the procedure Quasi-Lagrange2(G,i,j,w) will be invoked at most O (n2) times.

Denote B = max1∑i∑n(gi i) and D =¶n
i=1(gi i). Then each iteration of the Quasi-Lagrange algorithm

reduces D with a factor of at least min(1/w2,3). Hence, the maximum rounds of the while loop is

8

O (nlog B). Therefore, the while loop contributes a complexity factor of O (n3log B) in the worst
case.

3. Sorting vectors
A typical sorting algorithm requires O (n logn) arithmetic operations [4].

To sum up, the complexity of the Poly-Jacobi reduction algorithm is O (n4log B), which proves it is a
polynomial time algorithm.

4 Experimental Results

Comparing with the Jacobi method, the Poly-Jacobi method lacks of the last iteration when it invokes
the Quasi-Lagrange algorithm. To evaluate the practical efficiency of the Poly-Jacobi method, we com-
pared the Poly-Jacobi method with the Jacobi method. The two methods are implemented in MATLAB

R2010b running on a Linux 32-bit version machine.

The dimension of experimental lattices are chosen as 10, 50, 100, 150 and 200. In each dimension, we
called the MATLAB function rand() to generate random lattice basis matrices. We run the two algo-
rithms 100 times in each dimension and calculate the average data. The experimental results of the
Hadamard Ratio showed that the bases produced by the Poly-Jacobi method produced were almost as
good as the ones of the Jacobi method.

Hadamard Ratio Runtime
Dimention Jacobi Poly-Jacobi Jacobi Poly-Jacobi

10 0.7646 0.6937 0.0004 0.0001
50 0.5002 0.4988 0.0296 0.0071

100 0.4786 0.4787 0.1121 0.0221
150 0.4678 0.4678 0.0989 0.0440
200 0.4626 0.4625 0.3278 0.0716

Table 1: The Hadamard Ratio and runtime of the Jacobi method and the LLL algorithm

The following is a brief discussion of the experimental results.

1. Orthogonality defect

The experimental data shows the Poly-Jacobi method produces almost identically good bases as
the Jacobi reduction algorithm, especially when the dimension of the lattices is large than or equals
50.

2. Running time

The data of running time also indicates that the Poly-Jacobi method is much fast than the Jacobi
method due to the invoking of the Quasi-Lagrange algorithm.

Our experimental data illustrates that the Poly-Jacobi method is significantly faster than the Jacobi method.
However, even the Poly-Jacobi lacks the last iteration when it invokes the Quasi-Lagrange algorithm, it
produces almost the identically good bases as the Jacobi method.

9

5 Conclusion

In this paper, we presented a novel polynomial time Jacobi method (short as Poly-Jacobi method) for
lattice basis reduction. and evaluated the complexity of the algorithm. The Poly-Jacobi method invokes
a weaker Quasi-Lagrange reduction algorithm which is missing the last iteration comparing with the
Lagrange reduction algorithm. The complexity analysis shows that the Poly-Jacobi method is polynomial
time.

Our experimental results showed that the bases constructed by the Poly-Jacobi method were as good as
the bases produced by the Jacobi method in terms of Hadamard Ratio, especially when the dimensions
of lattices are greater than or equal 50. The performance compare between the Poly-Jacobi method and
the Jacobi method illustrated that the former one is much faster than the other. Future improvement is
expected as the investigation for low dimension lattices.

References

[1] Dorit Aharonov and Oded Regev. Lattice problems in NP and co-NP. J. ACM, 52:749–765, September
2005.

[2] L. Babai. On Lovasz lattice reduction and the nearest lattice point problem. Combinatorica, 6:1–13,
1986.

[3] Dan Boneh, The Rsa Cryptosystem, Invented Ron Rivest, Adi Shamir, Len Adleman, and Was Rst.
Twenty years of attacks on the RSA cryptosystem. Notices of the AMS, 46:203–213, 1999.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, Third Edition. The MIT Press, 3rd edition, 2009.

[5] John L. Donaldson. Minkowski reduction of integral matrices. j-MATH-COMPUT, 33(145):201–216,
jan 1979.

