
Numerical Properties of the LLL Algorithm

Franklin T. Luka and Sanzheng Qiaob

aDepartment of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
bDept. of Computing and Software, McMaster Univ., Hamilton, Ontario L8S 4L7, Canada

ABSTRACT

The LLL algorithm is widely used to solve the integer least squares problems that arise in many engineering
applications. As most practitioners did not understand how the LLL algorithm works, they avoided the issue
by referring to the method as an integer Gram Schmidt approach (without explaining what they mean by this
term). Luk and Tracy1 were first to describe the behavior of the LLL algorithm, and they presented a new
numerical implementation that should be more robust than the original LLL scheme. In this paper, we compare
the numerical properties of the two different LLL implementations.

Keywords: LLL algorithm, unimodular transformation, QR decomposition, reduced basis, Gauss transforma-
tion, plane reflection, numerical overflow and underflow.

1. INTRODUCTION

The famous algorithm due to Lenstra, Lenstra and Lovasz2 has many important applications; for example,
wireless communication, cryptography, and GPS (see Hassibi and Vikalo3 and references therein). In some of
these applications, researchers use the LLL algorithm as a preconditioner in solving an integer least squares
problem. Although the LLL algorithm is often referred to as an integer Gram-Schmidt procedure, no one has
explained the workings of such a process. Luk and Tracy1 achieved a breakthrough by showing how an LLL
reduction can be implemented using orthogonal instead of Gauss transformations. The purpose of this paper is
to compare the two different numerical implementations of the LLL method.

This paper is organized as follows. In Sections 2 and 3, we describe the original2 and new1 implementations
of the LLL algorithm. In Section 4, we present the result1 that the two different implementations give the same
answers in exact arithmetic. Lastly, in Section 5, we conclude the paper by presenting examples to compare the
numerical properties of the two implementations.

2. LLL ALGORITHM

Given a nonsingular matrix B ∈ Rn×n, an idea in Lenstra et al.2 is to construct a unimodular matrix M ∈ Zn×n

so that the columns of BM become almost orthogonal; a usual consequence is that the condition number of BM
will become much smaller than that of B.

Definition 1. A nonsingular matrix M is unimodular if det(M) = ±1.

Lemma 1. A nonsingular integer matrix M is unimodular if and only if M−1 is an integer matrix.

A key concept in the LLL paper2 is that of a reduced basis. Consider the QR decomposition of B:

QTB = DU, (1)

where Q ∈ Rn×n is orthogonal, D ≡ diag(di) ∈ Rn×n is diagonal with

di > 0, for i = 1, 2, ..., n,

and U ≡ (ui,j) ∈ Rn×n is upper triangular with ones on its diagonal:

ui,i = 1, for i = 1, 2, ..., n.

Send correspondence to S. Qiao: qiao@mcmaster.ca



Definition 2. The columns of B form a reduced basis if

|ui,j | ≤ 0.5, for 1 ≤ i < j ≤ n, (2)

and
d2

i ≥ (ω − u2
i−1,j)d

2
i−1, for 2 ≤ i ≤ n, (3)

where 0.25 < ω < 1 is a parameter that controls the rate of convergence.

Condition (2) states that the absolute value of any strictly upper triangular element of U is at most 0.5.
Condition (3) states that the diagonal elements of U must be ordered in a certain manner.

Lemma 2. Since the value of the quantity inside the parentheses in (3) is always less than one, an upper
triangular matrix B ∈ Rn×n with a constant diagonal satisfies condition (3).

Example 1. The columns of this triangular matrix B̂ ∈ Rn×n form a reduced basis:

B̂ =





1 −0.5 −0.5 · · · · · · −0.5
1 −0.5 · · · · · · −0.5

1
. . . · · · −0.5
. . .

. . .
...

1 −0.5
1





. (4)

The matrix is very ill-conditioned, for Luk and Tracy1 show that its condition number increases like (1.5)n−2/2.

Let us describe the actions of the LLL algorithm by showing how conditions (2) and (3) are enforced.
Condition (2) is easy to impose on U ≡ (ui,j), an upper triangular matrix with a unit diagonal. We begin
by defining elementary unimodular transformation. Let i < j, and let ei ∈ Zn and ej ∈ Zn denote the unit
coordinate vectors in the i-th and j-th directions, respectively. Define Mij ∈ Zn×n by

Mij ≡ I − γeie
T
j , (5)

where γ is an integer.

Lemma 3. The matrix Mij defined in (5) is an integer unimodular transformation.

