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There is extensive literature on inverting suh matries or solving suh linear systems.However, eÆient eigenvalue algorithms for strutured matries are still under development.Cybenko and Van Loan [3℄ proposed an algorithm for omputing the minimum eigenvalueof a symmetri positive de�nite Toeplitz matrix. Their algorithm is based on the Levinson-Durbin Algorithm and Newton's method; it requires up to O(n2) oating-point operationsper Newton iteration and heuristially O(logn) iterations. Building on their work [3℄,Trenh [8℄ presented an algorithm for Hermitian Toeplitz matries. His algorithm requiresO(n2) operations per eigenvalue-eigenvetor pair. In this paper, we study the eigenvalueproblem of a Hankel matrix. Taking advantage of two properties, namely that a omplexHankel matrix is symmetri and that a permuted Hankel matrix an be embedded in airulant matrix, we develop an O(n2 log n) algorithm that an �nd all the eigenvalues of ann�n Hankel matrix. We should point out that our new method is a theoretial ontribution;onsiderable work is required to develop a pratial software. An error analysis of thisalgorithm an be found in [6℄.Our paper is organized as follows. How to exploit omplex-symmetry is presented inSetion 2, and how to onstrut omplex-orthogonal transformations in Setion 3. AnO(n logn) sheme for multiplying a Hankel matrix and a vetor is desribed in Setion 4,and an O(n2 log n) Lanzos tridiagonalization proess in Setion 5. A QR proedure todiagonalize a omplex-symmetri tridiagonal matrix is given in Setion 6, followed by anoverall omputational proedure and two numerial examples in Setion 7.2 COMPLEX SYMMETRYOur idea is to take advantage of the symmetry of a Hankel matrix. In general, an eigenvaluedeomposition of H (assuming that it is nondefetive) is given byH = XDX�1 (3)where D is diagonal and X is nonsingular. Note that the following Hankel matrix is defe-tive: H = � 2 ii 0� :We will pik the matrix X to be omplex-orthogonal ; that is,XXT = I: (4)So, H = XDXT. We apply a speial Lanzos tridiagonalization to the Hankel matrix(assuming that the Lanzos proess does not prematurely terminate):H = QJQT; (5)where Q is omplex-orthogonal and J is omplex-symmetri tridiagonal. Then we diago-nalize J : J = WDWT;2



where W is omplex-orthogonal and D is diagonal. Thus, we get (3) withX = QW:The dominant ost of the Lanzos method is matrix-vetor multipliation whih in generaltakes O(n2) operations. We propose a fast O(n logn) Hankel matrix-vetor multipliationalgorithm. Thus we an tridiagonalize a Hankel matrix in O(n2 logn) operations. Theresulting tridiagonal matrix is omplex-symmetri. In order to maintain its symmetri andtridiagonal struture, we use the omplex-orthogonal transformations in the QR iteration.3 COMPLEX-ORTHOGONAL TRANSFORMATIONSA basi operation in solving eigenvalue problems is the introdution of zeros into 2 � 1vetors using 2� 2 transformations. From its de�nition in (4), we derive the general formof a 2� 2 omplex-orthogonal matrix asG = �  s�s � or �  ss �� ;where 2 + s2 = 1. Here, we hoose the nonsymmetri version:G = �  s�s � : (6)In the real ase, the transformation G of (6) redues to a Givens rotation. Given a omplex2-element vetor x = �x1x2� ; (7)where x21 + x22 6= 0, the following algorithm omputes the nonsymmetri transformation Gof (6) so that Gx =  qx21 + x220 ! : (8)For more details, see Luk and Qiao [5℄ and Vandevoorde [10℄ .Algorithm 1 (Complex-Orthogonal Transformation) Given a omplex vetor x of(7), this algorithm omputes the parameters  and s for the omplex-orthogonal transforma-tion G of (6), so that (8) holds.if (jx1j > jx2j)t = x2=x1;  = 1=p1 + t2; s = t � ;else � = x1=x2; s = 1=p1 + �2;  = � � s;end if.This algorithm will be used in the omplex-orthogonal diagonalization in Setion 6.3



