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Abstract

Recently, lattice reduction has been widely used for signal detection in multiinput mul-
tioutput (MIMO) communications. In this paper, we present three novel lattice reduction
algorithms. First, using a unimodular transformation, a significant improvement on an ex-
isting Hermite-Korkine-Zolotareff-reduction algorithm is proposed. Then, we present two
practical algorithms for constructing Minkowski-reduced (M-reduced) bases. To assess the
output quality, we compare the orthogonality defect of the reduced bases produced by LLL
algorithm and our new algorithms, and find that in practice M-reduced basis vectors are
the closest to being orthogonal. An error-rate analysis of suboptimal decoding algorithms
aided by different reduction notions is also presented. To this aim, the proximity factor is
employed as a measurement. We improve some existing results and derive upper bounds for
the proximity factors of Minkowski-reduction-aided decoding (MRAD) to show that MRAD
can achieve the same diversity order with infinite lattice decoding (ILD).

Keywords Lattice reduction, LLL, HKZ, Minkowski, MIMO detection, proximity factors.

1 Introduction

In this paper, we shall concern with the problem of lattice basis reduction and its application in
MIMO detection. Suppose that B is an m-by-n, m ≥ n, real matrix of full column rank, then a
lattice generated by B is defined by the set:

L(B) = {Bz | z ∈ Zn},

where Zn denotes the set of integer n-vectors. The columns of B form a basis for the lattice
L(B), and the value of n is called the dimension of L(B). When n ≥ 2, the lattice L(B) can
have infinitely many different bases other than B.

Since a lattice can have more than one basis, it is desirable to find one that is reasonably short
and nearly orthogonal. A lattice basis consisting of relatively short vectors is called reduced. An
ideally reduced basis consists of shortest possible vectors. The problem of finding good reduced
bases is known as lattice reduction, which plays an important role in many fields of mathematics
and computer science [1–4], particularly in communications [5–7] and cryptology [8, 9].

In wireless communications, many problems arised from the linear MIMO model, such as
code-division multiple access (CDMA) [10] and linearly precoded orthogonal frequency-division
multiplexing (OFDM) [11], can be solved optimally by maximum-likelihood (ML) decoding of
MIMO systems. For lattice-type modulation, ML decoding can be modeled as the problem of
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finding a lattice point closest to a given received signal vector, or equivalently, the closest vector
problem (CVP) [5, 12–14]. To solve CVP exactly, several solvers, such as the sphere decoding
algorithms [5, 12, 15, 16], are developed, and lattice reduction has become a powerful tool for
reducing the decoding complexity. However, the complexity of the sphere decoding algorithms
increase exponentially with the number of transmit antennas [5,13,14]. Thus, for large problem
sizes or real-time fast fading situations where the received signal vectors change rapidly, ML
detection can not meet the time requirement. This motivates the presentations of several low-
complexity suboptimal decoding algorithms such as zero-forceing (ZF) decoding and successive
interference cancellation (SIC) decoding [17–19]. To improve the performance loss of these
approximate detectors, lattice reduction is believed to be an efficient preprocessor [6, 19–21].

There are various definitions of reduced bases. They differ in the degree of reduction. In
1850, Hermite introduced the first notion of reduction for lattices of arbitrary dimension. Algo-
rithms for achieving such reduction can be found in [15,22]. In 1873, Korkine and Zolotareff [23]
strengthened the definition of Hermite-reduction, and their proposed notion is referred to as
HKZ-reduction [2], named after Hermite, Korkine and Zolotareff. In 1983, using induction,
Kannan [24] presented the first algorithm for constructing HKZ-reduced bases. Helfrich [25],
Kannan [26], and Banihashemi and Khandani [27] further refined Kannan’s algorithm and im-
proved the complexity analysis. However, due to the super exponential complexity of Kannan’s
algorithm [24], most algorithms based on Kannan’s strategy are intended as theoretical tools,
and related papers [25–27] focus on asymptotic complexity.

In 1891, Minkowski [28] defined another reduction notion, which is now known as Minkowski-
reduction (M-reduction). The concept of M-reduction is of fundamental importance in many
fields of mathematics. For example, M-reduced bases are used in assessing the quality of random
number generators [3] and used in the reduction of quadratic forms in number theory [1].

The construction of M-reduced bases is a classical problem which attracts much attentions.
In 1773, Lagrange [29] presented the first algorithm for producing an M-reduced basis for lat-
tices of dimension two. Recently, this algorithm was extended to dimensions three and four
by Semaev [30] and Nguyen and Stehlé [31], respectively. More generally, Helfrich [25] and Af-
flerbach and Grothe [32] presented algorithms for constructing M-reduced bases for lattices of
arbitrary dimension. However, these algorithms are believed to be of theoretical values for high
dimensional lattices since their complexity are also super exponential with respect to the lattice
dimension.

The construction of HKZ-reduced bases or M-reduced bases consists of a sequence of shortest
vector problems (SVPs). The SVP, which is actually a special CVP, is to find a shortest nonzero
lattice point with respect to the L2-norm in a given lattice. This problem has been proven to be
NP-hard [33]. Even finding an approximate solution with which the ratio between the computed
distance and the shortest distance is upper-bounded by a constant, is also NP-hard [34]. That is
why the construction of an HKZ-reduced or an M-reduced basis requires intensive computation.
In 1982, Lenstra, Lenstra and Lovász relaxed the definition of Hermite-reduction [22] to obtain
a new reduction notion, known as LLL-reduction, named after the three authors [35]. The
associated LLL algorithm is the first polynomial-time lattice reduction algorithm and has been
widely used in public-key cryptanalysis [2, 36] and MIMO detection/precoding [7, 19]. Further
improvements of LLL algorithm have been developed. While some improve the output quality
[37–39], others improve the efficiency [6, 40–44].

Our results. This paper presents three practical algorithms: one for constructing HKZ-
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reduced bases and two for constructing M-reduced bases. The first algorithm uses the same SVP
solver during the recursive process as the algorithm in [5]. However, it uses a different method
for the expansion of a shortest vector into a new lattice basis. In [5], the basis expansion strategy
introduced by Kannan [24] is used, while in our new algorithm, the unimodular transformation
technique presented in [45] is used. Note that Kannan’s basis expansion method only works for
rational lattices, while our unimodular transformation technique works for any real lattice and
is much more efficient than Kannan’s method.

The other two algorithms are focused on the construction of M-reduced bases for lattices of
arbitrary dimension. In general, both algorithms are based on Schnorr-Euchner search strategy
[15] and the unimodular transformation technique [45]. Specifically, the first algorithm uses a
simple variation of Schnorr-Euchner enumeration to compute each M-reduced basis vector, while
the second algorithm dynamically monitors the basis expansion condition during the search
process. Thus, the second algorithm is more efficient than the first one. However, the first
algorithm can be preconditioned by using LLL algorithm, while the second one can not. To
accelerate the second algorithm, we propose a partial lattice reduction method as a preprocessor.
Numerical results show that the second algorithm is much faster than the first one, and both of
them can significantly outperform the existing algorithms [25,32].

Note that in most communication applications, the lattice needed for decoding remains un-
changed, while the observed received vectors change frequently. That is, the preprocessing of the
lattice generator matrix needs to be performed only once, while the processed basis is typically
used many times. So it is worthy to invoke a good preprocessing procedure, even it requires
a relatively high complexity. Since the vectors of HKZ and M-reduced bases are shorter and
more orthogonal than those of LLL-reduced bases, the bit-error-rate (BER) performance of ap-
proximate MIMO detectors is expected to be further improved by applying our new algorithms.
Theoretically, we discuss the BER related proximity factor as defined in [20], and prove that
M-reduction-aided decoding, such as ZF decoding and SIC decoding, can achieve the same re-
ceive diversity with ILD. Numerical results show that M-reduction-aided ZF decoding performs
slightly better than that based on LLL or HKZ-reduced bases, while HKZ-reduction-aided SIC
decoding performs better than that aided by LLL or M-reduced bases.

All algorithms presented in this paper are described in matrix form. The rest of the paper
is organized as follows. In Section 2, we introduce the MIMO system model and review several
concepts in lattice theory. In Sections 3, we briefly review and compare different SVP solvers.
The new algorithm for constructing HKZ-reduced bases is given in Section 4. Section 5 presents
the first algorithm for constructing M-reduced bases. The partial lattice reduction preprocessor
as well as the second algorithm for constructing M-reduced bases are presented in Section 6.
In Section 7, we discuss the performance of ZF decoding and SIC decoding aided by different
reduction notions. In Section 8, we present our experimental results. Finally, the paper is
concluded in Section 9.

2 Preliminaries

In this section, we shall briefly introduce the model of MIMO systems as well as several detection
methods. Some basic concepts in the field of lattice theory are also presented.
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2.1 System Model

Consider an nR×nT MIMO system consisting of nT transmit antennas and nR receive antennas.
The relationship between the nT × 1 transmitted signal vector x and the nR × 1 received signal
vector y is given by

y = Hx+ n, (1)

where H is an nR × nT matrix representing the channel matrix, and n is an nR × 1 vector
representing the additive noise vector. In a full-rank flat-fading MIMO system, H is a complex
matrix with all of its elements being independent Gaussian random variables CN(0, 1), and the
noise n is a complex vector with all of its elements being independent Gaussian random variables
CN(0, 2σ2). Treating the real and imaginary parts of (1) separately, an equivalent real-valued
system of doubled dimension can be obtained, with the transformed channel matrix

B =

[
ℜ(H) −ℑ(H)
ℑ(H) ℜ(H)

]
(2)

where ℜ(H) and ℑ(H) denote the real and imaginary parts of H, respectively. We shall adopt
such real-valued model throughout this paper.

2.2 Detection Methods and Lattice Viewpoint

Given a MIMO system modeled as (1), and let n = 2nT . Then the optimum ML decoding
selects xML that is a solution for the following minimization problem as the transmit signal:

xML = argmin
x∈A
∥y −Bx∥2, (3)

where A denotes the finite set of real-valued modulation alphabet being used. Assume that
the constellation A is of lattice type, such as PAM or QAM, then upon scaling and shifting
the problem (3) can be transformed into an integer least squares problem. For solving such
problem exactly, several algorithms such as Kannan’s method [24] as well as the sphere decod-
ing algorithms [5, 15, 16] are proposed. However, the complexity of these algorithms increase
exponentially with the number of transmit antennas [5, 13, 14]. So ML decoding is not feasible
for large number of transmit antennas or fast fading situation where the received signal changes
rapidly.

