
Block Lanczos Tridiagonalization of Complex Symmetric

Matrices

Sanzheng Qiao, Guohong Liu, Wei Xu

Department of Computing and Software, McMaster University, Hamilton, Ontario L8S 4L7

ABSTRACT

The classic Lanczos method is an effective method for tridiagonalizing real symmetric matrices. Its block al-
gorithm can significantly improve performance by exploiting memory hierarchies. In this paper, we present a
block Lanczos method for tridiagonalizing complex symmetric matrices. Also, we propose a novel componentwise
technique for detecting the loss of orthogonality to stablize the block Lanczos algorithm. Our experiments have
shown our componentwise technique can reduce the number of orthogonalizations.

Keywords: Complex symmetric matrix, block Lanczos algorithm, singular value decomposition (SVD), Takagi
factorization.

1. INTRODUCTION

For any complex symmetric matrix A of order n, there exist a unitary Q ∈ Cn×n and an order n nonnegative
diagonal Σ = diag(σ1, ..., σn), where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, such that

A = QΣQT or QHAQ̄ = Σ.

This special form of singular value decomposition (SVD) is called Takagi factorization.1, 2

The computation of the Takagi factorization consists of two stages: tridiagonalization and diagonalization.3

A complex symmetric matrix is first reduced to complex symmetric and tridiagonal form. There are various
tridiagonalization schemes. When A is sparse or structured, the Lanczos method is preferred. Since the Lanczos
algorithm involves only matrix-vector multiplication, sparsity and structures can be exploited to develop fast
tridiagonalization algorithms.4

The second stage, diagonalization of the complex symmetric tridiagonal matrix computed in the first stage,
can be implemented by the implicit QR method3, 4 or the more efficient divide-and-conquer method.5

Block algorithms in which blocks of vectors instead of single vectors are used are rich in matrix-matrix (level
3 BLAS) operations. Consequently, performance is improved by exploiting memory hierarchies.

This paper presents a stable block Lanczos tridiagonalization algorithm for complex symmetric matrices. The
block Lanczos tridiagonalization algorithm consists of two stages: block tridiagonalization and tridiagonalization.
A complex symmetric matrix is first reduced to complex symmetric and block tridiagonal form. The second stage
reduces the block tridiagonal complex symmetric matrix to complex symmetric tridiagonal form. In Sections 2
and 3, we describe the two stages of block Lanczos tridiagonalization algorithm respectively. As we know, the
generic Lanczos method suffers from the loss of orthogonality of the computed Q in the presence of rounding
error. Orthogonalization is necessary for practical Lanczos method. Orthogonalization techniques for the single-
vector Lanczos algorithm are discussed in.6, 7 Based on a model of estimating the orthogonality of Q described
in Section 4, two orthogonalization schemes for block tridiagonalization stage are proposed in Sections 5 and
6. In Section 7, we describe the orthogonalization scheme for the tridiagonalization stage. Finally, Section 8
demonstrates our numerical experiments.

Send correspondence to S. Qiao: E-Mail: qiao@mcmaster.ca

1

2. BLOCK TRIDIAGONALIZATION

Let A be an n-by-n complex symmetric matrix and assume n = p × b. Then there exists the decomposition

QHAQ̄ = J =

M1 BT
1 . . . 0

B1 M2

. . .
...

. . .
. . .

. . .
...

. . .
. . . BT

p−1

0 . . . Bp−1 Mp

(1)

where
Q = [Q1, Q2, . . . , Qp] , Qi ∈ Cn×b,

is unitary, Mi ∈ Cb×b are symmetric, and Bi ∈ Cb×b upper triangular. Rewriting (1) as

AQ̄ = QJ (2)

and comparing the j th block columns on both sides of (2), we have

AQ̄j = Qj−1B
T
j−1 + QjMj + Qj+1Bj , Q0B0 = Qp+1Bp = 0,

for j = 1...p, which leads to the block Lanczos outer iteration:

Qj+1Bj = AQ̄j − QjMj − Qj−1B
T
j−1. (3)

From the orthogonality of Q, we have
Mj = QH

j AQ̄j

for j = 1...p. Let Rj = AQ̄j − QjMj − Qj−1B
T
j−1 ∈ Cn×b, then Qj+1Bj = Rj is a QR factorization of Rj .

