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Abstract Recently, a new lattice basis reduction notion, called diagonal reduction,
was proposed for lattice-reduction-aided detection (LRAD) of multiinput multiout-
put (MIMO) systems. In this paper, we improve the efficiency of the diagonal re-
duction algorithm by employing the fast Givens transformations. The technique of
the fast Givens is applicable to a family of LLL-type lattice reduction methods to
improve efficiency. Also, in this paper, we investigate dual diagonal reduction and
derive an upper bound of the proximity factors for a family of dual reduction aided
successive interference cancelation (SIC) decoding. Our upper bound not only ex-
tends an existing bound for dual LLL reduction to a family of dual reduction meth-
ods, but also improves the existing bound.

Keywords Lattice reduction, diagonal reduction, fast Givens, dual reduction, MIMO
detection.

1 Introduction

Lattice basis reduction plays an important role in the detection of wireless multiple-
input multiple-output (MIMO) systems. For detection problems of lattice type, the
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optimal maximum-likelihood (ML) decoding can be modeled as the closest vector
problem (CVP) [1, 16], which has been proved to be NP-hard [2]. Although many
algorithms, like the sphere decoding algorithm [14, 5], can solve CVP exactly, the
complexity of these algorithms increases exponentially with the number of transmit
antennas [1, 5, 6]. Thus, such optimal solvers are infeasible for real-time systems,
where timing is critical. To satisfy the time constraint, many sub-optimal solvers
with polynomial complexity, like the successive interference cancelation (SIC) de-
coding, have been proposed [3, 12]. However, the sub-optimal detectors may suffer
from heavy performance loss at a low signal-to-noise ratio (SNR). It has been found
that lattice reduction, used as an efficient preprocessor, has the potential to achieve
high performance for sub-optimal decoding algorithms. Recently, many reduction
algorithms, such as the Lenstra-Lenstra-Lovász (LLL) algorithm [7], effective LLL
algorithm [10], partial LLL algorithm [11, 17], and diagonal reduction algorithm
[19], have been proposed for SIC decoding. It is proved in [9, 18] that SIC decoding
aided by the above reduction notions can achieve the same receive diversity order
as the infinite lattice decoding (ILD).

Of all the aforementioned lattice reduction algorithms, the diagonal reduction al-
gorithm is the most efficient one. From our observation [19], the total computation
of the diagonal reduction is dominated by the computation of the Givens rotations.
Thus, in this paper, we propose to improve the efficiency of the diagonal reduc-
tion by replacing the Givens rotation with the more efficient and mathematically
equivalent fast Givens transformation [4, Page 218]. The improvement is achieved
by substantially reducing the number of multiplication operations required, because
two entries of the 2-by-2 fast Givens matrix equal 1. Moreover, the fast Givens tech-
nique is general in that it can be incorporated into all the LLL-type lattice reduction
methods to enhance performance.

Also, we investigate the basis reduction for dual lattices. In [9], the LLL and
effective LLL algorithms for dual lattices are presented. In this paper, we investigate
the diagonal reduction for dual lattices and prove that the dual basis of a diagonal
reduced basis is also diagonal reduced. In addition, we derive an upper bound for
the proximity factors of a family of dual LLL-type reduction aided SIC decoding.
Our upper bound not only extends an existing bound for LLL reduction in [9] to a
family of reduction methods, but also improves the existing one.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the systems model and review the diagonal reduction algorithm. The new algorithm
using the fast Givens is given in Section 3. Section 4 presents the diagonal reduction
for dual lattices and our new upper bound for the proximity factors. In Section 5, we
demonstrate our simulation results.

Notations: BT, B†, and det(B) denote the transpose, the Moore-Penrose inverse,
and the determinant of a matrix B respectively, ℜ(z) and ℑ(z) the real and imaginary
parts of a complex number z, bae the integer nearest to a real number a.