To reduce the detection cost, many approximate algorithms with low-complexity have been
proposed, such as ZF decoding and SIC decoding [17–19]. For ZF decoding, the interference
is completely suppressed by multiplying the received vector y with the Moore-Penrose inverse
B† = (BTB)−1BT of the channel matrix where BT represents the transpose of B. The signal
vector xZF is then decided by mapping each element of the output vector B†y onto an element
of the symbol alphabet by a minimum distance quantization. As shown in [42], SIC decoding
can be described in terms of QR decomposition of the channel matrix. Specifically, we first
apply QR decomposition B = QR such that Q consists of orthonormal columns and R is upper
triangular. Then by multiplying QT to (1), we can obtain

y′ = Rx+ n′, (4)

where y′ = QTy and n′ = QTn. Due to the upper triangular structure of R, the n-th element of
x is free of interference, and by assuming that all previous decisions are correct, the interference
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can be perfectly cancelled in each step thus xn−1, · · · ,x1 can be detected successively. Based on
SIC decoding, the so-called V-BLAST decoding [18] can further improve the detection perfor-
mance by adopting a detection order in accordance with the descending order of signal-to-noise
ratios (SNR) of different elements in a received vector.

The performance of approximate detectors is highly related to the structure of B. It is well
known that the closer to being orthogonal the column vectors of B are, the lower BER the
approximate detectors have [19,21,46]. Especially, ZF decoding and SIC decoding are identical
to ML decoding if B is orthogonal.

An integer matrix Z ∈ Zn×n is called unimodular if |det(Z)| = 1, where det(Z) denotes the
determinant of Z. In general, the columns vectors of any matrix B′ can form a basis for L(B)
if and only if B′ can be factorized as B′ = BZ, where Z is a unimodular matrix. A lattice
reduction algorithm is an algorithm that, given B, finds a proper unimodular matrix Z such
that BZ is reduced. Suppose that Z is a unimodular matrix produced by a lattice reduction
algorithm, then the MIMO system can be transformed into

y = Bx+ n = BZZ−1x+ n = B′x′ + n, (5)

where B′ = BZ and x′ = Z−1x. Applying the MIMO detection algorithms aforementioned on
(5), x′ can be obtained and thus the transmit vector x is given by x = Zx′.

2.3 Some Basic Definitions

In this subsection, we shall introduce several classical concepts in lattice theory that will be used
throughout this paper.

2.3.1 Lattice volume and orthogonality defect

Let L be the lattice generated by a matrix B = [b1,b2, · · · ,bn] ∈ Rm×n, m ≥ n. Then the
volume of L is defined as vol(L) =

√
det(BTB). From the definition of unimodular, we have

det(BTB) = det((BZ)TBZ) for any unimodular Z ∈ Zn×n. Hence the volume of a lattice is
independent of the choice of basis. The orthogonality defect of the basis {b1,b2, · · · ,bn} for L is
defined as δ(B) = (

∏n
i=1 ∥bi∥2)/vol(L). The concept of orthogonality defect is used to measure

the degree of orthogonality for a given matrix. From Hardama’s Inequality, δ(B) is always larger
than or equal to 1, with equality if and only if B is orthogonal.

2.3.2 Gram-Schmidt orthogonalization and QR decomposition

Let B = [b1, · · · ,bn] be of full column rank. Then Gram-Schmidt orthogonalization (GSO)
q∗
1, · · · ,q∗

n are defined as follows: for any 1 ≤ j ≤ n, q∗
j is the component of bj that is orthogonal

to the subspace spanned by the vectors b1, · · · ,bj−1. Initializing with q∗
1 = b1, the vectors

q∗
2, · · · ,q∗

n can be calculated successively by

q∗
j = bj −

∑
i<j

ui,jq
∗
i , 1 < j ≤ n, (6)

where ui,j =
⟨bj ,q

∗
i ⟩

∥q∗
i ∥22

(⟨·, ·⟩ denotes the inner product of two vectors). Another orthogonalization

approach is QR decomposition, obtained by applying a sequence of orthogonal transformations
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such as Householder transformations [47]:

B = QR, (7)

where Q consists of orthonormal columns, and R = [ri,j ] is an upper triangular matrix with
positive diagonal. Instead of GSO, many recent lattice reduction algorithms [7, 38, 46, 48–50]
adopt the QR decomposition approach, since the QR decomposition can be performed efficiently
and numerically more stable than GSO.

2.3.3 Minkowski’s successive minima and Hermite’s constant

Let L be an n-dim lattice in Rm. For 1 ≤ i ≤ n, the i-th Minkowski’s successive minima
λi(L) is the radius of the smallest closed ball centered at the origin containing at least i linearly
independent lattice vectors. In particular, λ1(L) is the Euclidean length of a shortest nonzero
lattice vector of L. There always exist independent lattice vectors vi’s such that ∥vi∥2 = λi(L)
for all i. Note that for n > 4, such vectors do not necessarily form a basis for L. It is a classical
fact that λ1(L)/vol(L)

1/n can be upper bounded over all n-dim lattices L, and Hermite’s constant
γn is defined as the supremum of λ1(L)

2/vol(L)2/n over all n-dim lattices. Finding the exact
value of γn is a very difficult problem, which plays a central role in the theory of geometry of
numbers. The exact value of γn is only known for 1 ≤ n ≤ 8 and n = 24 [2, Page 33]. An upper
bound of Hermite’s constant is given in [2, Page 35]:

γn ≤ 1 +
n

4
, for all n ≥ 1. (8)

2.3.4 Size-reduction and HKZ-reduction

A lattice generator matrix B ∈ Rm×n is called size-reduced if the upper triangular factor R =
[ri,j ] of its QR decomposition satisfies:

|ri,j | ≤
1

2
|ri,i|, for 1 ≤ i < j ≤ n. (9)

By calling the procedure as shown in Fig. 1, the condition (9) can be enforced. A generator
matrix B is called HKZ-reduced if it is size-reduced and its R-factor R satisfies: for all 1 ≤ i ≤ n,
ri,i = λ1(L(R(i : n, i : n))), where L(R(i : n, i : n)) is the lattice generated by R(i : n, i : n). It
is proved in [51] that the length of each HKZ-reduced basis vector can approximate Minkowski’s
successive minima within a polynomial factor:

4

i+ 1
≤ ∥bi∥22

λ2
i (L)

≤ i+ 3

4
, 1 ≤ i ≤ n; (10)

n∏
i=1

∥bi∥2 ≤

(
γnn

n∏
i=1

i+ 3

4

) 1
2

· vol(L). (11)
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Procedure Size-Reduce(R, Z, i, j)

Input: R ∈ Rn×n, Z ∈ Zn×n, and indices i, j
Output: R with |ri,j | ≤ |ri,i|/2, and updated Z.
1: if |ri,j | > |ri,i|/2 then
2: t← ⌊ri,j/ri,i⌉
3: R(1 : i, j)← R(1 : i, j)− t ·R(1 : i, i)
4: Z(:, j)← Z(:, j)− t · Z(:, i)
5: end if

Figure 1: The size-reduction algorithm

2.3.5 Minkowski-reduction

A lattice generator matrix B = [b1, · · · ,bn] is called M-reduced if for all 1 ≤ i ≤ n, the vector
bi has the minimum norm among all lattice vectors bi such that {b1, · · · ,bi} can be extended
to a basis for L(B) [28]. Intuitively, M-reduction requires each basis vector as short as possible.
From [52], the length of each M-reduced basis vector can be bounded by

λ2
i (L) ≤ ∥bi∥22 ≤ max{1, (5/4)(n−4)}λ2

i (L), 1 ≤ i ≤ n; (12)

n∏
i=1

∥bi∥2 ≤ γ
n
2
n · vol(L), for n ≤ 4; (13)

n∏
i=1

∥bi∥2 ≤ γ
n
2
n · (5/4)

(n−3)(n−4)
4 · vol(L), for n > 4. (14)

We can obtain from (12) that for lattices of dimension n ≤ 4, the norms of M-reduced basis
vectors can simultaneously achieve Minkowski’s successive minima. In high dimensions, however,
there need not exist an M-reduced basis whose vector norms simultaneously reach Minkowski’s
successive minima.

2.3.6 LLL-reduction

A lattice generator matrix B ∈ Rm×n is called LLL-reduced if it is size-reduced and its R-factor
R = [ri,j ] satisfies:

r2i,i + r2i−1,i ≥ ω r2i−1,i−1, 1 < i ≤ n, (15)

where ω ∈ (1/4, 1) is a parameter which influences the quality of the reduced basis. Obviously,
an HKZ-reduced basis is LLL-reduced for any 1/4 < ω < 1. To justify that an LLL-reduced
basis consists of vectors reasonably short, it is shown in [35] that

β1−iλ2
i ≤ ∥bi∥22 ≤ βn−1λ2

i , (16)

n∏
i=1

∥bi∥2 ≤ β
n(n−1)

4 · vol(L). (17)
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where β = (ω − 1/4)−1. Like M-reduction, the upper bound in the right hand side of (16)
grows exponentially with the dimension of lattice. However, M-reduction is stronger than LLL-
reduction, since the exponential factor in (12) is smaller than that of LLL-reduction for any
1/4 < ω < 1.

The LLL algorithm [35] is the first lattice reduction method which can practically produce a
reduced basis of high quality in polynomial time. It is shown in [44,53] that LLL algorithm has
an average complexity of O(mn3 log n) flops over all Gaussian random matrices whose entries
are i.i.d. N (0, 1) distributed. Therefore LLL algorithm has become one of the most practical
tools for MIMO detection [6, 12,19,54].

3 Algorithms for Solving SVP

As pointed out previously, the calculation of HKZ or M-reduced bases involves solving a sequence
of SVP, which is known as a fundamental problem in lattice theory. Let B ∈ Rm×n be a lattice
generator matrix of full column rank, then SVP can be modeled as:

min
z ̸=0
{∥Bz∥2 : z = [zi] ∈ Zn} (18)

From (18), SVP is actually a special CVP with 0 being the observed vector to decode.
There are many algorithms for solving SVP exactly, and the choice of methods depends on the

structure of the lattice generator matrix. For many classical lattices, efficient search algorithms
exploiting the special structure of the lattice generator matrix are known [55, 56]. For general
SVP, that is, the lattice generator matrix has no exploitable structure, related algorithms can
be classified in three categories: algorithms based on Kannan’s strategy [24–27], the sphere
decoding algorithms [5,15,16,57,58] and the sieve algorithms [59–61], of which the first two are
deterministic enumeration algorithms and are unified in the same framework in [5], while the
last one are randomized algorithms.