Algorithm 1 (Block Tridiagonalization). Given an n-by-b starting matrix S of orthonormal columns
and a subroutine for matrix-matrix multiplication Y = AX for any X, where A is an n-by-n complex symmetric
matrix. This algorithm computes the diagonal blocks of the block tridiagonal complex symmetric matrix J in (1)
and a unitary Q such that J = QHAQ̄

p = n/b;
Q0 = 0; B0 = 0;
Q1 = S;
for j = 1 to p − 1

Y = AQ̄j ;
Mj = QH

j Y ;
Rj = Y − QjMj − Qj−1B

T
j−1;

Qj+1Bj = Rj ; (QR factorization of Rj)
end
Mp = QH

p AQ̄p.

3. TRIDIAGONALIZATION

We follow Berry8 to adopt the single vector Lanczos tridiagonalization recursion for reducing the block tridiagonal
complex symmetric matrix to tridiagonal form.

Let J be the p-by-p block tridiagonal complex symmetric matrix in (1) resulted from Algorithm 1. We can
find a unitary P = [p1,p2, ...,pn], pi ∈ Cn×1, such that

PHJP̄ = T =

α1 β1 . . . 0

β1 α2

. . .
...

. . .
. . .

. . .
...

. . .
. . . βn−1

0 . . . βn−1 αn

. (4)

2

Rewriting (4) as
JP̄ = PT (5)

and comparing the j th columns on both sides of (5), we have

Jp̄j = βj−1pj−1 + αjpj + βjpj+1, β0p0 = βnpn+1 = 0,

for j = 1, ..., n, which leads to the inner Lanczos recursion:

βjpj+1 = Jp̄j − αjpj − βj−1pj−1.

From the orthogonality of P we have
αj = pH

j Jp̄j

for j = 1, ..., n. Let rj = Jp̄j − αjpj − βj−1pj−1 ∈ Cn×1, then βj = ±‖rj‖2 and pj+1 = rj/βj if rj 6= 0. The
symmetric block tridiagonal structure of J is exploited in the calculation of Jp̄j for efficiency.

Algorithm 2 (Tridiagonalization). Given a starting vector b and a subroutine for symmetric block
tridiagonal matrix-vector multiplication y = Jx for any x, where J is the complex symmetric and block tridiagonal
matrix in (1), this algorithm computes the diagonals of the complex symmetric and tridiagonal matrix T and the
unitary P in (4).

p0 = 0; β0 = 0;
p1 = b/‖b‖2;
for j = 1 to n

y = Jp̄j ;
αj = pH

j y;
rj = y − αjpj − βj−1pj−1;
βj = ‖rj‖2;
if βj = 0, quit; end
pj+1 = rj/βj ;

end.

4. MODEL OF ESTIMATING ORTHOGONALITY

The algorithms described in the previous sections assume exact arithmetic. In the presence of rounding error,
however, the computed Q loses orthogonality. Thus, orthogonalization is necessary for practical Lanczos methods.
Obviously, to detect the loss of orthogonality we must measure the orthogonality. Although QHQ can be a
measurement for the orthogonality, it is too expensive to compute in every iteration. In this section, we present
a model of estimating the orthogonality of Q computed by our block tridiagonalization algorithm. Denoting
Wk,j = QH

k Qj , we propose an efficient recursion of Wk,j including rounding errors without explicitly computing
QH

k Qj.

Incorporating rounding errors into the jth iteration of (3), we have

Qj+1Bj + Fj = AQ̄j − QjMj − Qj−1B
T
j−1, j = 1, ..., p, (6)

where Fj represents the rounding error at step j. From (6), we have

Qj+1Bj = AQ̄j − QjMj − Qj−1B
T
j−1 − Fj

and
Qk+1Bk = AQ̄k − QkMk − Qk−1B

T
k−1 − Fk.