We use Mij to ensure that the (i, j)-th element of U is sufficiently small. Suppose that (2) is not satisfied for
some i and j; that is, |ui,j | > 0.5. Calculate γ as the integer closest to ui,j:

γ = ⌈ui,j⌋. (6)

Construct the unimodular matrix Mij with its (i, j)-th element equal to −γ. Apply Mij to B and to U :

B ← BMij and U ← UMij. (7)

The (i, j)-th element of the new U satisfies (2). We summarize the actions to enforce (2) in the next procedure.

PROCEDURE DECREASE(i, j) Given B and U , calculate Mij and γ using (5) and (6), respectively. Apply Mij

to B and U :
B ← BMij and U ← UMij .

Notation 1. The matrix Πi ∈ Zn×n denotes a permutation in the (i− 1, i) plane, where 2 ≤ i ≤ n.

Notation 2. The matrix Xi ∈ Rn×n denotes a transformation in the (i− 1, i) plane, where 2 ≤ i ≤ n. It has
the form:

Xi ≡





Ii−2

µ 1− ξµ
1 −ξ

In−i



 . (8)



For condition (3), we use the two numerical transformations defined in the two notations. Note that

det(Xi) = −1, (9)

and that X−1
i is given by

X−1
i =





Ii−2

ξ 1− ξµ
1 −µ

In−i



 . (10)

The matrix X−1
i is made up of a product of two Gauss transformations; here is a quick illustration:

[
ξ 1− ξµ
1 −µ

]
=

[
1 ξ
0 1

] [
0 1
1 −µ

]
.

This matrix X−1
i is a workhorse in the LLL algorithm, and the following relation is key:

[
ξ 1− ξµ
1 −µ

] [
1 µ
0 1

] [
0 1
1 0

]
=

[
1 ξ
0 1

]
. (11)

In words, equation (11) says that the matrix X−1
i restores the triangularity of a permuted triangular matrix.

Note that both upper triangular matrices in (11) have ones on their diagonals.

Suppose that the (3) is not satisfied for some i:

d2
i < (ω − u2

i−1,i)d
2
i−1.

We interchange columns i and i− 1 of B and those of U :

B ← BΠi and U ← UΠi. (12)

We then use the transformation X−1
i of (10) to restore U to triangular form:

U ← X−1
i U. (13)

Lenstra et al.2 give the formulas that are used to update the squares of the diagonal elements di−1 and di of D.
Specifically,

d̂2
i−1 = d2

i + µ2d2
i−1 and d̂2

i = (d2
i d

2
i−1)/d̂2

i−1, (14)

where d̂i−1 and d̂i are the new diagonal elements. The paper2 also gives the values of ξ and µ in (8). As is
obvious from (11), µ is given by

µ = ui−1,i. (15)

In addition, ξ is given by
ξ = µ d2

i−1/(d2
i + µ2d2

i−1). (16)

The actions to enforce (3) are written out in the next procedure.

PROCEDURE SWAP(i) Given D2, B, and U , update D2, swap columns i− 1 and i and those of B and of U ,
and use the transformation X−1

i to transform U back to triangular form:

D2 ← D2
new, B ← BΠi, and U ← X−1

i UΠi. (17)

The matrix D2
new is obtained by (14) and X−1

i is computed by the equations (10), (15), and (16).

Luk and Tracy1 use the two procedures, Decrease and Swap, to construct an algorithmic description of the
LLL algorithm. The original LLL paper2 contains a proof of convergence, but not an algorithmic description,
of the method. It is fair to say that the algorithmic description inspired Luk and Tracy1 to derive their new
implementation. Although the LLL algorithm has shown to be an effective tool3 to reduce the condition number
of most ill-conditioned matrices that occur in practice, it does not modify the ill-conditioned matrix B̂ of (4)
because its columns already form a reduced basis.



ALGORITHM LLL Given B, transform its columns so that they will form a reduced basis.

compute the QR decomposition of B to get D2 and U ;
set k ← 2;
while k ≤ n

if |uk−1,k| > 0.5 then DECREASE(k − 1, k);
if d2

k < (ω − u2
k−1,k)d2

k−1 then

SWAP(k);
k ← max(k − 1, 2);

else
for i = k − 2 down to 1

if |ui,k| > 0.5 then DECREASE(i, k);
k ← k + 1.

3. A NEW IMPLEMENTATION

Luk and Tracy1 extend the idea of a reduced basis formed by column vectors to that of a reduced triangular
matrix. Let B ∈ Rn×n be nonsingular. Consider its QR decomposition:

QTB = R, (18)

where Q ∈ Rn×n is orthogonal and R ≡ (ri,j) ∈ Rn×n is upper triangular with a positive diagonal:

ri,i > 0, for i = 1, 2, ..., n.