[6] Steven Galbraith. Mathematics of Public Key Cryptography. An unpublished edited version, April
2012.

[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
3rd edition, 1996.

[8] Babak Hassibi and Haris Vikalo. On the sphere-decoding algorithm i. expected complexity. IEEE
Trans. Sig. Proc, pages 2806–2818, 2005.

[9] Bettina Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced lattice bases.
Theoretical Computer Science, 41:125 – 139, 1985.

[10] J. Hoffstein, J.C. Pipher, and J.H. Silverman. An introduction to mathematical cryptography. Under-
graduate texts in mathematics. Springer, 2008.

[11] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press, New York, NY,
USA, 1986.

10

[12] C.J.G. Jacobi. Über ein leichtes verfahren, die in der theorie der säkularstörungen vorkommenden
gleichungen numerisch aufzulösen. Journal für reine und angewandte Mathematik, 30:51–95, 1846.

[13] Ravi Kannan. Improved algorithms for integer programming and related lattice problems. In Pro-
ceedings of the fifteenth annual ACM symposium on Theory of computing, STOC ’83, pages 193–206,
New York, NY, USA, 1983. ACM.

[14] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12:415–440, August 1987.

[15] A. Korkine and G. Zolotareff. Sur les formes quadratiques. Mathematische Annalen, 6:366–389, 1873.
10.1007/BF01442795.

[16] A.K. Lenstra, Lenstra, and Lászlo Lovász. Factoring polynomials with rational coefficients. Math.
Ann., 261:515–534, 1982.

[17] Franklin T. Luk, Sanzheng Qiao, and Wen Zhang. A lattice basis reduction algorithm. Technical
report, Institute for Computational Mathematics Hong Kong Baptist University, 2010.

[18] J. Martinet. Perfect Lattices in Euclidean Spaces. Springer-Verlag, Berlin, 2003.

[19] H. Minkowski. Discontinuity region for arithmetical equivalence. J. reine Angew, (129):220–274,
1905.

[20] P. Q. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited. ACM Transactions on
Algorithms, 2009. To appear.

[21] Phong Nguyen. Lattice reduction algorithms: Theory and practice. In Kenneth Paterson, editor,
Advances in Cryptology - EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 2–6. Springer Berlin / Heidelberg, 2011.

[22] Phong Q. Nguyen and Brigitte Valle. The LLL Algorithm: Survey and Applications. Springer Publish-
ing Company, Incorporated, 1st edition, 2009.

[23] Sanzheng Qiao. Integer least squares: sphere decoding and the LLL algorithm. In Proceedings of the
2008 C3S2E conference, C3S2E ’08, pages 23–28, New York, NY, USA, 2008. ACM.

[24] Sanzheng Qiao. A Jacobi method for lattice basis reduction. In Proceedings of 2012 International
Conference on Wireless Communications and Networks, Xi’an China, May 2012. To appear.

[25] Zhaofei Tian and Sanzheng Qiao. A complexity analysis of a Jacobi method for lattice basis reduc-
tion. In Proceedings of the Fifth International Conference on Computer Science and Software Engi-
neering, ACM International Conference Proceedings Series, Montreal, Quebec, Canada, June 2012.
ACM Press. To appear.

[26] I. M. Vinogradov. Elements of number theory. Dover Publications Inc., New York, 1954. Translated
by S. Kravetz.

[27] Sanzheng Qiao Wen Zhang and Yimin Wei. Practical algorithms for constructing HKZ and
Minkowski reduced bases. Technical report, McMaster University, 2011. CAS-11-04-SQ.

[28] D. Wübben, D. Seethaler, J. Jalden, and G. Matz. Lattice reduction: A survey with applications in
wireless communications. IEEE Signal Processing Magazine, 28(3):70–91, May 2011.

11

[29] P. Xu, C. Shi, and J. Liu. Integer estimation methods for GPS ambiguity resolution: an applications
oriented review and improvement. Survey Review, 44:59–71, Jan. 2012.

12