Premultiplying the above two equations with QH
k and QH

j respectively, we get

Wk,j+1Bj = QH
k AQ̄j − Wk,jMj − Wk,j−1B

T
j−1 − QH

k Fj (7)

3

and
Wj,k+1Bk = QH

j AQ̄k − Wj,kMk − Wj,k−1B
T
k−1 − QH

j Fk. (8)

From (8) we get
QH

j AQ̄k = Wj,k+1Bk + Wj,kMk + Wj,k−1B
T
k−1 + QH

j Fk. (9)

Since the transpose of QH
j AQ̄k is QH

k AQ̄j in (7) and WT
k,j = W̄j,k, substituting QH

k AQ̄j in (7) with (9) results
in

Wk,j+1Bj = BT
k W̄k+1,j + MkW̄k,j + Bk−1W̄k−1,j

−Wk,jMj − Wk,j−1B
T
j−1 + Gk,j , (10)

for k = 1, ..., j − 1, where Wj−1,j−1 = W̄j,j = I and Gk,j = FT
k Q̄j − QH

k Fj represents the local rounding error.
The above equation (10) shows that Wk,j+1 can be obtained by Wk−1,j , Wk,j , Wk+1,j , and Wk,j−1 computed in
the previous two iterations. In this model, Wk,j measures the orthogonality QH

k Qj including rounding error. In
the following two sections, we show how to use Wk,j to detect the loss of orthogonality.

5. NORMWISE DETECTION

Now that we have established a model of estimating the orthogonality, we propose a scheme for detecting the
loss of orthogonality using the norm ‖Wk,j‖2. Taking the norm on the both sides of (10), we get

‖Wk,j+1‖2 ≤ ‖B−1
j ‖2(‖Bk‖2‖Wk+1,j‖2

+ ‖Bk−1‖2‖Wk−1,j‖2 + ‖Bj−1‖2‖Wk,j−1‖2

+ (‖Mk‖2 + ‖Mj‖2)‖Wk,j‖2 + ‖Gk,j‖2). (11)

We use this inequality to derive an upper bound ωk,j for ‖Wk,j‖2. From (11) we have

ωk,j+1 = β̃j(βkωk+1,j + βk−1ωk−1,j + βj−1ωk,j−1 + (αk + αj)ωk,j), (12)

for k = 1, ...j − 1, where

αk = ‖Mk‖2

βk = ‖Bk‖2

β̃k = 1/σb(Bk), where σb(Bk) is the smallest singular value of Bk

Following,9 for Gk,j in (10), we assume
‖Gk,j‖2 ≤ εb,

where ε is the roundoff unit. Assuming that Qj and Qj+1 are almost orthogonal, we set

ωj,j+1 = εb.

This completes our algorithm for computing the estimates ωk,j+1 for k = 1, ..., j.

We choose
√

ε as the threshold for the loss of orthogonality. In the modified partial orthogonalization scheme,6

Qj+1 is orthogonalized against Qk and its neighboring Qi when ωk,j+1 ≥ √
ε. The neighborhood [lk, uk], in which

k lies, is the largest interval such that ωi,j+1 is larger than a predetermined tolerance for all i in [lk, uk]. The
tolerance is chosen as ε3/4, a value between ε and

√
ε. Whenever we perform orthogonalization in iteration j,

we always carry out orthogonalization in the subsequent iteration j + 1 so that the next block generated by the
recurrence is almost orthogonal to its predecessors.

Algorithm 3 (Normwise Detection). Given an n-by-b starting matrix S of orthonormal columns and a
subroutine for matrix-matrix multiplication Y = AX for any X, where A is an n-by-n complex symmetric matrix.
This algorithm computes the diagonal blocks of the block tridiagonal complex symmetric matrix J in (1) and a
unitary Q such that J = QHAQ̄

4

steps = n/b;
Q0 = 0; B0 = 0;
Q1 = S;
εs = εb;
ω1,2 = εs;
for j = 1 to steps

Y = AQ̄j ;
Mj = QH

j Y ;
Rj = Y − QjMj − Qj−1B

T
j−1;

Qj+1Bj = Rj ; (QR factorization of Rj)
Compute ωk,j+1 for k = 1, ..., j − 1 using (12);
Set ωj,j+1 = εs;
Set ωj+1,j+1 = 1;
k = 1;
while k ≤ j

if |ωk,j+1| >
√

ε
Find the neighborhood [lk, uk] of k;
k = uk + 1;

else
k = k + 1;

end
end
for each interval [lk, uk]

Orthogonalize Rj against Qlk , ..., Quk
; (See Algorithm 4)

Reset ωi,j+1 = ε b, i = lk, ..., uk;
Adjust the neighborhood to [lk − 1, uk + 1] for the next iteration;

end
if orthogonalization was performed

Recalculate QR factorization Qj+1Bj = Rj ;
end

end.

When the loss of orthogonality is detected, the modified Gram-Schmidt method is used to orthogonalize two
blocks.