In general, the common feature of most deterministic algorithms is to first identify a region
in which a shortest lattice point must lie, and then exhaustively search the lattice points lying in
this region for the shortest nonzero lattice vector, while possibly reducing the size of the region
dynamically.

3.1 Algorithms Based on Kannan’s Strategy

Kannan’s algorithm was first presented in [24] and further improved in [25–27]. Let {b1, · · · ,bn}
be a basis for an n-dim lattice L and let π2(·) be an orthogonal projection operator which projects
“·” onto b⊥

1 , where b
⊥
1 denotes the orthogonal complement of the subspace spanned by b1. The

basic idea of Kannan enumeration is to first find an HKZ-reduced basis for the lattice π2(L) by
calling itself recursively, and then lift it to a size-reduced basis (b1,b

′
2, · · · ,b′

n) for L such that
(π2(b

′
2), · · · , π2(b′

n)) is an HKZ-reduced basis of π2(L) and ∥b1∥22 ≤ 4
3∥b

′
2∥22. Then the shortest

lattice point must lie in a parallelepiped of cardinality no more than n0.5n+o(1) and can thus be
found by enumerating this finite set. It is proved in [25,26] that algorithms based on Kannan’s
strategy require a complexity of n0.5n+o(n) polynomial-time operations. Variants of Kannan’
strategy [24], [25], [26], [27] differ mainly in how the size of the search region for each iteration
level are chosen. Note that Kannan enumeration not only finds a shortest lattice point, but also
constructs an HKZ-reduced basis simultaneously.
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3.2 The Sphere Decoding Algorithms

Let ρ be the radius of the initial search sphere in which at least one shortest lattice point must
lie. Then the basic idea of the sphere decoding algorithms is to enumerate lattice points lying
in the hypersphere defined by:

∥Bz∥22 ≤ ρ2. (19)

Such hypersphere search strategy was firstly presented in [16] and further improved in [5, 15,
57, 58]. To learn the principle of the hypersphere enumeration more directly, we shall present
a recursive version of the sphere decoding algorithms in this section. Let B = QR be the QR
decomposition of B, then (19) can be transformed into

∥Rz∥22 ≤ ρ2 (20)

Due to the upper triangular structure of R, the last entry of Rz is a function of zn only. Thus,
the upper and lower bounds of zn can be obtained from (20),⌈

− ρ

rn,n

⌉
≤ zn ≤

⌊
ρ

rn,n

⌋
. (21)

Partition R into

R =

[
Rn−1 h
0T rn,n

]
, (22)

where Rn−1 ∈ R(n−1)×(n−1), h ∈ Rn−1. Then for each integer value of zn satisfying (21), the
n-dim SVP (18) is reduced to an (n− 1)-dim CVP

min{∥Rn−1z
′ + znh∥2 : z′ ∈ Zn−1}, (23)

with a solution lying in the (n− 1)-dim hypersphere

∥Rn−1z
′ + znh∥22 ≤ ρ2 − z2nr

2
n,n. (24)

Therefore, an n-dim SVP can be reduced to a finite number (at most ⌊2ρ/rn,n⌋+1) of (n−1)-dim
CVPs, leading to a recursive algorithm. In summary, we unite Phost’s strategy [16, 57, 58] and
Schnorr-Euchner strategy [5,15] in the same framework, and present a recursive implementation
in Fig. 2.

Obviously, a shortest nonzero lattice vector can be found by calling Algorithm Sph-Dec(R,
0, ϕ, r, 0). From line 1 and the for-loop from line 4 to line 18, one n-dim problem can be solved
recursively by reducing it to at most ⌊2

√
r/rn,n⌋ + 1 (n − 1)-dim subproblems as described in

(23). From lines 11–13, the size l of the search region is reduced dynamically. That is, when
any lattice point Rz′ inside the search region is found, the squared radius l can be reduced to
∥Rz′∥22, since ∥Rz′∥22 < l. Therefore, not all of the ⌊2

√
r/rn,n⌋+ 1 (n− 1)-dim subproblems are

necessarily to be solved in practice.
Note that the condition in line 14 is to make sure that the lattice points being searched are

nonzero. The above algorithm can be applied to solve general CVP, by deleting “if newdist ̸= 0”
from line 14. The efficiency of the sphere decoding algorithms lies in the following aspects:
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Algorithm Sph-Dec(R, x, zin, r, dist)

Input: R ∈ Rn×n, a vector x = [xi] ∈ Rn to decode, an integer partial solution zin, the current distance
record r and the distance to examined layer dist.

Output: a solution z ∈ Zn and l = ∥Rz− x∥22
1: LB ←

⌈
−
√
r−dist+xn

rn,n

⌉
, UB ←

⌊√
r−dist+xn

rn,n

⌋
2: l← r, z← ϕ /* ϕ represents an empty vector */
3: if LB ≤ UB then
4: for each integer s lying in [LB,UB] do
5: newdist← dist+ (xn − s · rn,n)2
6: if newdist < l then
7: ẑin ← [s; zin]
8: if n > 1 then
9: x̂← x(1 : n− 1)− s×R(1 : n− 1, n)

10: [z′, l′]←Sph-Dec(Rn−1, x̂, ẑin, l, newdist)
11: if l′ < l then
12: l← l′, z← z′

13: end if
14: else if newdist ̸= 0 then
15: z← ẑin, l← newdist
16: end if
17: end if
18: end for
19: end if

Figure 2: The sphere decoding algorithm
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• Choice of the initial size r. If r is too small, there is no nonzero lattice point inside the
hypersphere, whereas if r is too large, there are too many lattice points to enumerate and
the complexity would become very high. So we have to find a sufficient small r such that
at least one lattice point lies in this hypersphere. Let {b1, · · · ,bn} be an LLL-reduced
basis of the given lattice. It follows from (16) that ∥b1∥2 is a reasonable approximation to
λ1, thus a natural candidate for r is ∥b1∥22.

• The order in which the subproblems are solved. Once the interval [LB,UB] in line 1 is
obtained, the algorithms based on Phost’s strategy [16,57,58] search through this interval
from the lower bound to the upper bound. To further improve the performance, algo-
rithms based on Schnorr-Euchner strategy [5,15] search through [LB,UB] in the order of
increasing distance from the center. In this way, the chance of finding short vectors early is
increased. So algorithms based on Schnorr-Euchner strategy are more efficient than those
based on Phost’s strategy.

Another aspect that is closely related to the efficiency of the sphere decoding algorithms is
the structure of lattice basis. It is believed that the closer to being orthogonal the basis vectors
are, the more efficient Algorithm Sph-Dec is. Thus, an appropriate preprocessor, such as LLL
algorithm, is necessary.

The complexity of the sphere decoding algorithms was discussed in [13, 14, 60]. In [13, 14],
the search process was modeled as a search tree, and the search space can be measured by
the number of nodes visited in practice. Since the n-dim problem can be reduced to at most
⌊2
√
r/rn,n⌋+ 1 (n− 1)-dim subproblems, we can obtain the upper bound for the cardinality of

the search space by induction,
n∏

j=1

(⌊
2
√
r

rj,j

⌋
+ 1

)
. (25)

Moreover, let the basis be LLL-reduced with the parameter ω ≈ 1, and r = ∥b1∥22, then it is

easy to verify that (25) is bounded above by
√

4/3
n2/2+O(n)

. It is further shown in [60] that for
random bases as defined in [62], the asymptotic complexity of the sphere decoding algorithms
is expected to be of 1.02n

2+O(n) polynomial-time operations. For Gaussian random matrices
appeared in communications, it is proved in [13] that the expected cardinality of the search
space is bounded above by eπr. Since the expectation E(∥b1∥22)= n, the expected asymptotic
complexity of the sphere decoding algorithms is of eπn polynomial-time operations.

3.3 The Sieve Algorithms

Rather than the deterministic algorithms as introduced above, the sieve algorithm [59] proposed
by Ajtai, Kumar and Sivakumar (AKS) is a randomized method for solving SVP. It is shown
in [59] that the time and space complexity of AKS are both 2O(n). Note that the sphere decoding
algorithms as well as Kannan enumeration only require a polynomial space. Thus, a big draw-
back of AKS is its exponential space requirement. Besides, the original AKS was widely believed
to be impractical since the constant hidden in the 2O(n) complexity was thought to be large.
To further improve the efficiency of the sieve algorithm, two practical heuristic variants of AKS
were proposed in [60] and [61], respectively. The first variant [60] runs in (4/3+ ε)n polynomial-
time using (4/3+ ε)n/2 space. For the second variant, the complexity is still unknown currently.

11



However, numerical results in [61] show that in practice it runs in 20.48n polynomial-time using
20.18n space.

The efficiency of the three strategies introduced in this section were compared in [60]. In
general, for lattices of small dimensions, the sphere decoding using Schnorr-Euchner enumeration
is the fastest. On one hand, for lattices of rather small dimensions, the exponential factor of the
complexity of the sphere decoding algorithms may not be larger than that of Kannan’s algorithm
or that of the sieve algorithms. On the other hand, the polynomial factors of the complexity of
these algorithms are not negligible for low dimensions. The polynomial-time unit of the sphere
decoding algorithms is extremely small in practice, whereas the polynomial-time units of the
other two methods are much larger (see [60] for more details). Simulation results in [60, 61]
illustrate that for lattices of dimension n ≤ 40, Schnorr-Euchner enumeration is indeed the most
efficient algorithm.

4 A New Algorithm for Constructing HKZ-reduced Bases

As pointed out previously, algorithms based on Kannan’s strategy [24–27] not only find a shortest
nonzero lattice point, but also construct an HKZ-reduced basis simultaneously. However, they
are intended as theoretical results rather than practical tools, since the induction conditions
imposed by Kannan’s strategy are crucial and the complexity becomes prohibitive quickly as
the dimension of lattices increases.

From the definition of HKZ-reduction, the key to the construction of an HKZ-reduced basis
is to recursively find a shortest nonzero lattice vector and then to extend this vector to a basis for
the lattice. From Section 3, the sphere decoding algorithm using Schnorr-Euchner enumeration is
currently the most efficient method for solving general SVP with small dimensions. Therefore, to
calculate an HKZ-reduced basis efficiently, it is natural to combine Schnorr-Euchner enumeration
and Kannan’s basis expansion method [24]. Indeed, this is the method presented in [5].