4 FAST HANKEL MATRIX-VECTOR PRODUCTIn this setion, we desribe an O(n logn) algorithm for multiplying an n�n Hankel matrixinto an n-element vetor. We begin with some additional notations. Leth � ( h1 h2 h3 : : : h2n�1 )Tand t � ( t1 t2 t3 : : : t2n�1 )Tdenote two (2n�1)-element vetors speifying the n�n Hankel matrix H(h) and the n�nToeplitz matrix T (t) of equations (1) and (2), respetively.First, we permute a Hankel matrix into a Toeplitz matrix. Let � represent an n � npermutation matrix that reverses all olumns of H in postmultipliation:� = 0BBBBB� 0 0 : : : 0 10 0 : : : 1 0... ... . . . ... ...0 1 : : : 0 01 0 : : : 0 01CCCCCA ;that is, H(h) � = T (h): (9)The simpliity of equation (9) explains why we start with H11 (respetively T1n) when wede�ne the vetor h (respetively t).Next, we embed the Toeplitz matrix T (h) in a larger irulant matrix. Consider a(2n� 1)� (2n� 1) irulant matrix:C = 0BBBBBBBB� 1 2n�1 2n�2 : : : 3 22 1 2n�1 : : : 4 33 2 1 : : : 5 4... ... ... . . . ... ...2n�2 2n�3 2n�4 : : : 1 2n�12n�1 2n�2 2n�3 : : : 2 1 1CCCCCCCCA � C();where  � ( 1 2 3 : : : 2n�1 )T :Note that  represents the �rst olumn of C. Consider a speial hoie of this vetor:b = (hn hn+1 hn+2 : : : h2n�1 h1 h2 : : : hn�1 )T : (10)4



Then C(b) = 0BBBBBBBBBBBBBBB� hn hn�1 hn�2 : : : h1 h2n�1 h2n�2 : : : hn+1hn+1 hn hn�1 : : : h2 h1 h2n�1 : : : hn+2hn+2 hn+1 hn : : : h3 h2 h1 : : : hn+3... ... ... . . . ... ... ... . . . ...h2n�1 h2n�2 h2n�3 : : : hn hn�1 hn�2 : : : h1h1 h2n�1 h2n�2 : : : hn+1 hn hn�1 : : : h2h2 h1 h2n�1 : : : hn+2 hn+1 hn : : : h3... ... ... . . . ... ... ... . . . ...hn�1 hn�2 hn�3 : : : h2n�1 h2n�2 h2n�3 : : : hn
1CCCCCCCCCCCCCCCA ;where the leading n � n prinipal submatrix is T (h). This tehnique of embedding aToeplitz matrix in a larger irulant matrix to ahieve fast omputation is widely used inpreonditioning methods [1, 7℄.Given an n-element vetor:w = (w1 w2 w3 : : : wn )T ; (11)we want to ompute the matrix-vetor produtp = Hw: (12)We see that p = H(h)w = T (h)(�w):Let bw denote a speial (2n� 1)-element vetor:bw = (wn wn�1 : : : w1 0 : : : 0 )T ; (13)whih an be obtained from the n-vetor �w by appending it with n � 1 zeros. So p isgiven by the �rst n elements of the produt y, de�ned byy � C(b) bw:This irulant matrix-vetor multipliation an be eÆiently omputed via the Fast FourierTransform [9℄ (FFT); namely, C(b) bw = i�t(�t(b): � �t( bw))where �t(v) denotes a one-dimensional FFT of a vetor v, i�t(v) a one-dimensional inverseFFT of v, and \.�" a omponentwise multipliation of two vetors.5