Algorithm 4 (Orthogonalization of two matrices). Given two m-by-n complex matrices R and Q,
this algorithm orthogonalizes R against Q using the modified Gram-Schmidt method.

for each column ri in R
for each column qj in Q

orthogonalize ri against qj using the modified Gram-Schmidt method;
end

end.

6. COMPONENTWISE DETECTION

Normwise estimation combines the orthogonalities of the vectors in the same block. It cannot reveal the individual
orthogonalities within a block. Consequently, unnecessary orthogonalization may be carried out. In this section,
we present a componentwise detection scheme based on (10). Let wx,y be the (x, y)-entry of Wk,j+1, then
wx,y >

√
ε means that the orthogonality between qx in Qk and qy in Qj+1 is lost. Thus it detects loss of

orthogonality more precisely than the normwise scheme.

5

Our componentwise orthogonalization scheme is based on the model (10). For the term Gk,j in (10), we use
a block version of modified partial reorthogonalization scheme in6:

Gk,j = ε(Bk + Bj)(Θr + iΘi), Θr, Θi ∈ N(0, 0.3), (13)

where (Bk + Bj)(Θr + iΘi) means that each entry in Bk + Bj is multiplied by a normally distributed random
number with zero mean and variance 0.3. Also, we set Wj,j+1 so that

Wj,j+1Bj = bεB1(Ψr + iΨi), Ψr, Ψi ∈ N(0, 0.6). (14)

Now that we have described the computation of Wk,j+1 for k = 1, ..., j, in the following we discuss the
determination of the orthogonalization intervals. Analogous to the normwise method, when the absolute value
of a component wx,y of Wk,j+1 exceeds

√
ε, we find the largest interval [lk, uk] such that k ∈ [lk, uk] and for all

i ∈ [lk, uk] Wi,j+1 has at least one component larger than a tolerance. Based on our experiments, we chose ε7/8,
a value between ε and

√
ε, as the tolerance. Our experiments have also shown that for each j, there is usually

only one interval, if it exists, and the lower end of the interval is very close to one and the upper end is near j.
Thus, to save search time, we always set the lower end to 1 and search for the upper end starting from j.

To incorporate rounding error, after the columns of Qj+1 are orthogonalized against the columns of Qk, we
set

Wk,j+1 = ε(Ωr + iΩi), Ωr, Ωi ∈ N(0, 1.5), (15)

that is the entries of Wk,j+1 are ε multiplied by normally distributed random numbers with zero mean and
variance 1.5.

As Algorithm 3, whenever we perform the modified partial orthogonalization in iteration j, we always carry
out orthogonalization in the subsequent iteration j + 1. Suppose that the orthogonalization interval in iteration
j is [1, u]. As shown in (10), the computation of Wk,j+1 requires Wk−1,j , Wk,j , and Wk+1,j , thus we expand the
orthogonalization interval [1, u] to [1, u + 1] for the subsequent iteration.

Algorithm 5 (Componentwise Detection). Given an n-by-b starting matrix S of orthonormal columns
and a subroutine for matrix-matrix multiplication Y = AX for any X, where A is an n-by-n complex symmetric
matrix. This algorithm computes the diagonal blocks of the block tridiagonal complex symmetric matrix J in (1)
and a unitary Q such that J = QHAQ̄

steps = n/b;
Q0 = 0; B0 = 0;
Q1 = S;
doOrtho = 0;
second = 0;
for j = 1 to steps

Y = AQ̄j ;
Mj = QH

j Y ;
Rj = Y − QjMj − Qj−1B

T
j−1;

Qj+1Bj = Rj ; (QR factorization of Rj)
if second == 0

k = 1;
while (k ≤ j) and (doOrtho != 1)

if 1 ≤ k ≤ j − 1
Compute Wk,j+1 using (10) (13);

else
Compute Wj,j+1 using (14);

end
if one component of Wk,j+1 exceeds

√
ε

doOrtho = 1;

6

end
k = k + 1;

end
if doOrtho == 1

thresh = 0;
k = j;
while (k ≥ 2) and (thresh != 1)

if 1 ≤ k ≤ j − 1
Compute Wk,j+1 using (10) (13);

else
Compute Wj,j+1 using (14);

end

if one component of Wk,j+1 exceeds ε7/8

up = k;
thresh = 1;

end
k = k − 1;

end
end

end
if (doOrtho == 1) or (second == 1)

Orthogonalize Rj against Q1, ..., Qup;
Reset W1,j+1, ..., Wup,j+1 using (15);
Recalculate QR factorization Qj+1Bj = Rj ;
if (second == 1)

second = 0;
else

second = 1;
doOrtho = 0;
Adjust the neighborhood to [1, up + 1] for the next iteration;

end
end

end.

