
Block Lanczos Tridiagonalization of Complex Symmetric Matrices

Guohong Liu, Wei Xu and Sanzheng Qiao

Department of Computing and Software
McMaster University

Hamilton, Ontario L8S 4L7

September 2004

Abstract

Classic Lanczos method is an effective method for tridiagonalizing real symmetric
matrices. Its block algorithm can significantly improve performance by exploiting mem-
ory hierarchies. In this paper, we present a block Lanczos method for tridiagonalizing
complex symmetric matrices. Also, we propose a novel componentwise technique for
detecting the loss of orthogonality to make the block Lanczos algorithm stable. Our
experiments have shown our componentwise technique can reduce the number of orthog-
onalizations.

Keywords: Complex symmetric matrix, block Lanczos algorithm, singular value decompo-
sition (SVD), Takagi factorization.

1 Introduction

For any complex symmetric matrix A of order n, there exist a unitary Q ∈ Cn×n and an
order n nonnegative diagonal Σ = diag(σ1, ..., σn), where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, such that

A = QΣQT or QHAQ̄ = Σ.

This special form of singular value decomposition (SVD) is called Takagi factorization [6, 10].
The computation of the Takagi factorization consists of two stages: tridiagonalization and

diagonalization [2]. A complex symmetric matrix is first reduced to complex symmetric and
tridiagonal form. There are various tridiagonalization schemes. When A is sparse or struc-
tured, Lanczos method can be applied. Since Lanczos algorithm involves only matrix-vector
multiplication, sparsity and structures can be exploited to develop fast tridiagonalization
algorithms [7].

The second stage, diagonalization of the complex symmetric tridiagonal matrix computed
in the first stage, can be implemented by the implicit QR method [2, 7].

Block algorithms in which blocks of vectors instead of single vectors are used are rich in
matrix-matrix (level 3 BLAS) operations. Performance is improved by exploiting memory
hierarchies.

This paper presents a stable block Lanczos tridiagonalization algorithm for complex
symmetric matrices. The block Lanczos tridiagonalization algorithm consists of two stages:
block tridiagonalization and tridiagonalization. A complex symmetric matrix is first reduced
to complex symmetric and block tridiagonal form. The second stage reduces the block

1

tridiagonal complex symmetric matrix to complex symmetric tridiagonal. In Section 2 and
3, we describe the two stages of block Lanczos tridiagonalization algorithm respectively.
As we know, Lanczos method suffers from the loss of orthogonality of the computed Q
in the presence of rounding error. Orthogonalization is necessary for practical Lanczos
method. Orthogonalization techniques for single-vector Lanczos algorithm are discussed in
[8, 9]. Based on a model of estimating the orthogonality of Q described in Section 4, two
orthogonalization schemes for block tridiagonalization stage are proposed in Sections 5 and
6. In Section 7, we describe the orthogonalization scheme for the tridiagonalization stage.
Finally, Section 8 demonstrates our numerical experiments.

2 Block Tridiagonalization

Let A be an n-by-n complex symmetric matrix, and assume n = p × b. Then there exists
the decomposition

QHAQ̄ = J =





















M1 BT
1 . . . 0

B1 M2

. . .
...

. . .
. . .

. . .
...

. . .
. . . BT

p−1

0 . . . Bp−1 Mp





















(1)

where
Q = [Q1, Q2, . . . , Qp] , Qi ∈ Cn×b,

is unitary, Mi ∈ Cb×b are symmetric, and Bi ∈ Cb×b upper triangular. Rewriting (1) as

AQ̄ = QJ (2)

and comparing the j th block columns on both sides of (2), we have

AQ̄j = Qj−1B
T
j−1 + QjMj + Qj+1Bj, Q0B0 = Qp+1Bp = 0,

for j = 1...p, which leads to the block Lanczos outer iteration:

Qj+1Bj = AQ̄j − QjMj − Qj−1B
T
j−1. (3)

From the orthogonality of Q we have

Mj = QH
j AQ̄j

for j = 1...p. Let Rj = AQ̄j − QjMj − Qj−1B
T
j−1 ∈ Cn×b, then Qj+1Bj = Rj is a QR

factorization of Rj.

2

Algorithm 1 (Block Tridiagonalization) Given an n-by-b starting matrix S of orthonor-
mal columns and a subroutine for matrix-matrix multiplication Y = AX for any X, where A
is an n-by-n complex symmetric matrix. This algorithm computes the diagonal blocks of the
block tridiagonal complex symmetric matrix J in (1) and a unitary Q such that J = QHAQ̄

p = n/b;
Q0 = 0; B0 = 0;
Q1 = S;
for j = 1 to p − 1

Y = AQ̄j ;
Mj = QH

j Y ;

Rj = Y − QjMj − Qj−1B
T
j−1;

Qj+1Bj = Rj ; (QR factorization of Rj)
end
Mp = QH

p AQ̄p.

3 Tridiagonalization

We follow Berry [1] to adopt the single vector Lanczos tridiagonalization recursion for re-
ducing the block tridiagonal complex symmetric matrix to tridiagonal form.

Let J be the p-by-p block tridiagonal complex symmetric matrix in (1) resulted from
Algorithm 1. We can find a unitary P = [p1,p2, ...,pn], pi ∈ Cn×1, such that

PHJP̄ = T =





















α1 β1 . . . 0

β1 α2

. . .
...

. . .
. . .

. . .
...