Algorithm 2 (Fast Hankel Matrix-Vetor Produt) Given a vetor w in (11) and aHankel matrix H in (1), this algorithm omputes the produt vetor p of (12) by using theFast Fourier Transform.1. De�ne a (2n� 1)-element vetor b as in equation (10):b = (hn hn+1 hn+2 : : : h2n�1 h1 h2 : : : hn�1 )T :2. De�ne a (2n� 1)-element vetor bw as in equation (13):bw = (wn wn�1 : : : w1 0 : : : 0 )T :3. Compute a (2n� 1)-element vetor y byy = i�t(�t(b): � �t( bw)):4. Let y = ( y1 y2 : : : y2n�2 y2n�1 )T. Then the desired n-element produt p of(12) is given by p = ( y1 y2 : : : yn�1 yn )T :How muh work does this algorithm require? In general, a omplex matrix-vetor mul-tipliation involves 8n2 real oating-point operations (ops) and an FFT of a vetor of sizen osts 5n log(n) ops. In Algorithm 2, eah of the two FFT requires 5(2n� 1) log(2n� 1)ops, the pointwise multipliation 6(2n�1) ops, and the inverse FFT 5(2n�1) log(2n�1)ops. The total ost of i�t(�t(b):��t( bw)) equals 30n log(n)+O(n) ops. Thus, Algorithm 2beomes superior to general matrix-vetor multipliation when n > 16.5 LANCZOS TRIDIAGONALIZATIONIn this setion, we derive a tridiagonalization method for H based on a Lanzos iterativeproess. Our goal is to �nd a omplex-orthogonal matrix Q so that equation (5) holds.Note that HQ = QJ: (14)Let Q = (q1 q2 q3 : : : qn )and J = 0BBBBBB��1 �1 0�1 �2 �2�2 . . . . . .. . . . . . �n�10 �n�1 �n 1CCCCCCA : (15)6



Consider the kth olumn of both sides of (14). We haveHqk = �k�1qk�1 + �kqk + �kqk+1; (16)where �0q0 = 0 and �nqn+1 = 0:Sine Q is omplex-orthogonal, i.e., qTi qj = Æij , we get�k = qTkHqk:Equation (16) implies that �kqk+1 = Hqk � �kqk � �k�1qk�1:Setting rk = Hqk � �kqk � �k�1qk�1;we get �k = qrTk rk and qk+1 = (1=�k)rk;for k < n. We have thus derived a generi Lanzos tridiagonalization method. Note thatwe have used only the property that the matrix H is omplex-symmetri.Algorithm 3 (Lanzos Tridiagonalization) Given an n�n omplex-symmetri matrixH, this algorithm omputes a omplex-orthogonal matrix Q suh that H = QJQT, where Jis a omplex-symmetri tridiagonal matrix as shown in (15).Initialize q1 suh that qT1 q1 = 1;Set r0 = q1; �0 = 1; q0 = 0; k = 0;while (�k 6= 0)qk+1 = (1=�k)rk;k = k + 1;�k = qTkHqk;rk = Hqk � �kqk � �k�1qk�1;�k = qrTk rk;endIf all �k 6= 0, then Algorithm 3 runs until k = n. The dominant ost is the Hankel matrix-vetor produt Hqk. Using Algorithm 2 to perform this task, we obtain an O(n2 logn)tridiagonalization algorithm. Consider a Krylov matrix K, de�ned byK = K(H;q1; n) � (q1 Hq1 H2q1 : : : Hn�1q1 ) :7