7. ORTHOGONALIZATION IN TRIDIAGONALIZATION

We apply the modified partial orthogonalization technique described in6 to the second stage, the tridiagonaliza-
tion of the block tridiagonal J . The symmetric and block tridiagonal structure of J is exploited in matrix-vector
multiplication for efficiency.

Algorithm 6 (Orthogonalization in Tridiagonalization). Given a starting vector b and a subrou-
tine for symmetric block tridiagonal matrix-vector multiplication y = Jx for any x, where J is the complex
symmetric block tridiagonal matrix in (1). Using the modified partial orthogonalization, this algorithm computes
the diagonals of the complex symmetric and tridiagonal matrix T and the unitary P in (4).

p0 = 0; β0 = 0; ω1,1 = 1;
p1 = b/‖b‖2;
for j = 1 to n

y = Jp̄j ;
αj = pH

j y;
rj = y − αjpj − βj−1pj−1;
βj = ‖rj‖2;
Compute the estimates ωk,j+1 for pH

k pj+1, for k = 1, ..., j;

7

Set ωj+1,j+1 = 1;
for each k = 1, ..., j such that |ωk,j+1| >

√
ε

Find the neighborhood [lk, uk] of k;
end
for each interval [lk, uk]

Orthogonalize rj against pi, i = lk, ..., uk;
Reset ωi,j+1, i = lk, ..., uk;
Adjust the neighborhood to [lk − 1, uk + 1] for the next iteration;

end
if orthogonalization was performed

Recalculate βj = ‖rj‖2;
end
if βj = 0, quit; end
pj+1 = rj/βj ;

end.

8. EXPERIMENTS

Algorithms 3, 5 and 6 were programmed in MATLAB. The random complex symmetric matrices in the following
examples were generated as follows. First, a set of n random numbers with normal Gaussian distribution with
zero mean and variance 1 was generated. Their absolute values were chosen as the singular values σ1, ..., σn.
Then, a random unitary matrix U of order n was generated to form a complex symmetric matrix A = UΣUT. The
starting matrix S of orthonormal columns was generated from the QR factorization of a random complex n-by-b
matrix. The error in the orthogonality of Q was measured by ‖I−QHQ‖F/n2. The error in the tridiagonalization
T = QHAQ̄ was measured by ‖QHAQ̄−T ‖F/n2. When a vector qj was orthogonalized against qk, it was counted
as one orthogonalization.

Example 1. Algorithm 3 (normwise detection) and Algorithm 6 were run on a random complex symmetric
matrix of order 2048. Table 1 shows the total number of orthogonalizations and errors for various block sizes.

block total number of error in error in
size orthogonalizations orthogonality factorization
2 602542 2.66E − 13 2.44E − 13
4 633830 1.34E − 13 1.27E − 13
8 662991 8.81E − 14 8.38E − 14
16 677998 2.79E − 14 2.63E − 14
32 810810 3.53E − 14 3.21E − 14

Table 1. Efficiency and accuracy of Algorithms 3 and 6 on a complex symmetric matrix of order 2048.

Example 2. Algorithm 5 (componentwise detection) and Algorithm 6 were run on a random complex symmetric
matrix of order 2048. Table 2 shows the total number of orthogonalizations and errors for various block sizes.
This example shows that the componentwise algorithm performed fewer orthogonalizations than the normwise
algorithm.

Example 3. The single vector Lanczos algorithm with modified partial orthogonalization in6 and the two block
algorithms were run on a random complex symmetric matrix of size 2048. The block size in the block algorithms
was set to 32. Table 3 shows the total number of orthogonalizations, errors, and execution time in seconds. This
example shows that the block algorithms are almost twice as fast as the single vector algorithm, although the
block algorithms performed more orthogonalizations than the single vector algorithm.