The Diagonal Reduction Algorithm Using Fast Givens 3

2 Lattice Basis Reduction

2.1 System Model

Consider a MIMO system consisting of nT transmit antennas and mT receive anten-
nas. The relationship between the nT ×1 transmitted signal vector x and the mT ×1
received signal vector y is given by

y = Hx+n, (1)

where H, y,n represent the channel matrix, the received and additive noise signals,
respectively. In general, the entries of both H and n are assumed to be complex-
valued independently and identically distributed (i.i.d.) Gaussian variables. Treating
the real and imaginary parts of (1) separately, an equivalent real-valued system of
doubled size can be obtained:

y = Bx+n, (2)

where

y =
[

ℜ(y)
ℑ(y)

]
, n =

[
ℜ(n)
ℑ(n)

]
, B =

[
ℜ(H) −ℑ(H)
ℑ(H) ℜ(H)

]
.

Given a MIMO system modeled as (2), the optimum ML decoding is equivalent
to the following CVP:

min
x∈A

‖y−Bx‖2. (3)

where the constellation A is of lattice type. Unfortunately, CVP has been proved to
be NP-hard [2], and all existing algorithms for solving (3) has an exponential com-
plexity with the lattice dimension n [5, 6]. Recently, lattice-reduction-aided SIC
decoding turned out to be extremely promising, since its bit-error-rate (BER) per-
formance can effectively approximate the ML decoding with a complexity of only
O(n3) operations [15, 9].

2.2 Diagonal Reduction Algorithm

In this section, we first introduce some concepts of lattices and the SIC decoding,
then we describe the diagonal reduction method [19].

Given a matrix B∈Rm×n (n≤m) of full column rank, then a lattice generated by
B is defined by L(B) = {Bz : z ∈ Zn}. The columns of B form a basis for the lattice
L(B). An integer matrix Z∈Zn×n is called unimodular if |det(Z)|= 1. The columns
of a matrix B′ can form a basis for L(B) if and only if there exists a unimodular ma-
trix Z such that B′ = BZ. The volume of L(B) is defined as vol(L(B)) =

√
det(BTB),

which is independent of the choice of basis. Let λ (L) be the Euclidean length of the
shortest nonzero vector in a lattice L, then it is well known that λ (L)/vol(L)1/n is
upper bounded over all n-dimension lattices L, and the Hermite’s constant γn is de-
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fined as the supremum of λ (L)2/vol(L)2/n over all n-dimention lattices. Finding the
exact value of γn is very difficult. The exact value of γn is only known for 1≤ n≤ 8
and n = 24 [13, Page 33]. For an arbitrary dimension n, an upper bound of the
Hermite’s constant is given in [13, Page 35]:

γn ≤ 1+
n
4
, for all n≥ 1. (4)

A lattice reduction algorithm finds a unimodular matrix Z for a given B such that the
columns of BZ are reasonably short. Lattice reduction has now become a powerful
tool for enhancing the performance of sub-optimal MIMO detectors, since it can
significantly improve the orthogonality of the channel matrix.

Given a lattice generator matrix B ∈ Rm×n and its QR decomposition B = QR,
where Q ∈ Rm×n has orthonormal columns and R ∈ Rn×n is upper triangular. From
[8, 17], the efficiency of sphere decoding and the performance of SIC decoding is
determined by the arrangement of the diagonal elements of R. Based on this fact,
various reduction notions, such as the LLL reduction [7], effective LLL reduction
[10], partial LLL reduction [11, 17], and diagonal reduction [19], have been pro-
posed. Among all the aforementioned reduction notions, the diagonal reduction is
the weakest, consequently, the least computationally demanding.

Definition 1 (Diagonal reduction [19]). A basis matrix B ∈ Rm×n is said to be
diagonal reduced with the parameter ω (1/4 < ω < 1), if the entries ri, j of the upper
triangular factor R in its QR decomposition B = QR satisfy

(rk−1,k−µkrk−1,k−1)2 + r2
k,k ≥ ωr2

k−1,k−1, (5)

for all 1 < k ≤ n, where µk = brk−1,k/rk−1,k−1e.
From the above definition, diagonal reduction only imposes one simple constraint

on the diagonal entries of R. However, it is proved in [19] that diagonal-reduction-
aided SIC decoding has identical performance as LLL-reduction-aided SIC decod-
ing. A generic implementation of diagonal reduction can be found in Figure 1.

3 Diagonal Reduction Using Fast Givens

From Figure 1, the computational cost of the diagonal reduction algorithm includes
two parts: the size-reduction (lines 7-8) and the Givens rotation (lines 11-13). The
simulation results in [19] indicate that the overall complexity of the algorithm is
dominated by the Givens rotations as the lattice dimension n increases. Thus, we
propose the use of the fast Givens transformation in place of the Givens rotations to
speed up the diagonal reduction algorithm.