This extension1 leads to a new algorithm to transform a given matrix B to a reduced triangular matrix R.

Definition 3. The columns of B form a reduced basis if

ri,i ≥ 2|ri,j |, for 1 ≤ i < j ≤ n, (19)

and
r2
i,i ≥ [ω − (ri−1,i/ri−1,i−1)

2]r2
i−1,i−1, for 2 ≤ i ≤ n, (20)

where 0.25 < ω < 1 is a parameter that controls the rate of convergence.

Definition 4. An upper triangular matrix R is reduced if its elements satisfy the conditions (19) and (20).

Proposition 1. Given B ∈ Rn×n, the new algorithm generates an orthogonal matrix Q ∈ Rn×n and a
unimodular matrix M ∈ Zn×n to transform B into a triangular matrix R:

QTBM = R, (21)

so that R is reduced. The columns of BM form a reduced basis as defined in the LLL paper.

The new approach1 enforces conditions (19) and (20). While condition (19) states that any diagonal element
of R is at least twice as large as any other element of R along the same row, condition (20) states that the
diagonal elements of R must be ordered in a certain way. We use Mij of (5) to ensure that the (i, j)-th element
of R is sufficiently small relative to ri,i. Suppose that (19) is not satisfied for some i and j; that is,

ri,i < 2|ri,j |.

Calculate γ as the integer closest to ri,j/ri,i:

γ = ⌈ri,j/ri,i⌋. (22)

Construct the unimodular matrix Mij with its (i, j)-th element equal to −γ. Apply Mij to R:

R← RMij, (23)



and accumulate the transformations in M :
M ←MMij.

It is easy to check that the (i, j)-th element of the new R in (23) satisfies (19). For condition (20) we need to
use a plane reflection4 (a basic numerical tool that is closely related to the more familiar plane rotation).

PROCEDURE NEWDECREASE(i, j) Given R and M , calculate Mij and γ using (5) and (22), respectively, and
apply Mij to both R and M :

R← RMij and M ←MMij .

Notation 3. The symmetric matrix Ji ∈ Rn×n denotes a plane reflection in the (i−1, i) plane, where 2 ≤ i ≤ n.
It has the form:

Ji ≡





Ii−2

c s
s −c

In−i



 , (24)

where c2 + s2 = 1.

Note that
det(Ji) = −1, (25)

just as det(Xi) = −1 in (9). Luk and Tracy1 use plane reflections instead of plane rotations because the Xi’s
are closely related to plane reflections, as will be seen in the next section. Suppose that (20) is not satisfied for
some i:

r2
i,i < [ω − (ri−1,i/ri−1,i−1)

2]r2
i−1,i−1.

We interchange columns i and i− 1 of R:
R← RΠi, (26)

and use a plane reflection Ji to restore R to triangular form:

R← JiR. (27)

We accumulate the transformations in M and Q:

M ←MΠi and Q← QJi.

Now, we have all the tools to present our new algorithm as a matrix decomposition technique.

PROCEDURE NEWSWAP(i) Given R, M , and Q, swap columns i− 1 and i of R and those of M , use a plane
reflection Ji to transform the permuted R back to triangular form, and update Q:

R← JiRΠi, M ←MΠi and Q← QJi. (28)

ALGORITHM NEW

compute B = QR;
set M ← I and k ← 2;
while k ≤ n

if rk−1,k−1 < 2|rk−1,k| then NEWDECREASE(k − 1, k);
if r2

k,k < [ω − (rk−1,k/rk−1,k−1)
2]r2

k−1,k−1 then

NEWSWAP(k);
k ← max(k − 1, 2);

else
for i = k − 2 down to 1

if ri,i < 2|ri,k| then NEWDECREASE(i, k);
k ← k + 1.



4. EQUIVALENCE RESULT

There are many similarities between Algorithms New and LLL. Both algorithms aim to reduce the given matrix
B to a triangular form. A major difference lies in the transformations used. Algorithm New applies plane
reflections Ji of (24) directly to R, while Algorithm LLL applies special transformations X−1

i of (10) to U and
D2 separately. A significant result1 is that the two transformations are related via

Ji = D1X
−1
i D2, (29)

where D1 and D2 are n × n diagonal matrices. Thus, we may view X−1
i as a scaled plane reflection. Luk and

Tracy1 show that in exact arithmetic, the two algorithms produce identical numerical results.