In this section, we present a new algorithm for constructing HKZ-reduced bases for general
lattices. Like the algorithm in [5], we also adopt Schnorr-Euchner enumeration to solve SVP.
However, instead of Kannan’s basis expansion method, we use a novel unimodular transformation
basis expansion strategy.

Firstly, we state Kannan’s basis expansion method [26] in Fig. 3. A brief complexity analysis
of Procedure Select-Basis is given as follows. From line 14, this algorithm is performed
in a recursive way and each time the problem size is reduced by one. In each recursion k,
1 ≤ k ≤ n, the computations in lines 4 and 7 involve solving k-dim systems of linear equations
which require O(k3) operations. The computations in lines 13 and 15 require O(k2) operations.
Moreover, the computations in lines 8–10 also lead to some additional operations. In summary,
the complexity of Procedure Select-Basis is at least O(n4) (O(

∑n
k=1 k

3)). Although the
sphere decoding algorithm has an exponential complexity, numerical results in [13] show that
for small dimensions, the expected complexity can be approximated by a polynomial function
(often roughly cubic). Hence, from a practical point of view, the computational cost required
by Kannan’s basis expansion method is not negligible. Moreover, note that Procedure Select-
Basis only works for rational lattices, not general real-valued lattices.

Secondly, based on the unimodular transformation presented in [45], we propose a new basis
expansion method, which is applicable for lattices of any type, as long as the coordinates of one
shortest nonzero lattice point is available. Specifically, let B ∈ Rm×n be a generator matrix for
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Procedure Select-Basis(n; b1, · · · ,bn+1)

Input: vectors bi ∈ Qm, 1 ≤ i ≤ n+ 1, that can span an n-dim lattice L
Output: a basis {a1, · · · ,an} of L, where a1 is a shortest lattice vector in the direction of b1

1: if n = 0 or b1 = 0 then
2: do the obvious
3: else
4: if b1 is independent of b2, · · · ,bn+1 then
5: a1 ← b1

6: else
7: find α2, · · · , αn+1 (rationals) such that

∑n+1
j=2 αjbj = b1

8: M ← least common multiples of the denominators of α2, · · · , αn+1

9: γ ← gcd(Mα2, · · · ,Mαn+1)
10: let M/γ = p/q, where p, q are relatively prime integers
11: a1 ← (1/q) · b1

12: end if
13: bi ← bi − ⟨bi,a1⟩

⟨a1,a1⟩a1, i = 2, · · · , n+ 1

14: (c2, · · · , cn)← Select-Basis(n− 1;b2, · · · ,bn+1)
15: lift ci to ai in L for i = 2, · · · , n
16: return a1, · · · ,an
17: end if

Figure 3: Kannan’s basis expansion method [26]

an n-dim lattice L. Suppose that Bz is a shortest nonzero point in L, where z = [zi] ∈ Zn.
Then the problem of expanding Bz to a basis for L is equivalent to the problem of constructing
an n-by-n unimodular matrix Z whose first column is z. In other words, Z−1z = e1, which says
that Z−1, also unimodular, transforms z into the first unit vector e1.

For the special case when n = 2, such a unimodular matrix is easy to construct. Suppose
that z = [p, q]T ∈ Z2, and let gcd(p, q) = d. Using the extended Euclidean algorithm, one can
find integers a and b such that ap+ bq = d. Construct

M =

[
p/d −b
q/d a

]
. (26)

It is obvious that M is a unimodular matrix with

M−1 =

[
a b

−q/d p/d

]
, M−1

[
p
q

]
=

[
d
0

]
. (27)

Thus, M−1 can be applied to z to annihilate its second entry. In particular, if gcd(p, q) = ±1,
then z can be transformed into the first unit vector.

Now we consider the general case when n > 2. Since Bz is a shortest nonzero lattice point,
we have gcd(zi) = ±1, implying that a sequence of the plane unimodular transformations M of
the form (26) can be applied to transform z into the first unit vector.

Putting all things together, we present our new algorithm for constructing an HKZ reduced
basis in Fig. 4. During the process of Algorithm HKZ-Red, Procedure Transform called
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Algorithm HKZ-Red(B, ω)

Input: B ∈ Rm×n, and the LLL parameter ω, 1/4 < ω < 1
Output: a unimodular matrix Z ∈ Zn×n such that the columns of BZ form an HKZ-reduced basis
1: QR decomposition: B = QR
2: Z← In
3: for k = 1 to n− 1 do
4: use LLL-aided Schnorr-Euchner enumeration to find a vector z ∈ Zn−k+1 such that R(k : n, k : n)z

is a shortest nonzero point in the lattice generated by R(k : n, k : n)
5: [R,Z]← Transform(R, Z, z, k)
6: end for
7: for j = 2 to n do
8: for i = j − 1 down to 1 do
9: [R,Z]← Size-Reduce (R, Z, i, j)

10: end for
11: end for

Figure 4: The new HKZ-reduction algorithm

in line 5 expands the shortest lattice vector found in line 4 to a basis for the (n − k + 1)-dim
lattice generated by the trailing submatrix R(k : n, k : n). Moreover, this procedure should
keep the upper triangular structure of R and update the unimodular matrix Z. Fig. 5 is an
implementation of the procedure.

Now we analyze the complexity of Procedure Transform. For each iteration of the for-
loop, the computations from line 5 to line 8 require O(n) fp operations. Then we consider the
cost of line 2. Given two integers p and q, it is well known that the complexity of Euclidean
algorithm is O(log g), where g = min{|p|, |q|}. So the cost of line 2 can be obtained if an upper
bound of |zn−k+1| can be found. Suppose that R is LLL-reduced with a parameter ω = 3/4. It
follows from [35] that r2k,k ≤ 2n−kr2n,n, which implies that in the k-th iteration, the initial radius

of the sphere decoding algorithm is bounded by 2(n−k)/2rn,n. Consequently, setting ρ in (21)
to 2(n−k)/2rn,n, we have |zn−k+1| ≤ 2(n−k)/2. Thus, the complexity of line 2 is O(n − k), and
therefore the total cost of Procedure Transform is O(n(n − k)). In particular, when the size
of z is n, the complexity is O(n2). Hence, Procedure Transform is much more efficient than
Procedure Select-Basis, whose complexity is at least O(n4).

5 New Algorithm for Computing Minkowski Reduced Bases: I

Among all reduction notions, M-reduction is perhaps the most intuitive and strongest one, and
up to dimension four, M-reduction is better than any other known reduction, because it can
exactly reach Minkowski’s successive minima. In 1773, Lagrange [29] presented the first algo-
rithm for constructing M-reduced bases for lattices of dimension two. Recently, this algorithm
was extended to dimensions three and four by Semaev [30] and Nguyen and Stehlé [31], respec-
tively. More generally, Helfrich [25] and Afflerbach and Grothe [32] presented algorithms for
constructing M-reduced bases for lattices of arbitrary dimension.
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Procedure Transform(R, Z, z, k)

Input: an upper triangular R ∈ Rn×n, a unimodular Z ∈ Zn×n, z ∈ Zn−k+1, and the index k
Output: the updated R = [ri,j ] with rk,k = ∥R(k : n, k : n)z∥2, and the updated Z ∈ Zn×n

1: for j = n− k + 1 down to 2 do
2: d← gcd(zj−1, zj), and find integers a and b such that azj−1 + bzj = d

3: M←
[

zj−1/d −b
zj/d a

]
4: zj−1 ← d
5: R(1 : j + k − 1, j + k − 2 : j + k − 1)← R(1 : j + k − 1, j + k − 2 : j + k − 1) ·M
6: find a 2× 2 Givens matrix G such that element R(j + k − 1, j + k − 2) can be annihilated by G
7: R(j + k − 2 : j + k − 1, j + k − 2 : n)← G ·R(j + k − 2 : j + k − 1, j + k − 2 : n)
8: Z(:, j + k − 2 : j + k − 1)← Z(:, j + k − 2 : j + k − 1) ·M
9: end for

Figure 5: The new basis expansion method

Before the discussion of the algorithms in [25, 32] and our new algorithm, we state a result
which plays a central role in the construction of M-reduced bases.

Lemma 1 ( [52]) Let B = [b1, · · · ,bn] ∈ Rm×n and let L be the lattice generated by B. For
a vector v =

∑n
i=1 tibi and any index p, 1 ≤ p ≤ n, there exists a basis for L containing

{b1, · · · ,bp−1,v} if and only if gcd(tp, · · · , tn) = 1.

Given an n-dim lattice L, suppose that Bp is a generator matrix of L such that the first
p− 1 columns of Bp can be extended to an M-reduced basis for L. Then it follows from Lemma
1 that the p-th M-reduced basis vector mp, which can be extended to an M-reduced basis with
the first p− 1 columns of Bp, must satisfy

∥mp∥2 = min{∥Bpz∥2 : z ∈ Zn, gcd(zp, · · · , zn) = 1}. (28)

It is shown in [32] that for lattices of dimension less than 8, the condition (28) can be reduced
to

∥mp∥2 = min{∥Bpz∥2 : z ∈ Zn, zp = 1}. (29)

Obviously, the minimization problem (28) can be viewed as an SVP with the constraint
gcd(zp, · · · , zn) = 1. Therefore, (28) or (29) can be solved by incorporating such gcd constraint
into the SVP solvers introduced in Section 3. Effort in this direction was firstly taken by
Helfrich [25]. Briefly speaking, a variant of Kannan’s strategy [24] was proposed in [25] to solve
(28). Unfortunately, this variant is more complicated and time-consuming than the original
Kannan’s strategy, since it associates with solving roughly (5/4)n

3/(4−o(1)) (p − 1)-dim CVPs.
Hence, like Kannan’s algorithm [24, 26], Helfrich’s algorithm is also intended as a theoretical
result rather than a practical tool.

The algorithm presented in [32] constructs an M-reduced basis in a quite different way.
Starting from p = 1, this algorithm first performs Phost enumeration [16, 57], and during the
search process, whenever an intermediate lattice point Bpz inside the search region satisfying
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gcd(zp, · · · , zn) = 1 (n > 7) or zp = 1 (n ≤ 7) is found, the p-th column of Bp is then replaced
by Bpz and the algorithm is restarted from p = 1. On the other hand, if the p-th column of Bp

is already the shortest lattice point satisfying the corresponding gcd constraint, we set p = p+1
and repeat the above process. The algorithm terminates when p = n+ 1.