Like the Givens rotation, the fast Given can be used to introduce zeros into se-
lected positions. Specifically, given a lattice generator matrix B, the fast Givens
transformation is based on the following decomposition:
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Input: Q ∈ Rm×n, R ∈ Rn×n, ω
Output: Updated Q and updated R that is diagonal reduced with the parameter ω and a unimod-

ular Z that reduces R
1: Initialization Z← In
2: k ← 2
3: while k ≤ n do
4: µk ← bR(k−1,k)/R(k−1,k−1)e
5: if the condition (5) is not satisfied then
6: if µk 6= 0 then
7: R(1 : k−1,k)← R(1 : k−1,k)−µkR(1 : k−1,k−1)
8: Z(:,k)← Z(:,k)−µkZ(:,k−1)
9: end if

10: swap columns k−1 and k in R and Z
11: find a Givens rotation G to restore the upper triangular structure of R
12: R(k−1 : k,k−1 : n)←GR(k−1 : k,k−1 : n)
13: Q(:,k−1 : k)←Q(:,k−1 : k)GT

14: k ←max(k−1,2)
15: else
16: k ← k +1
17: end if
18: end while

Fig. 1 Diagonal reduction algorithm (DR) [19]

B = FD−1R, (6)

where D = diag(di) is a positive diagonal matrix, FD−1/2 represents the orthogonal
factor in the QR decomposition of B, and D−1/2R represents the upper triangular
factor.

How can the fast Givens introduce zeros? In the 2-by-2 case, given x = [x1,x2]T

and the corresponding diagonal elements d1,d2 > 0, we first compute

α =−x1/x2, β =−αd2/d1, and γ =−αβ .

When γ ≤ 1, we have the type 1 fast Givens:

F =
[

β 1
1 α

]
(7)

and update d1 and d2:

d̂1 ← (1+ γ)d2 and d̂2 ← (1+ γ)d1. (8)

When γ > 1, setting

α ← 1/α, β ← 1/β , and γ ← 1/γ,

we have the type 2 fast Givens:
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F =
[

1 β
α 1

]
(9)

and update d1 and d2:

d̂1 ← (1+ γ)d1 and d̂2 ← (1+ γ)d2. (10)

Then it can be verified that

F
[

x1
x2

]
=

[×
0

]

and [
d̂1 0
0 d̂2

]−1/2

F
[

d1 0
0 d2

]1/2

is orthogonal.
In our fast Givens based diagonal reduction algorithm, all the transformations are

based on the decomposition (6). In the beginning, we compute the QR decomposi-
tion B = QR and set F = Q and D = In. Thus, in this case, the size-reduction in each
iteration is the same as lines 7-8 of Figure 1. But the diagonal reduction condition
(5) becomes

d−1
k−1(rk−1,k−µkrk−1,k−1)2 +d−1

k r2
k,k ≥ ωd−1

k−1r2
k−1,k−1, (11)

for 1 < k ≤ n. The diagonal reduction algorithm using fast Givens (DRFG) is sum-
marized in Figure 2.

In comparison with the original diagonal reduction algorithm, DRFG saves a
substantial number of multiplication operations, since two entries of the 2-by-2 fast
Givens matrix are equal to 1. However, DRFG introduces overhead, such as the
computations in line 14 and line 20. Our simulation results presented in Section 5
show that overall DRFG is more efficient than DR.

4 Dual Diagonal Reduction

In this section, after a brief introduction to dual basis, we first investigate diagonal
reduction of dual bases and prove that if a primal basis is diagonal reduced, then
its dual basis is also diagonal reduced. Then we derive an upper bound of proximity
factor of SIC decoding, which not only improves an existing bound for the dual LLL
reduction in [9], but also extends it to the family of dual LLL-type reductions.
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Input: Q ∈ Rm×n, R ∈ Rn×n, ω
Output: Updated Q and updated R that is diagonal reduced with the parameter ω and a unimod-

ular Z that reduces R
1: F←Q, D← In, Z← In
2: k ← 2
3: while k ≤ n do
4: µk ← bR(k−1,k)/R(k−1,k−1)e
5: if the condition (11) is not satisfied then
6: if µk 6= 0 then
7: R(1 : k−1,k)← R(1 : k−1,k)−µkR(1 : k−1,k−1)
8: Z(:,k)← Z(:,k)−µkZ(:,k−1)
9: end if