Representing the effect of transformations (26) and (27) by

Rnew = JiRΠi,

we write out the key 2-by-2 transformations as follows:
[

α̂ γ̂

0 β̂

]
=

[
c s
s −c

] [
α γ
0 β

] [
0 1
1 0

]
. (30)

Define a new transformation Y by

Y ≡
[

1/α̂ 0

0 1/β̂

] [
c s
s −c

] [
α 0
0 β

]
. (31)

If we choose
ξ = γ̂/α̂ and µ = γ/α, (32)

then we get1

Y =

[
ξ 1− ξµ
1 −µ

]

and [
1 ξ
0 1

]
= Y

[
1 µ
0 1

] [
0 1
1 0

]
. (33)

Note that (33) is exactly equation (11) for the LLL method. Also, we can easily prove that the µ and ξ as defined
in (32) have the same values as the µ and ξ as defined in (15) and (16). Thus, the transformation Y of (31) is
exactly the 2× 2 part of the workhorse X−1

i of the LLL algorithm. Let

D ≡





E1

α 0
0 β

E2



 , (34)

where E1 ∈ R(i−2)×(i−2) and E2 ∈ R(n−i)×(n−i) are positive diagonal matrices. Define

D1 ≡





E1

α̂ 0

0 β̂
E2



 and D2 ≡





E−1
1

1/α 0
0 1/β

E−1
2



 . (35)

Then
Ji = D1X

−1
i D2. (36)

We see that D2 reduces R to a unit-diagonal triangular matrix (namely U), and that D1 gives the new diagonal of
D2R after being transformed by X−1

i . Therefore, we conclude that Algorithms LLL and New produce the same
numerical results in exact arithmetic. It also follows that the convergence result for Algorithm LLL is applicable
to Algorithm New. The former algorithm is numerically more efficient in that it avoids the computation of square
roots, which is one reason why it updates D2 instead of D. Thus, we may view the transformations in the LLL
method as square-root-free plane reflections. The potential cost for this efficiecy is a possible loss in numerical
accuracy, as will be shown in the next section.



5. NUMERICAL PROPERTIES

As pointed out in the last section, a significant difference between Algorithms New and LLL is that New works
directly on R while LLL works on U and D2 individually. Put it simply, New computes ri,i while LLL calcu-
lates d2

i . Consequently, Algorithm LLL is susceptible to underflow (respectively overflow) exceptions when the
diagonal elements di’s are small (respectively large). For our discussion, we assume standard IEEE floating-point
arithmetic. In single precision, we would have minimum exponent value emin = −126 and maximum exponent
value emax = 127. Due to the presence of denormals, a number x underflows if |x| < 2−126−23 = 2−149, whereas
the number x overflows if |x| ≥ 2128.

Even if the quantities d2
i ’s are not small or large enough to cause exceptions, a straightforward implementation

of the LLL algorithm could still result in errors. Let ω = 0.75, and consider the following 2-by-2 upper triangular
matrix

R =

[
α µ α

0
√

0.5α

]
.

The condition (20) is not satisfied when |µ| < 0.5. Recall the updating formula (14):

d̂2
i = (d2

i d
2
i−1)/d̂2

i−1.

The numerator (0.5 α4) may readily underflow or overflow; for example, in single precision, an underflow would
occur if

2−1 α4 < 2−149 or α < 2−37 ≈ 8× 10−12,

and an overflow would occur if

2−1 α4 ≥ 2128 or α ≥ 232.25 ≈ 5× 109,

Although it may be possible to avoid an exception in (14) by doing the division before the multiplication, we
cannot apply the same technique to prevent a possible underflow in the calculation of the numerator in (16):

ξ = (µ d2
i−1)/(d2

i + µ2d2
i−1),

where small values of |µ| and α could cause the product (µ α2) to underflow.

As experiments, we programmed Algorithms LLL and New in Matlab, which supports IEEE double precision.
In double precision, we would have minimum exponent value emin = −1022 and maximum exponent value
emax = 1023. After both programs were run hundreds of times with identical random data input, we observed
neither underflows nor overflows and the output results were numerically indistinguishable.

ACKNOWLEDGMENTS

This work is partially supported by Natural Sciences and Engineering Research Council of Canada.

REFERENCES

1. F. T. Luk and D. M. Tracy, “An improved LLL algorithm,” Linear Algebra and Its Applications , pp. x–x,
to appear in 2007.

2. A. Lenstra, H. Lenstra, and L. Lovasz, “Factoring polynomials with rational coefficients,” Mathematicsche
Annalen 261, pp. 515–534, 1982.

3. B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm i: Expected complexity,” IEEE Transactions
on Signal Processing 53, pp. 2806–2818, 2005.

4. G. Golub and C. V. Loan, Matrix Computations, 3rd Ed., The Johns Hopkins University Press, Baltimore,
MD, 1996.