We get a omplex-orthogonal deomposition [2℄ of K:K = QR; (17)where R = (e1 Je1 J2e1 : : : Jn�1e1 ). Cheking the diagonal elements of the uppertriangular matrix R, we �nd that they are nonzero if and only if �k 6= 0, for k = 1; 2; : : : ; n.Cullum and Willoughby [2℄ show that the deomposition (17), if it exists, is essentiallyunique in the sense that if H = Q1R1 and H = Q2R2are two di�erent omplex-orthogonal deompositions of H , thenQ2 = Q1S and R2 = SR1;where S is a signature matrix, i.e., S = diag(�1). Note that some nonsingular omplex-symmetri matrix does not have a omplex-orthogonal deomposition (17); an example isthe following matrix:  1 ii 1 ! : (18)If Algorithm 3 stops at k < n, then we are stuk in an invariant subspae. It is possiblethat �k = 0 even when rk 6= 0 for some k < n. However, we rarely get an exat zero �k inpratie. But a small �k relative to krkk ould reate diÆulties. See Luk and Qiao [6℄ fordetails.Theorem 1 If there exists a omplex-orthogonal deomposition (17) of the Krylov matrixK(H;q1; n) and if R is nonsingular, then Algorithm 3 runs until k = n.6 COMPLEX-ORTHOGONAL DIAGONALIZATIONIn this setion, we desribe a QR-type algorithm for diagonalizing a omplex-symmetritridiagonal matrix. Basially, we use the impliit QR method with the Wilkinson shift [4℄and replae all unitary transformations by omplex-orthogonal transformations. However,it should be pointed out that this QR-type algorithm o�ers less guarantee for onvergenethan the standard QR method. See Cullum and Willoughby [2℄ and Vandevoorde [10℄ fortheoretial results on onvergene. Also, Cullum and Willoughby [2℄ present extensive nu-merial experiments. Basially, if a omplex-symmetri tridiagonal matrix J is nonsingular,irreduible and nondefetive, and if it has no eigenvalues equal in magnitude, then thefollowing algorithm with all shifts equal to zero will onverge. For example, the 2-by-2omplex-symmetri matrix in (18) is nonsingular, irreduible, and nondefetive, but it hastwo eigenvalues, 1� i, that are equal in magnitude. The following algorithm fails beausethis matrix annot be triangularized by a omplex-orthogonal matrix. If the matrix Q is8



not desired, this algorithm requires O(n) ops. For simpliity, we denote by L the trailing(last) 2� 2 prinipal submatrix of J :L = � Jn�1;n�1 Jn�1;nJn;n�1 Jn;n �Algorithm 4 (Complex-Symmetri QR Step) Given an n � n omplex-symmetritridiagonal matrix J, this algorithm overwrites J with QTJQ where Q is a produt ofomplex-orthogonal matries so that QT(J ��I) is upper triangular and � is the eigenvalueof L that is loser to Jnn.Initialize Q = I ;Find the eigenvalue � of L that is loser to Jnn;Set x1 = J11 � �; x2 = J21;for k = 1 : n � 1Find a omplex-orthogonal matrix GTk (applying Algorithm 1)to annihilate x2 using x1;J = GTk JGk ;Q = QGk;if k < n� 1x1 = Jk+1;k; x2 = Jk+2;k ;end ifend for.7 OVERALL ALGORITHMWe ombine our algorithms into an O(n2 logn) eigenvalue proedure for an n � n Hankelmatrix, and onlude the paper with a numerial example.Algorithm 5 (Fast Hankel Eigenvalue Algorithm) Given an n�n Hankel matrix H,this algorithm omputes all its eigenvalues.1. Tridiagonalize H via Algorithm 3 (applying Algorithm 2 to �nd Hankel matrix-vetorproduts). Let J denote the resultant omplex-symmetri tridiagonal matrix.2. Repeat until onvergene(a) Set small subdiagonal elements in J to zero and partition J :J = 0B� p n� p� q qp K 0 0n� p� q 0 bJ 0q 0 0 bD1CA;9