Note that the number of lattice points enumerated by Phost’s strategy grows exponentially
with the dimension n. Therefore, in practice the algorithm in [32] is restarted many times, and
the complexity becomes prohibitive quickly as the dimension increases. Furthermore, we have
found that for lattices of dimension n > 7, this algorithm may fail. For instance, during Phost
enumeration, if a lattice point Bpz inside the search region with gcd(zp, · · · , zn) = 1 is found,
the p-th column of Bp is then replaced by Bpz to obtain a new basis B′. Note that if zp ̸= ±1,
then Bp and B′ do not generate the same lattice. Consequently, the algorithm fails.

In this section, we shall present a practical algorithm for constructing M-reduced bases for
general lattices. Differing from the algorithm in [32], the proposed new algorithm is based on
Schnorr-Euchner enumeration [15] and is also valid for lattices of dimensions higher than 7.

For clarity, as Algorithm HKZ-Red in Section 4, the new algorithm is presented in a it-
erative way. Apparently, the first M-reduced basis vector m1 is a shortest nonzero lattice
vector in L, which can be obtained by applying Schnorr-Euchner enumeration [5, 15]. We can
extend m1 to a basis for L by calling Procedure Transform. Now, suppose that a basis
{m1, · · · ,mp−1,bp, · · · ,bn}, 1 < p ≤ n, has been obtained, to extend {m1, · · · ,mp−1} to an
M-reduced basis for L, we have to solve the following two problems:

• Constructing the p-th M-reduced basis vector mp.

• Extending {m1, · · · ,mp} to a basis for L.

From (28), mp can be obtained by incorporating the constraint gcd(zp, · · · , zn) = 1 into
Schnorr-Euchner enumeration. Instead of the length of the first column of the basis matrix,
we use the length of the p-th column as the initial size of search region, so that at least one
lattice point satisfying such gcd constraint lies inside the search region. To further accelerate
the search process, LLL algorithm can be applied as a preprocessor. Putting all things together,
we present the algorithm for calculating mp in Fig. 6.

As shown in Fig. 6, Procedure M-Decode-1 is a wrapper function. It calls Procedure
M-Search-1, which finds a solution for a more general problem: a CVP with the constraint
gcd(zp, ..., zn) = 1. Like Algorithm Sph-Dec, we present a recursive version of this procedure
in Fig. 7.

As shown in Fig. 7, Procedure M-Search-1 is based on Schnorr-Euchner enumeration. The
main difference between it and the original Schnorr-Euchner enumeration is the way of updating
the search radius. Specifically, from lines 16–18, Procedure M-Search-1 updates the search
radius when a shorter lattice vector satisfying the gcd constraint is found, whereas Schnorr-
Euchner enumeration updates the search radius whenever a shorter lattice vector is found. Due
to the additional gcd constraint, the search space of Procedure M-Search-1 is expected to be
larger than that of the original Schnorr-Euchner enumeration. Moreover, the computations in
lines 15 and 16 lead to some additional complexity. Thus, in practice, Procedure M-Search-1
costs more than Schnorr-Euchner enumeration. For the complexity of Procedure M-Search-1,
one can obtain from Section 3 that for Gaussian random matrices appeared in communications,
the expected cardinality of the search space is bounded above by eπr. Since the expectation
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Procedure M-Decode-1(R, ω, p)

Input: R ∈ Rn×n, the LLL parameter ω, and an index p, 1 ≤ p ≤ n
Output: a vector z ∈ Zn such that Rz is a shortest lattice point with gcd(zp, · · · , zn) = 1
1: if n = 1 then
2: return z = 1
3: else
4: set the initial size r ← ∥R(:, p)∥22
5: utilize LLL algorithm to find a unimodular Z and an upper triangular matrix Rnew such that RZ

is LLL-reduced and Rnew is the R-factor of RZ
6: [z, l]←M-Search-1(Rnew, Z, 0, ϕ, r, 0, p)
7: end if

Figure 6: The first algorithm for calculating each M-reduced basis vector

Procedure M-Search-1(R, Z, x, zin, r, dist, p)

Input: R ∈ Rn×n, Z ∈ Zn×n, a vector x ∈ Rn to decode, an integral partial solution zin, the current
distance record r, the distance to examined layer dist, and an index p, 1 ≤ p ≤ n

Output: a vector z ∈ Zn such that RZ−1z is a closest lattice point to x satisfying gcd(zp, ..., zn) = 1,
and l = ∥RZ−1z− x∥22

1: LB ←
⌈
−
√
r−dist+xn

rn,n

⌉
, UB ←

⌊√
r−dist+xn

rn,n

⌋
2: l← r, z← ϕ
3: if LB ≤ UB then
4: for each integer s in the order of increasing distance from the center of [LB,UB] do
5: newdist← dist+ (xn − s · rn,n)2
6: if newdist < l then
7: ẑin ← [s; zin]
8: if n > 1 then
9: x̂← x(1 : n− 1)− s×R(1 : n− 1, n)

10: [z′, l′]←M-Search-1(Rn−1, Z, x̂, ẑin, l, newdist, p)
11: if l′ < l then
12: set l← l′, z← z′

13: end if
14: else
15: z← Z · ẑin
16: if gcd(zp, ..., zn) = 1 then
17: set l← newdist
18: end if
19: end if
20: else
21: return z and l
22: end if
23: end for
24: end if

Figure 7: The first algorithm for solving CVP with the gcd constraint
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Algorithm M-Red-1(B, ω)

Input: B ∈ Rm×n, and the LLL parameter ω, 1/4 < ω < 1
Output: a unimodular Z ∈ Zn×n such that the columns of BZ form an M-reduced basis
1: QR decomposition: B = QR
2: Z← In
3: for k = 1 to n do
4: z←M-Decode-1(R, ω, k)
5: [R,Z]← Transform(R, Z, z, k)
6: R(1 : k − 1, k)← R(1 : k − 1, k) +R(1 : k − 1, 1 : k − 1) · [z1, · · · , zk−1]

T

7: Z(:, k)← Z(:, k) + Z(:, 1 : k − 1) · [z1, · · · , zk−1]
T

8: end for

Figure 8: The first M-reduction algorithm

E(∥bp∥22)= n, for any 1 ≤ p ≤ n, the expected asymptotic complexity of Procedure M-Search-
1 is of eπn polynomial-time operations.

Once the p-th M-reduced basis vector mp = Bpz is found, the second problem is to extend
{m1, · · · ,mp} to a basis for L. In terms of matrices, it is to find a unimodular matrix Z such
that

Bp+1 = BpZ, (30)

which implies that the first p− 1 columns of Z are the first p− 1 unit vectors ei, i = 1, ..., p− 1,
and the p-th column of Z is the integer vector z found by Procedure M-Decode-1, so that the
first p−1 columns of Bp+1 equal the first p−1 columns m1, ...,mp−1 of Bp and the p-th column
of Bp+1 is mp = Bpz as desired. Since gcd(zp, ..., zn) = 1, from the discussion in Section 4, one
can construct a unimodular matrix Mp whose first column is [zp, ..., zn]

T. Now consider the two
n× n unimodular matrices

Z1 =

[
Ip−1 0
0 Mp

]
, Z2 =



z1
...Ip−1

zp−1

0

1
. . .0

1


(31)

We claim that the product Z1Z2 is a unimodular matrix satisfying (30). Indeed, Z1Z2 is uni-
modular since both Z1 and Z2 are unimodular. From (31), the first p− 1 columns of Z1Z2 are
the first p− 1 unit vectors and the p-th column of Z1Z2 is z = [z1, ..., zn]

T.
The application of Z1 can be performed by Procedure Transform and the application of

Z2 is the calculation of a linear combination of the first p columns. Putting all things together,
the new algorithm for constructing M-reduced bases for general lattices is presented in Fig. 8.
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Procedure M-Search-2(R, x, zin, r, dist, p)

Input: R ∈ Rn×n, a vector x ∈ Rn to decode, an integral partial solution zin, the current distance
record r, the distance to examined layer dist, and an index p, 1 ≤ p ≤ n

Output: a vector z ∈ Zn such that Rz is a closest lattice point to x satisfying gcd(zp, ..., zn) = 1, and
l = ∥Rz− x∥22

1: LB ←
⌈
−
√
r−dist+xn

rn,n

⌉
, UB ←

⌊√
r−dist+xn

rn,n

⌋
2: l← r, z← ϕ
3: if LB ≤ UB then
4: for each integer s in the order of increasing distance from the center of [LB,UB] do
5: newdist← dist+ (xn − s · rn,n)2
6: if newdist < l then
7: ẑin ← [s; zin]
8: if n ̸= p or (n = p and gcd(ẑin) = 1) then
9: if n > 1 then

10: x̂← x(1 : n− 1)− s×R(1 : n− 1, n)
11: [z′, l′]←M-Search-2(Rn−1, x̂, ẑin, l, newdist, p)
12: if l′ < l then
13: set l← l′, z← z′

14: end if
15: else
16: z← ẑin, l← newdist
17: end if
18: end if
19: else
20: return z and l
21: end if
22: end for
23: end if

Figure 9: The second algorithm for solving CVP with the gcd constraint

6 New Algorithm for Computing Minkowski Reduced Bases: II

From the discussion in Section 5, the search space of Procedure M-Search-1 is larger than
that of the original Schnorr-Euchner enumeration. This motivates us to design a more efficient
way to calculate each M-reduced basis vector. Our idea is to impose the constraint as early as
possible to reduce the number of points to be searched. Clearly, gcd(zp, ..., zn) can be calculated
as soon as zp, ..., zn are available. Note that during the process of Schnorr-Euchner enumeration,
a solution is built bottom-up, from zn to z1, thus the gcd condition can be checked at level p,
instead of level 1 as in Procedure M-Search-1. Fig. 9 shows an implementation of the above
idea.

Like Schnorr-Euchner enumeration, one can obtain from line 16 that the above procedure
updates the search radius whenever a shorter lattice vector is found. Moreover, as shown in line
8, all (p− 1)-dim subproblems indexed by those z not satisfying gcd(zp, ..., zn) = 1 are excluded
from the search process. Consequently, the search space of Procedure M-Search-2 is expected
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to be drastically reduced from the original Schnorr-Euchner enumeration.
However, one drawback of Procedure M-Search-2 is: LLL algorithm cannot be used as its

preprocessor to accelerate the search process. Specifically, from line 15 of Procedure M-Search-
1, to check the gcd condition, the unimodular matrix obtained from LLL algorithm must be
applied to the solution vector firstly. Unfortunately, the application of the unimodular matrix
requires a complete n-vector, whereas at level p, where gcd(zp, ..., zn) is calculated in Procedure
M-Search-2, only a subvector z(p : n) is available. To alleviate the problem, we propose a new
lattice reduction technique to accelerate Procedure M-Search-2.