10: swap columns k−1 and k in R and Z

11: construct fast Givens matrix F of type (7) or type (9) such that F
[

rk−1,k−1
rk,k−1

]
=

[×
0

]

12: R(k−1 : k,k−1 : n)← FR(k−1 : k,k−1 : n)
13: F(:,k−1 : k)← F(:,k−1 : k)FT

14: using (8) or (10) to update dk−1 and dk
15: k ←max(k−1,2)
16: else
17: k ← k +1
18: end if
19: end while
20: Q← FD−1/2, R← D−1/2R

Fig. 2 Diagonal reduction algorithm using fast Givens (DRFG)

4.1 Dual Lattice Reduction

Let L be an n-dimensional lattice in Rm, then the dual lattice L∗ of L is defined as
the set

L∗ = {u | 〈u,v〉 ∈ Z, for all v ∈ L}, (12)

where 〈u,v〉 is the inner product of u and v. Suppose that B is a primal basis matrix
of L, then it is obvious that the columns of B†T form a basis for its dual lattice L∗.
In this paper, we adopt the definition of the dual basis B∗ , B†TJ [9], where

J ,




0 · · · 0 1
0 · · · 1 0
... · · · ...

...
1 · · · 0 0




A dual lattice is closely related to its corresponding primal lattice. For instance, we
have L∗∗ = L and det(L∗) = 1/det(L).

Given a primal basis matrix B, then the dual basis reduction is to perform a lattice
reduction algorithm on its dual basis B∗. Like the primal basis reduction, dual basis
reduction can also return a well reduced basis of the primal lattice. Suppose that
Z∗ is the unimodular matrix that reduces the dual basis B∗, then the corresponding
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reduced primal basis is given by

B′ = (B†TJZ∗)†TJ = BJ(Z∗)†TJ,

where J(Z∗)†TJ is the unimodular matrix associated with the primal lattice.
To study the reduction properties of diagonal reduction on dual lattices, the fol-

lowing result is essential.

Lemma 1. Let B = QR and B∗ = Q∗R∗ be the QR decompositions of the primal
basis B and its dual basis B∗, respectively. Then

Q∗ = QJ, R∗ = JR−TJ. (13)

Proof: It is easy to verify that B† = R−1QT. Thus, we have

B∗ = B†TJ = (R−1QT)TJ = QR−TJ
= (QJ) · (JR−TJ). (14)

Obviously, QJ has orthonormal columns and JR−TJ is an upper triangular matrix,
thus the proof is completed.

Based on the above lemma, we can obtain the following result.

Proposition 1. If the lattice basis matrix B is diagonal reduced, then its dual basis
B∗ is also diagonal reduced.

Proof: Let R = [ri, j] and R∗ be the upper triangular factors of B and B∗, respectively.
Then from Lemma 1,

R∗ = JR−TJ

=




1
rn,n

− rn−1,n
rn−1,n−1rn,n

× ×
1

rn−1,n−1
− rn−2,n−1

rn−2,n−2rn−1,n−1
×

1
rn−2,n−2

. . .
...

. . . − r1,2
r1,1r2,2

1
r1,1




(15)

Since B is diagonal reduced, we then have

(
rk−1,k−

⌊
rk−1,k

rk−1,k−1

⌉
· rk−1,k−1

)2

+ r2
k,k ≥ ωr2

k−1,k−1, (16)

for all 1 < k ≤ n. Multiplying the both sides of (16) with 1
(rk−1,k−1rk,k)2 , we obtain

(
rk−1,k

rk−1,k−1rk,k
−

⌊
rk−1,k

rk−1,k−1

⌉
· 1

rk,k

)2

+
(

1
rk−1,k−1

)2

≥ ω
(

1
rk,k

)2

,

which implies that R∗ is also diagonal reduced.
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4.2 Proximity Factor