where p is minimized and q is maximized so that bD is diagonal and bJ remainsunredued.(b) If q < n� 1, apply Algorithm 4 to bJ .Example 1. Apply Algorithm 3 to the Hankel matrix:H = 0BBB� 0:900+ 0:783i �0:538 + 0:524i 0:214� 0:087i �0:028� 0:963i�0:538 + 0:524i 0:214� 0:087i �0:028� 0:963i �0:111 + 0:476i0:214� 0:087i �0:028� 0:963i �0:111 + 0:476i 0:231� 0:648i�0:028� 0:963i �0:111 + 0:476i 0:231� 0:648i 0:584� 0:189i 1CCCA :We get a tridiagonal matrix:J = 0BBB� 0:267� 0:584i 0:208� 0578i 0 00:208� 0:578i 1:162 + 1:398i 1:349� 1:029i 00 1:349� 1:029i �0:564� 1:278i 0:312� 0:952i0 0 0:312� 0:952i 0:723 + 1:447i 1CCCA :The following table shows the subdiagonal elements of J during the exeution of Algorithm5: Iteration J21 J32 J431 0:465� 0:098i �0:761 + 0:428i �0:040� 0:630i2 �0:649 + 0:115i 0:191 + 0:319i �0:046 + 0:024i3 1:291� 0:121i 0:099� 0:063i O(10�6)4 9:637� 8:712i 0:016� 0:004i O(10�15)5 0:506� 1:417i �0:014 + 0:006i onverged6 �0:454 + 0:089i O(10�8)7 0:356� 0:102i onverged8 onvergedThe riterion for onvergene isjJi+1;ij � p2 (jJi;ij+ jJi+1;i+1j)�Mwhere �M is the mahine preision. The omputed eigenvalues areH(�) = f0:9198� 1:1431i; 0:099893� 0:74375i; �0:24002+ 1:4976i; 0:80755+ 1:3762ig:Assuming that eigenvalues omputed by the matlab funtion eig() are fully aurate, we�nd that our errors are about 10�14. 10



n Algorithm 5 matlab eig Error4 9,214 3,791 6:5� 10�148 47,888 38,181 1:8� 10�1416 183,574 301,442 4:9� 10�1432 763,808 2,443,679 2:3� 10�764 3,247,686 19,292,025 1:2� 10+1Table 1: Operation ounts and omputational errors.Example 2. To illustrate the O(n2 logn) behavior of our fast algorithm (versus the O(n3)requirement of the traditional approah), we hose n� n random omplex Hankel matriesfor n = 4; 8; 16; 32; 64: We generated these matries by piking random vetors as their�rst olumns and last rows. For auray and work omparison, we hose the matlabeig funtion. We obtained the (real) oating-point operation ounts using the matlabfuntion flops, and we assumed that the eigenvalues (all them �i) omputed via eig arefully aurate. Sine the eigenvalues were omplex, we ordered �i in non-inreasing orderof magnitude, i.e., j�1j � j�2j � � � � � j�nj:We referred to the eigenvalues omputed by Algorithm 5 as ��i, and ordered them in thesame non-inreasing fashion. We determined the errors of the omputed eigenvalues viaError = sPni=1 j�i � ��ij2Pni=1 j�ij2 :Table 1 shows the operation ounts and errors. As n doubles, the op ount for Algorithm 5roughly quadruples and that for eig inreases by a fator of eight, agreeing with the theo-retial preditions. Even for n as small as 16, Algorithm 5 requires only 60% of the ops ofeig. The auray of Algorithm 5 deteriorates rapidly as n inreases, due probably to theloss of omplex-orthogonality of the Lanzos vetors generated by Algorithm 3.Referenes[1℄ R. H. Chan and M.K. Ng, \Conjugate gradient methods for Toeplitz systems," SIAMReview, Vol. 38, No. 3, 1996, pp. 427{482.[2℄ J. K. Cullum and R.A. Willoughby, \A QL proedure for omputing the eigenvalues ofomplex symmetri tridiagonal matries," SIAM J. Matrix Anal. Appl., Vol. 17, No. 1,1996, pp. 83{109.[3℄ G. Cybenko and C.F. Van Loan, \Computing the minimum eigenvalue of a symmetripositive de�nite Toeplitz matrix," SIAM J. Si. and Stat. Comput., 7, 1986, pp. 123{131. 11
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