Consider an n× n unimodular matrix Z with the following structure:

Z =

[
D E

0(n−p+1)×(p−1) F

]
, (32)

where D, E, and F have proper dimensions. Then both D and F are unimodular. If an
integer vector ẑ satisfies gcd(ẑ(p), ..., ẑ(n)) = 1, then the integer vector z = Zẑ also satisfies the
condition gcd(z(p), ..., z(n)) = 1, since z(p : n) = Fẑ(p : n) and F is unimodular. Thus, if a
appropriate unimodular matrix Z with the form (32) is chosen as a preprocessor for Procedure
M-Search-2, the information of the subvector ẑ(p : n) obtained at level p is sufficient to check
the gcd condition of the solution z = Zẑ.

Suppose now that the first p − 1 columns m1, ...,mp−1 of the current basis matrix Bp can
be extended to an M-reduced basis. Let R be the R-factor of Bp. Then it is obvious that
the first p − 1 columns of R is M-reduced. Thus the submatrix D in (32) can be chosen as
Ip−1. In other words, we only need to reduce the submatrix of R consisting of its last n− p+ 1
columns. A natural approach is to select the submatrices E and F appropriately such that after
preprocessing, R(p : n, p : n) is LLL-reduced and all off-diagonal entries of R belonging to the
last n− p+ 1 columns are size-reduced. Fig. 10 shows an implementation of this idea.

Since Procedure Partial-LR only involves the last n−p+1 columns ofR, it always costs less
than LLL algorithm for any 1 < p ≤ n, and the same as LLL algorithm when p = 1. Combining
Procedure Partial-LR and Procedure M-Search-2 together, we present the algorithm for
calculating mp in Fig. 11.

Finally, the second algorithm M-Red-2 for constructing an M-reduced basis can be obtained
by simply replacing Procedure M-Decode-1 called in line 4 of Algorithm M-Red-1 with Pro-
cedure M-Decode-2.

7 Performance Analysis

In this section, we firstly compare the theoretical upper bounds on the orthogonality defect of
LLL, HKZ, and M-reduced bases. Then after a brief review of existing results on the proximity
factors of approximate lattice decoding [6, 20, 21], we give new improved upper bounds for the
proximity factors of LLL-reduction-aided SIC decoding and LLL-reduction-aided ZF decoding.
Also, we derive upper bounds for the proximity factors of both M-reduction-aided SIC decoding
and M-reduction-aided ZF decoding. Thus, like LLL-reduction and HKZ-reduction, approximate
decoding algorithms aided by M-reduction can also achieve the same diversity order with ILD.
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Procedure Partial-LR(R, ω, p)

Input: R ∈ Rn×n, the LLL parameter ω, and an index p, 1 ≤ p ≤ n
Output: the updated R and a unimodular matrix Z such that the last n − p + 1 columns of R are

reduced
1: Z← In
2: k ← p+ 1
3: while k ≤ n do
4: [R,Z]← Size-Reduce (R, Z, k − 1, k)
5: if r2k−1,k + r2k,k ≤ ω · r2k−1,k−1 then

6: find a Givens matrix G such that G ·
[

rk−1,k

rk,k

]
=

[
×
0

]
7: swap columns k − 1 and k in R and Z
8: R(k − 1 : k, k − 1 : n)← G ·R(k − 1 : k, k − 1 : n)
9: k ← max{k − 1, p+ 1}

10: else
11: k ← k + 1
12: end if
13: end while
14: for j = p to n do
15: for i = j − 1 down to 1 do
16: [R,Z]← Size-Reduce (R, Z, i, j)
17: end for
18: end for

Figure 10: A partial lattice reduction algorithm

Procedure M-Decode-2(R, ω, p)

Input: R ∈ Rn×n, the LLL parameter ω, and an index p, 1 ≤ p ≤ n
Output: a vector z ∈ Zn such that Rz is a shortest lattice point with gcd(zp, · · · , zn) = 1
1: if n = 1 then
2: return z = 1
3: else
4: [Rnew,Z]←Partial-LR(R, ω, p)
5: set the initial size r ← ∥Rnew(:, p)∥22
6: [z′, l]←M-Search-2(Rnew, 0, ϕ, r, 0, p)
7: z← Zz′

8: end if

Figure 11: The second algorithm for calculating each M-reduced basis vector
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Table 1: Upper Bounds of Orthogonality Defect of HKZ, LLL (ω = 3/4), and M-reduced Bases
n 2 3 4 5 6 7 8 24

γn 2/
√
3 21/3

√
2 81/5 (64/3)1/6 641/7 2 4

δH,n 1.291 1.937 3.623 7.246 17.75 48.61 161.2 4.26× 1013

δL,n 1.414 2.828 8 32 181.0 1.45× 103 1.64× 104 3.48× 1041

δM,n 1.155 1.414 2 3.162 6.455 15.63 48.83 2.51× 1017

7.1 Orthogonality Defect

As pointed out previously, the orthogonality defect is a commonly used indicator to reveal the
degree of orthogonality for a given lattice basis. Denote δH,n, δL,n, and δM,n the upper bounds
of the orthogonality defect over all n × n HKZ, LLL (with w = 3/4) and M-reduced bases,
respectively. Then from (11), (17), (14) and (8), one can immediately obtain

δH,n ≤ γn/2n

(
n∏

i=1

i+ 3

4

) 1
2

= 2O(n logn); (33)

δL,n ≤ 2
n(n−1)

4 ; (34)

δM,n ≤ γn/2n

(
5

4

) (n−3)(n−4)
4

=

(
5

4

)n2

4
+O(n logn)

. (35)

Thus for lattices of high dimension, an HKZ-reduced basis is expected to be more orthogonal
than an LLL-reduced basis or an M-reduced basis. Note that the values of γn are known for
1 ≤ n ≤ 8 and n = 24 [2, Page 33]. Thus for lattices of these dimensions, tight upper bounds
on the orthogonality defect can be calculated. From Table 1, one can see that for lattices of
dimension n ≤ 8, the upper bound of the orthogonality defect of M-reduced bases is slightly
smaller than that of HKZ-reduced bases, and both M-reduced and HKZ-reduced bases vectors are
expected to be more orthogonal than LLL-reduced bases vectors, especially for n = 7 and n = 8.
However, for lattices of a little higher dimensions such as n = 24, the degree of orthogonality
of HKZ-reduced bases is expected to be higher than M-reduced bases, and the gap between
HKZ-reduced bases and LLL-reduced bases gets larger quickly as dimension increases.

It is well known that the performance of MIMO detectors is highly related to the structure of
the given basis. Since HKZ and M-reduced bases are expected to be more orthogonal than the
conventional LLL-reduced bases, the error probability of approximate decoding algorithms can
be further improved when HKZ or M-reduced bases are employed. Of course, the data presented
in Table 1 only represent theoretical upper bounds. The average orthogonality defect of these
reduction notions in practice shall be shown in Section 8.

7.2 Proximity Factors and Error Probability

The commonly used SIC decoding and ZF decoding were firstly proposed by Babai [17] in 1986.
It is also proved in [17] that SIC and ZF aided by LLL-reduction (for ω = 3/4) can find the
closest vector within a factor 2n/2 and 1 + 2n(9/2)n/2, respectively. However, such results only
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represent upper bounds on normwised gaps between approximate decoding and ILD, but can
not reveal the bit performance loss of decoding algorithms.

From computer simulation, LLL-reduction-aided decoding can always achieve the full receive
diversity of a MIMO fading channel [19, 46, 48]. The achievability was proved theoretically
in [54, 63]. However, knowing the diversity order is insufficient to assess the performance gap
between approximate decoding and ILD. To characterize the performance gap in a more precise
way, a novel proximity factor was defined in [20] and further discussed in [6, 21].

We first consider the decision regions of different decoding algorithms for a fixed but arbitrary
lattice. Without loss of generality, let L be an n-dimensional lattice and let the transmitted
lattice vector be x = 0, then the decision region of ILD is a Voronoi region defined by

RILD = {y : ∥y − v∥2 ≥ ∥y∥2, ∀v ∈ L}. (36)

An error occurs when the noise falls outside of RILD. It is known that RILD is an n-dimensional
convex polytope and is symmetrical with respect to the origin. Each facet of RILD is an (n−1)-
dimensional face of the polytope. Let di,ILD be the Euclidean distance from 0 to the i-th facet
of RILD and vi be the corresponding Voronoi neighbor. Then di,ILD = ∥vi∥2/2 ≥ λ1(L)/2, and
the minimum decoding distance dILD , mini{di,ILD} = λ1(L)/2.

The decision regions of both SIC and ZF are polyhedra with 2n facets and are symmetrical
with respect to the origin. As shown in [20], the i-th distance of SIC is di,SIC = (∥bi∥2 sinϕi)/2 =
ri,i/2, for i = 1, · · · , n, where ri,i is the i-th diagonal element of the R-factor of the lattice
generator matrix B, and ϕi denotes the acute angle between bi and the linear space spanned
by the previous i− 1 basis vectors. The i-th distance of ZF is di,ZF = (∥bi∥2 sin θi)/2, where θi
denotes the acute angle between bi and the rest n− 1 basis vectors b1, · · · ,bi−1,bi+1, · · · ,bn.
It is easy to see θi ≤ ϕi and hence di,ZF ≤ di,SIC .

Secondly, to measure the performance gap between approximate decoding and ILD, the
proximity factors [20] are defined as:

ρi,SIC , sup
B∈BRed

d2ILD
d2i,SIC

= sup
B∈BRed

λ2
1(L)

r2i,i
, (37)

ρi,ZF , sup
B∈BRed

d2ILD
d2i,ZF

= sup
B∈BRed

λ2
1(L)

∥bi∥22 sin θ2i
, (38)

where the supremum is taken over the set BRed of bases satisfying a certain reduction notion for
any n-dim lattice L. We further define ρSIC , maxi{ρi,SIC} and ρZF , maxi{ρi,ZF }. Using a
union-bound argument [20,21], the average error probability of ZF decoding can be bounded as

Pe,ZF (SNR) ≤
n∑

i=1

Pe,ILD

(
SNR

ρi,ZF

)
≤ nPe,ILD

(
SNR

ρZF

)
(39)

for arbitrary SNR. A similar bound exists for SIC decoding. From (39), the error rate of
approximate decoding with finite proximity factors can approximate that of ILD within a factor
n. Thus, lattice-reduction-aided decoding (LRAD) has the same diversity order with ILD, and
existing results on the diversity order of ILD can be extended to LRAD [54].
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7.3 Proximity Factors of SIC Decoding

The upper bounds of ρSIC for LLL and HKZ-reduction were given in [20,21]. In this subsection,
we shall improve existing result on ρSIC for LLL-reduction, and derive an upper bound of ρSIC
for M-reduction.