To characterize the performance gap between sub-optimal decoding and ILD, a
proximity factor was defined in [8] and further discussed in [9, 18]. Given a lat-
tice generator matrix B = [b1, ...,bn], denote φi the acute angle between bi and the
linear space spanned by the previous i− 1 basis vectors, then the proximity factor
of SIC decoding is defined as:

ρi , sup
B∈BRed

λ 2(L(B))
‖bi‖2

2 sin2 φi
, (17)

where the supremum is taken over the set BRed of bases satisfying a certain reduc-
tion notion for any n-dim lattice L. We further define ρ , maxi{ρi}. From [9], the
average error probability of SIC decoding can be bounded as

Pe,SIC(SNR)≤
n

∑
i=1

Pe,ILD

(
SNR

ρi

)
≤ nPe,ILD

(
SNR

ρ

)

for arbitrary SNR.
Denote ρLLL, ρDLLL, ρDR, and ρDDR the proximity factors of SIC decoding aided

by LLL reduction, dual LLL reduction, diagonal reduction, and dual diagonal re-
duction, respectively. An upper bound of ρLLL is given in [18]:

ρLLL ≤ γn ·β
n−1

2 ≤
(

1+
n
4

)
β

n−1
2 , (18)

where β = 1/(ω−1/4) ≥ 4/3. Following the argument in [19], it is easy to prove
that

ρi,DR = ρi,LLL ≤ γi ·β
i−1

2 . (19)

Thus,
ρDR = ρn,DR ≤ γn ·β

n−1
2 . (20)

For dual reduction, an upper bound of ρDLLL is given in [9]:

ρDLLL ≤ β n−1. (21)

In the following, we improve the upper bound (21). From (19) and Proposition 1,
we can obtain that

ρi,DDR = sup
B∗∈BDR

λ 2(L(B))
r2

i,i
= sup

B∈BDR

λ 2(L(B))
r2

i,i
≤ γi ·β

i−1
2 . (22)

Thus,
ρDDR = ρn,DDR ≤ γn ·β

n−1
2 . (23)
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Following the above argument, it is easy to prove that the proximity factors of SIC
decoding aided by all dual LLL-type reduction notions, such as dual LLL reduction,
dual effective LLL reduction, and dual partial LLL reduction, can be upper bounded
by the right-hand side of (23). Comparing (23) with (20), SIC decoding aided by
primal and dual diagonal reductions are expected to have the same performance.
This shall be confirmed by the simulation results presented in Section 5.

5 Simulation Results

In this section, we present our simulation results on comparing the efficiency of the
proposed algorithm DRFG with the original algorithm DR. All experiments were
performed on matrices with random entries, drawn from an i.i.d. zero-mean, unit
variance Gaussian distribution. Without loss of generality, all testing matrices were
set to square matrices. For each size, we generated 1000 random matrices and took
an average. The parameter ω in the reduction algorithms was set to 0.99.

Although the new algorithm DRFG is expected to be faster than the original algo-
rithm DR, the computations in line 14 and line 20 of Figure 2 introduce overhead. To
compare the overall complexity of the algorithms, we experimented on the floating-
point operations (flops)1 carried out by the algorithms. Figure 3 depicts our results
on the average numbers of flops performed by the reduction algorithms. The figure
shows that in both cases of primal and dual lattice reduction, DRFG is more efficient
than DR, and the performance gap between them widens quickly as the dimension
increases. This indicates that the overhead introduced by the fast Givens is insignifi-
cant. Also note that the DR (DRFG) algorithm is slightly faster than its dual counter
part dual DR (dual DRFG) algorithm. This is due to the additional computation, for
instance, the calculation of B†, required by the dual reduction.

We also investigated the reduction quality of different reduction algorithms mea-
sured by the BER performance of the SIC decoding. Specifically, using a 64-QAM
constellation, Figure 4 depicts the simulated BER curves of lattice-reduction-aided
SIC over an 8× 8 uncoded MIMO fading channel. We have found that the SIC
aided by the four diagonal reduction algorithms have identical BER performance
with that aided by the LLL algorithm. This is consistent with the theoretical analy-
sis presented in Section 4.2.

Acknowledgements We would like to thank Professor Lihong Zhi and referees for their useful
comments.

1 Flop count: addition/multiplication/division/max/rounding, 1 flop.
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