Example 4. To compare the performance, we generated random complex symmetric matrices of various sizes
and ran the single vector algorithm and the two block algorithms. Figure 1 depicts the run times which are

8

block total number of error in error in
size orthogonalizations orthogonality factorization
2 437969 8.13E − 14 7.92E − 14
4 444056 1.32E − 12 2.28E − 13
8 425837 8.00E − 14 7.72E − 14
16 433081 1.40E − 13 1.38E − 13
32 413307 1.64E − 13 1.52E − 13

Table 2. Efficiency and accuracy of Algorithms 5 and 6 on a complex symmetric matrix of order 2048.

algorithm total number of error in error in run time
orthogonalizations orthogonality factorization (seconds)

single vector 213477 5.56E − 14 5.15E − 14 2151
normwise 807009 4.81E − 14 4.40E − 14 1287

componentwise 453775 4.09E − 14 3.79E − 14 1075

Table 3. Comparison of block Lanczos algorithms with single vector Lanczos algorithm.

normalized so that the execution time of the single vector algorithm is 100. In all cases, the block size in the
block algorithms is 32. This example shows that the block algorithm with componentwise detection has the best
performance for large matrices.

1 2 3 4
0

50

100

150

matrix size

re
la

tiv
e

ex
ec

ut
io

n
tim

e

single vector
Algorithm 3, 6
Algorithm 5, 6

256 512 1024 2048

Figure 1. Comparison of the efficiency of block Lanczos algorithms with single vector Lanczos algorithm. The y axis

shows the execution times normalized to the execution time of the single vector algorithm.

Example 5. This example shows the effect of block size on the efficiency of the block Lanczos algorithms. A
complex symmetric matrix of order 2048 was generated and tried on the single vector Lanczos algorithm and the
two block Lanczos algorithms with various block sizes. Figure 2 shows the execution times of these algorithms
in seconds. Although the performance depends on the architecture of the machine, this example illustrates that
the block Lanczos algorithms with large block sizes are very efficient.

9

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

block size

ex
ec

ut
io

n
tim

e

single vector
Algorithm 3, 6
Algorithm 5, 6

2 4 8 16 32

Figure 2. The effect of the block size on the efficiency of block Lanczos algorithms. The y axis is the execution time in

seconds.

Conclusion. In this paper, we have presented the block Lanczos tridiagonalization algorithms of a complex
symmetric matrix. Experimental results show that the block Lanczos tridiagonalization algorithms are more
efficient than the single vector Lanczos tridiagonalization algorithm for large matrices and large block sizes. Our
experiments also show that the componentwise detection for the loss of orthogonality in block tridiagonalization
is more efficient than the normwise detection.

ACKNOWLEDGMENTS

This work is partially supported by Natural Sciences and Engineering Research Council of Canada.

REFERENCES

1. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.

2. T. Takagi, “On an algebraic problem related to an analytic theorem of Carathédory and Fejér and on an
allied theorem of Landau,” Japan J. Math. 1, pp. 82–93, 1924.

3. A. Bunse-Gerstner and W. B. Gragg, “Singular value decompositions of complex symmetric matrices,” Jour-
nal of Computational and Applied Mathematics 21, pp. 41–54, 1988.

4. F. T. Luk and S. Qiao, “A fast singular value algorithm for Hankel matrices,” in Fast Algorithms for Struc-
tured Matrices: Theory and Applications, Contemporary Mathematics 323, V. Olshevsky, ed., pp. 169–177,
American Mathematical Society, 2003.

5. W. Xu and S. Qiao, “A divide-and-conquer method for the Takagi factorization,” Tech. Rep. CAS 05-01-
SQ, Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada L8S 4K1,
February 2005.

6. S. Qiao, “Orthogonalization techniques for the Lanczos tridiagonalization of complex symmetric matrices,”
in Advanced Signal Processing Algorithms, Architectures, and Implementations XIV, F. T. Luk, ed., 5559,
pp. 423–434, SPIE, August 2004.

7. H. D. Simon, “The Lanczos algorithm with partial reorthogonalization,” Mathematics of Computation 42,
pp. 115–142, 1984.

10

8. M. Berry, G. O’Brien, V. Krishna, and S. Varadhan, “SVDPACKC (version 1.0) user’s guide,” Tech. Rep.
CS-93-194, Department of Computer Science, University of Tennessee, 1993.

9. R. Grimes, J. Lewis, and H. Simon, “A shifted block Lanczos algorithm for solving sparse symmetric gener-
alized eigenproblems,” SIAM J. matrix Anal. Appl. 15, pp. 228–272, 1994.

11