7.3.1 LLL-reduction

Let B ∈ Rm×n, m ≥ n, be an LLL-reduced matrix and let R be the R-factor of B. From (15),
we have

r2i,i ≥ ωr2i−1,i−1 − r2i−1,i ≥ (ω − 1/4)r2i−1,i−1, (40)

for 1 < i ≤ n. By induction, we have

r2j,j ≤ βi−jr2i,i, for 1 ≤ j < i ≤ n, (41)

where β = 1/(ω − 1/4) ≥ 4/3. Based on (41), an upper bound of ρi,SIC was presented in [20]:

ρi,SIC = sup
λ2
1(L)

r2i,i
≤ sup

r21,1
r2i,i
≤ βi−1. (42)

In [21], the upper bound (42) was improved by a constant factor as follows:

ρi,SIC ≤ 1 +
β

4(β − 1)
(βi−1 − 1). (43)

Now we present an improvement of the above bound. From the definition of Hermite’s constant,
we have

λ2
1(L) ≤ γi · (r1,1r2,2 · · · ri,i)2/i, for 1 < i ≤ n. (44)

Substituting (8) and (41) into (44), we obtain

ρi,SIC = sup
λ2
1(L)

r2i,i
≤ γi · β

i−1
2 ≤

(
1 +

i

4

)
β

i−1
2 . (45)

It follows from (45) that

ρSIC = ρn,SIC ≤ γn · β
n−1
2 ≤

(
1 +

n

4

)
β

n−1
2 . (46)

Although the new upper bound (45) is still exponential with respect to the dimension n, it
significantly improves the currently best known estimation (43), and the gap between (45) and
(43) becomes larger quickly as i increases.

7.3.2 HKZ-reduction

The proximity factor for HKZ-reduction was discussed in [21]. Let B ∈ Rm×n be an HKZ-
reduced matrix and let R be the R-factor of B. It follows from [21,37] that

r2j,j ≤ ξj−i+1 · r2i,i, for 1 ≤ j < i ≤ n, (47)
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where ξk, 1 < k ≤ n, is the KZ constant defined in [37] as

ξk , sup
r21,1
r2k,k
≤ γk

k∏
t=2

γ
1/(t−1)
t ≤ k1+ln k. (48)

It is easy to see ρi,SIC = ξi, for 1 < i ≤ n, and thus

ρSIC = ρn,SIC ≤ n1+lnn. (49)

Comparing (46) and (49), the proximity factor of HKZ-reduction is better than that of LLL-
reduction, since (49) grows sub-exponentially with the dimension n.

7.3.3 M-reduction

Let B ∈ Rm×n be an M-reduced matrix and let R be the R-factor of B. From the definition of
M-reduction, the submatrix consists of the first i (1 < i ≤ n) columns of B is also M-reduced.
It follows from (13) and (14) that

ρi,SIC = sup
λ2
1(L)

r2i,i
≤ ∥bi∥22

r2i,i
≤ γii , for i ≤ 4, (50)

ρi,SIC ≤
∥bi∥22
r2i,i

≤ γii ·
(
5

4

) (i−3)(i−4)
2

, for i > 4. (51)

Hence, if n ≤ 4, we have
ρSIC ≤ γnn , (52)

else
ρSIC = ρn,SIC ≤ γnn · (5/4)

(n−3)(n−4)
2 . (53)

In particular, when n = 2, we have ρSIC = γ22 = 4/3, which agrees with Gaussian reduction.
For large value of n, the proximity factor for M-reduction is worse than that for both LLL
and HKZ-reduction, since (53) grows super-exponentially with the dimension n. Of course, this
upper bound may not be tight and is only used to prove the diversity order of M-reduction-aided
SIC decoding.

7.4 Proximity Factors of ZF Decoding

The upper bounds of ρZF for LLL and HKZ-reduction were given in [20,21]. In this subsection,
we shall improve existing result on ρZF for LLL-reduction, and derive an upper bound of ρZF

for M-reduction.
The derivation for ρZF needs a lower bound of sin θ2i . Let R be the R-factor of B, and set

Ai = R(i : n, i : n)TR(i : n, i : n), 1 ≤ i ≤ n. Then it is proved in [21] that

sin2 θi =
1

∥bi∥22 · (A
−1
i )1,1

(54)

Substituting (54) into (38), we obtain

ρi,ZF = sup
B∈BRed

λ2
1(L) · (A−1

i )1,1. (55)

So an upper bound of ρi,ZF can be immediately determined if the upper bound of (A−1
i )1,1

is found.
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7.4.1 LLL-reduction

Following Babai’s method [17] for the estimation of the lower bound of sin θ2i , an upper bound
of ρZF for LLL-reduction was presented in [20] as

ρZF = ρ1,ZF ≤
(
9β

4

)n−1

. (56)

In [21], using an estimation for (A−1
i )1,1, the lower bound of sin θ2i was further refined and thus

an improved upper bound of ρZF was given as

ρZF ≤
β

9β − 4

(
9β

4

)n−1

+
8β − 4

9β − 4
. (57)

Now we present an improvement of the above bound. To this aim, we first recall the following
result on the upper bound of (A−1

i )1,1.

Lemma 2 ( [21]) Let R = [ri,j ] be the R-factor of a size-reduced lattice generator matrix B ∈
Rm×n. Then

(A−1
i )1,1 ≤ r−2

i,i +
1

9

n−i∑
j=1

(
9

4

)j

r−2
i+j,i+j . (58)

From (55) and (58),

ρi,ZF ≤
λ2
1(L)

r2i,i
+

1

9

n−i∑
j=1

(
9

4

)j λ2
1(L)

r2i+j,i+j

. (59)

Substituting (45) into (59), we obtain

ρi,ZF ≤ γiβ
i−1
2 +

1

9

n−i∑
j=1

(
9

4

)j

γi+jβ
i+j−1

2 . (60)

Thus,

ρZF = ρ1,ZF ≤ 1 +
1

9

n−1∑
j=1

(
9

4

)j

γj+1β
j
2 . (61)

It is easy to verify that the new bound (61) is better than the previous bound (57).

7.4.2 HKZ-reduction

In [21], using (47) and (58), an upper bound of ρZF for HKZ-reduction is given:

ρZF ≤ 1 +
1

9

n−1∑
j=1

(
9

4

)j

ξj+1 ≤
(
9

4

)n−1

n1+lnn. (62)

Comparing (61) and (62), the proximity factor of HKZ-reduction is smaller than that of LLL-
reduction. This is in accordance with the fact that HKZ-reduction is a stronger notion than
LLL-reduction.
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7.4.3 M-reduction

To derive the upper bound of ρi,ZF for M-reduction, we give a technical lemma. The proof is
given in Appendix 10.

Lemma 3 Given an M-reduced basis B ∈ Rm×n and its R-factor R ∈ Rn×n. If n ≤ 4, then

(A−1
i )1,1 ≤ r−2

i,i ·
n∏

k=i+1

γkk , (63)

else

(A−1
i )1,1 ≤ r−2

i,i ·
n∏

k=i+1

γkk ·
n∏

k=max{5,i+1}

(
5

4

) (k−3)(k−4)
2

. (64)

It follows from (55), (63) and (13) that if n ≤ 4,

ρi,ZF ≤
λ2
1(L)

r2i,i

n∏
k=i+1

γkk ≤
n∏

k=i

γkk . (65)

Similarly, for the case n > 4, we can deduce

ρi,ZF ≤
n∏

k=i

γkk ·
n∏

k=max{5,i}

(
5

4

) (k−3)(k−4)
2

. (66)

Thus, if n ≤ 4, we have

ρZF = ρ1,ZF ≤
n∏

k=1

γkk , (67)

while for n > 4,

ρZF = ρ1,ZF ≤
n∏

k=1

γkk ·
n∏

k=5

(
5

4

) (k−3)(k−4)
2

(68)

In particular, when n = 2, we have ρZF = γ22 = 4/3, which agrees with Gaussian reduction.
Comparing (52) and (53) with (67) and (68), the proximity factor of SIC decoding is much
smaller than ZF decoding for M-reduction. Interestingly, when i = n, the ZF decoder has the

proximity factor ρn,ZF ≤ γnn (n ≤ 4) or ρn,ZF ≤ γnn(5/4)
(n−3)(n−4)

2 (n > 4), which is equal
to ρn,SIC . This is in accordance with the fact that for the first component xn to detect, SIC
reduces to ZF as it can not benefit from interference cancellation. As i goes from n − 1 to 1,
SIC decoding gets better, while ZF decoding gets worse. That is, ρi,ZF gets larger while ρi,SIC
gets smaller as i decreases.

8 Simulation Results

In this section, we present our simulation results to support the theoretical analysis in Section 7.
We compare the efficiency of the proposed new algorithms by means of computer simulation. The
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Figure 12: Comparison of the average running times among algorithms HKZ-Red, M-Red-1,
M-Red-2, the HKZ-reduction algorithm in [5] (HKZ02), and the M-reduction algorithm in [32]
(M85) for random generator matrices

proximity factors as well as the BER performance of approximate lattice decoding algorithms
aided by LLL, HKZ and M-reduced bases are also compared. All experiments were performed on
matrices with random entries, drawn from i.i.d. zero-mean, unit variance Gaussian distributions.

Firstly, we compare the running times of Algorithm HKZ-Red, Algorithm M-Red-1 and
Algorithm M-Red-2 with the HKZ-reduction algorithm presented in [5] and the M-reduction
algorithm presented in [32]. To assess the efficiency of these algorithms, the median of the
average running times for 1000 random matrices are computed. Occasionally, a random matrix
with very long running time is drawn. Using the median rather than the mean guarantees that
these rare matrices do not dominate the average running times. Fig. 12 depicts our results, where
each point is given in average time (in seconds) of dimension n, using a DELL computer with
a 2.0-GHz Pentium Dual processor, with MATLAB running under Windows XP. Note that for
each dimension, the running times for all the algorithms are averaged using the same matrices.
Fig. 12 shows that Algorithm HKZ-Red is more efficient, about one magnitude order, than
the HKZ-reduction algorithm presented in [5] (with the legend HKZ02). This illustrates that
the new basis expansion strategy Procedure Transform is more efficient than the conventional
strategy Procedure Select-Basis. Also, our second improved M-reduction Algorithm M-Red-
2 is more efficient than our first M-reduction Algorithm M-Red-1, and the gap between them
becomes larger quickly as the dimension increases. Apparently, both Algorithm M-Red-1 and
Algorithm M-Red-2 are much more efficient than the algorithm presented in [32] (with the
legend M85). Besides, as discussed in Section 5, the algorithm in [32] produces M-reduced bases
only for matrices of dimensions up to seven, while the two new algorithms are valid for matrices
of arbitrary dimension and are practical for dimensions much larger than seven.

Secondly, during the process of Algorithm HKZ-Red, Algorithm M-Red-1 and Algorithm
M-Red-2, the computational cost in each iteration is dominated by Schnorr-Euchner enumer-
ation, Procedure M-Decode-1 and Procedure M-Decode-2, respectively. Then, to further
investigate the efficiency of the three reduction algorithms, we compare the average complexity
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Table 2: The Average Cardinality of The Search Space and The Number of Gcd Operations
Costed in Each Iteration of Algorithms HKZ-Red, M-Red-1 and M-Red-2, Over Random
Matrices of Order 20

search space # of gcd operations
k

Schnorr-Euchner M-Decode-1 M-Decode-2 M-Decode-1 M-Decode-2

1 7.16× 102 4.10× 103 7.16× 102 3.66× 102 1.97× 101

5 4.01× 102 1.15× 104 2.68× 103 1.69× 103 1.53× 102

10 1.76× 102 1.64× 104 3.14× 103 2.62× 103 2.72× 102

15 3.60× 101 4.74× 104 2.86× 103 8.10× 103 6.34× 101

19 6.48× 100 1.03× 105 2.98× 103 8.91× 103 5.26× 100

of the three procedures called in each iteration, by using the cardinality of the search space as
a measurement. Moreover, note that in Procedure M-Decode-1 and Procedure M-Decode-2,
the gcd computations (Euclidean algorithm) provide some additional complexity. We show our
results in Table 2. Again, each entry in the table is the average of 1000 random matrices of order
20, and the index of iterations is denoted by k. Table 2 shows that as the iteration continues,
more basis vectors are produced, the search space of Schnorr-Euchner enumeration (called in
HKZ-Red) decreases, the search space of Procedure M-Decode-1 (called in M-Red-1) in-
creases, while the search space of Procedure M-Decode-2 (called in M-Red-2) stays about the
same. This can be explained as follows. In HKZ-reduction, after each iteration, the dimension
of the sublattice to be searched is reduced by one, thus the search space of Schnorr-Euchner
enumeration decreases rapidly as k increases. However, for M-reduction, the dimension of the
sublattice to be searched stays the same as the iteration continues. Note that in Procedure
M-Decode-2, the constraint gcd(zk, ..., zn) = 1 is imposed as soon as zk, ..., zn are available.
Thus the complexity of Procedure M-Decode-2 do not vary much for different k. But for
Procedure M-Decode-1, the gcd constraint can not be checked until the whole integer vector z
is available. Therefore Procedure M-Decode-1 always costs more than Procedure M-Decode-
2. Moreover, as the iteration continues, the search space of Procedure M-Decode-1 increases
rapidly, since the constraint gcd(zk, ..., zn) = 1 gets more severe as k increases. We can also
obtain from Table 2 that for each iteration, the average numbers of gcd operations performed
in both of the two procedures are roughly 1/10 of the cardinality of the search space. Thus,
checking the gcd constraint does not costs much when compared with the total complexity.

Thirdly, we compare the average orthogonality defect of LLL, HKZ and M-reduced bases
produced by our new algorithms. Fig. 13 shows both the theoretical upper bounds (33), (34), and
(35) and our experimental results. As shown in the figure, for low dimensions, the upper bound in
M-reduction is the best and LLL-reduction is the worst, as discussed in Section 7.1. For higher
dimensions, the theoretical upper bound (33) for HKZ-reduction is better than M-reduction.
However, our experiments showed that the orthogonality defect of M-reduction is always the
best. This suggests that the upper bound (35) for M-reduction may be too conservative and
there may be a room for improvement.

Forthly, we compare the proximity factors of ZF decoding and SIC decoding with LLL, HKZ,
and M-reduced bases. Fig. 14 shows the theoretical upper bounds. As described in Section 7, for
each reduction, the proximity factor of SIC decoding is much smaller than that of ZF decoding.
For both SIC decoding and ZF decoding, the proximity factor of LLL-reduction is larger than
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Figure 13: Comparison of the theoretical upper bounds and numerical results of the orthogo-
nality defect for LLL (ω = 3/4), HKZ, and M-reduction for random matrices.

that of HKZ-reduction, and M-reduction is the largest. Note that the upper bounds on the
proximity factors may not be tight. Especially, the bound (53) for M-reduction is unlikely to be
tight, because we have applied the trivial bound λ2

1(L) ≤ ∥bi∥22 in (50). Since we know from (12)
that (5/4)−(n−4) ≤ λ2

1(L)/∥bi∥22 ≤ 1, this is likely to loosen the bound by a factor of (5/4)(n−4)

at the worst. Besides, for all upper bounds, we have applied the bounds on Hermite’s constants
when the exact values are unknown.

To obtain a practical view of the proximity factors, we simulated them by means of numerical
experimentation. For each value of n, we generate 1000 random matrices and apply LLL algo-
rithm and our new algorithms to obtain LLL, HKZ, and M-reduced bases. Then the proximity
factors can be taken as the maximum over these reduced bases. Although the maximum may not
reach the bounds in the worst case, they should be reasonable approximations of the theoretical
proximity factors. Fig. 15 shows the numerical results. We can learn from this figure that for
ZF decoding, the proximity factor of M-reduction is the smallest, while for SIC decoding, the
proximity factor of HKZ-reduction is the smallest. For both ZF decoding and SIC decoding, the
proximity factor of LLL-reduction is the largest.

Finally, we investigate the BER performance of both ZF decoding and SIC decoding with
different reduction notions. In Fig. 16, we simulated the BER of different decoding algorithms
for an 8 × 8 MIMO system with a 64-QAM constellation. The SNR at each receive antenna is
defined as SNR = nTEx∈64-QAM[x2]/σ2. Note that ILD is quite different from other algorithms
shown in Fig. 16, since ILD ignores the signal boundary, while SIC decoding, ZF decoding
and ML decoding map each entry of the decoded lattice point onto the 64-QAM alphabet by a
minimum distance quantization. This figure shows that for ZF decoding, M-reduction has the
lowest BER, while for SIC decoding, HKZ-reduction has the lowest BER, which is consistent
with the simulation results on the proximity factors depicted in Fig. 15.
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Figure 14: Comparison of the theoretical upper bounds on the proximity factors for ZF decoding
and SIC decoding with LLL (ω = 3/4), HKZ, and M-reduced bases.
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Figure 15: Comparison of the simulated results on the proximity factors for ZF decoding and
SIC decoding with LLL (ω = 3/4), HKZ, and M-reduced bases.
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Figure 16: The BER performance of ILD, ML decoding, and ZF and SIC decoding with LLL,
HKZ, and M-reduced bases in an uncoded 8× 8 complex-valued MIMO system with a 64-QAM
constellation.

9 Concluding Remarks

In this paper, we first present a new HKZ-reduction algorithm using the unimodular transfor-
mation. Our experiments show that our new algorithm is a significant, about one magnitude
order, improvement of the existing HKZ algorithm in [5]. Also, by solving the constraint SVP
(28) and using the unimodular matrices (31), we propose two M-reduction algorithms. The
second M-reduction algorithm improves the first one by an early detection of the gcd constraint,
and both of them are much faster and more general than the existing algorithm in [32]. To
compare the quality of different reduced bases produced by LLL algorithm and our new algo-
rithms, we discussed the orthogonality defect of LLL, HKZ, and M-reduced bases. Fig. 13
shows that in practice M-reduced bases always have the smallest orthogonality defect, which
suggests a potential of improving the theoretical upper bound (35). Another topic discussed in
this paper is the application of different reduced bases in approximate decoding algorithms. We
employ the concept of proximity factors defined in [20] to assess the performance of decoding
algorithms. For the proximity factors of SIC and ZF decoding aided by LLL-reduction, we de-
rive new improved bounds (46) and (61). For decoding algorithms aided by M-reduction, the
upper bounds on the proximity factors are also derived. Fig. 15 and Fig. 16 show that for SIC
decoding, HKZ-reduction has the best performance, while for ZF decoding, M-reduction has the
best performance.

10 Appendix

[Proof of Lemma 3] From the definition of Ai, (A
−1
i )1,1 is the squared Euclidean length of

the first row of R(i : n, i : n)−1. For i ≤ k < n, we denote Sk = R(i : k, i : k)−1. Then it is easy
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to verify that Si = 1/ri,i and

Sk =

[
Sk−1

1
rk,k
· Sk−1 ·R(i : k − 1, k)

0 1
rk,k

]
(69)

for i < k ≤ n.
From (13) and (14), one can derive that if n ≤ 4,

∥R(i : k − 1, k)∥22 ≤ ∥R(1 : k − 1, k)∥22 ≤ (γkk − 1)r2k,k; (70)

else,

∥R(i : k − 1, k)∥22 ≤ (γkk · (5/4)
(n−3)(n−4)

2 − 1)r2k,k. (71)

It follows from (69), (70) that if n ≤ 4

∥Sk(1, :)∥22 ≤ ∥Sk−1(1, :)∥22 +
∥Sk−1(1, :)∥22 · ∥R(i : k − 1, k)∥22

r2k,k

≤ γk
k∥Sk−1(1, :)∥22 (72)

From (72), we can derive by induction that

(A−1
i )1,1 = ∥Sn(1, :)∥22 ≤ S2

i ·
n∏

k=i+1

γkk ≤ r−2
i,i ·

n∏
k=i+1

γkk (73)

Based on (69) and (71), the inequality (64) for the case n > 4 can be easily obtained by using
an induction approach similar with (72). Thus the proof is complete.
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[62] P. Q. Nguyen and D. Stehlé, “LLL on the average,” in Proc. International Algorithmic
Number Theory Symposium (ANTS-VII), vol. 4076, Berlin, Germany, Jul. 2006, pp. 238–
256.

[63] J. Jaldén and P. Elia, “DMT optimality of LR-aided linear decoders for a general class of
channels, lattice designs, and system models,” IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp. 4765–4780, Oct. 2010.

37