. . .
. . . βn−1

0 . . . βn−1 αn





















. (4)

Rewriting (4) as
JP̄ = PT (5)

and comparing the j th columns on both sides of (5), we have

Jp̄j = βj−1pj−1 + αjpj + βjpj+1, β0p0 = βnpn+1 = 0,

for j = 1, ..., n, which leads to the inner Lanczos recursion:

βjpj+1 = Jp̄j − αjpj − βj−1pj−1.

From the orthogonality of P we have

αj = pH
j Jp̄j

3

for j = 1, ..., n. Let rj = Jp̄j−αjpj−βj−1pj−1 ∈ Cn×1, then βj = ±‖rj‖2 and pj+1 = rj/βj

if rj 6= 0. The symmetric block tridiagonal structure of J is exploited in the calculation of
Jp̄j for efficiency.

Algorithm 2 (Tridiagonalization) Given a starting vector b and a subroutine for sym-
metric block tridiagonal matrix-vector multiplication y = Jx for any x, where J is the com-
plex symmetric and block tridiagonal matrix in (1), this algorithm computes the diagonals of
the complex symmetric and tridiagonal matrix T and the unitary P in (4).

p0 = 0; β0 = 0;
p1 = b/‖b‖2;
for j = 1 to n

y = Jp̄j ;
αj = pH

j y;

rj = y − αjpj − βj−1pj−1;
βj = ‖rj‖2;
if βj = 0, quit; end
pj+1 = rj/βj ;

end.

4 Model of Estimating Orthogonality

The algorithms described in the previous sections assume exact arithmetic. In the presence
of rounding error, however, the computed Q loses orthogonality. Thus, orthogonalization is
necessary for practical Lanczos methods. Obviously, to detect the loss of orthogonality we
must measure the orthogonality. Although QHQ can be a measurement for the orthogonal-
ity, it is too expensive to compute in every iteration. In this section, we present a model
of estimating the orthogonality of Q computed by our block tridiagonalization algorithm.
Denoting Wk,j = QH

k Qj , we propose an efficient recursion of Wk,j including rounding errors
without explicitly computing QH

k Qj.
Incorporating rounding errors into the jth iteration of (3), we have

Qj+1Bj + Fj = AQ̄j − QjMj − Qj−1B
T
j−1, j = 1, ..., p, (6)

where Fj represents the rounding error at step j. From (6), we have

Qj+1Bj = AQ̄j − QjMj − Qj−1B
T
j−1 − Fj

and
Qk+1Bk = AQ̄k − QkMk − Qk−1B

T
k−1 − Fk.

Premultiplying the above two equations with QH
k and QH

j respectively, we get

Wk,j+1Bj = QH
k AQ̄j − Wk,jMj − Wk,j−1B

T
j−1 − QH

k Fj (7)

4

and
Wj,k+1Bk = QH

j AQ̄k − Wj,kMk − Wj,k−1B
T
k−1 − QH

j Fk. (8)

From (8) we get

QH
j AQ̄k = Wj,k+1Bk + Wj,kMk + Wj,k−1B

T
k−1 + QH

j Fk. (9)

Since the transpose of QH
j AQ̄k is QH

k AQ̄j in (7) and W T
k,j = W̄j,k, substituting QH

k AQ̄j in
(7) with (9) results in

Wk,j+1Bj = BT
k W̄k+1,j + MkW̄k,j + Bk−1W̄k−1,j

−Wk,jMj − Wk,j−1B
T
j−1 + Gk,j, (10)

for k = 1, ..., j−1, where Wj−1,j−1 = W̄j,j = I and Gk,j = F T
k Q̄j−QH

k Fj represents the local
rounding error. The above equation (10) shows that Wk,j+1 can be obtained by Wk−1,j, Wk,j,
Wk+1,j, and Wk,j−1 computed in the previous two iterations. In this model, Wk,j measures
the orthogonality QH

k Qj including rounding error. In the following two sections, we show
how to use Wk,j to detect the loss of orthogonality.

5 Normwise Detection

Now that we have established a model of estimating the orthogonality, we propose a scheme
for detecting the loss of orthogonality using the norm ‖Wk,j‖2. Taking the norm on the both
sides of (10), we get

‖Wk,j+1‖2 ≤ ‖B−1
j ‖2(‖Bk‖2‖Wk+1,j‖2

+ ‖Bk−1‖2‖Wk−1,j‖2 + ‖Bj−1‖2‖Wk,j−1‖2

+ (‖Mk‖2 + ‖Mj‖2)‖Wk,j‖2 + ‖Gk,j‖2). (11)

We use this inequality to derive an upper bound ωk,j for ‖Wk,j‖2. From (11) we have

ωk,j+1 = β̃j(βkωk+1,j + βk−1ωk−1,j + βj−1ωk,j−1 + (αk + αj)ωk,j), (12)

for k = 1, ...j − 1, where

αk = ‖Mk‖2

βk = ‖Bk‖2

β̃k = 1/σb(Bk), where σb(Bk) is the smallest singular value of Bk

Following [5], for Gk,j in (10), we assume

‖Gk,j‖2 ≤ εb,

where ε is the roundoff unit. Assuming that Qj and Qj+1 are almost orthogonal, we set

ωj,j+1 = εb.

5

This completes our algorithm for computing the estimates ωk,j+1 for k = 1, ..., j.
We choose

√
ε as the threshold for the loss of orthogonality. In the modified partial

orthogonalization scheme [8], Qj+1 is orthogonalized against Qk and its neighboring Qi

when ωk,j+1 ≥ √
ε. The neighborhood [lk, uk], in which k lies, is the largest interval such

that ωi,j+1 is larger than a predetermined tolerance for all i in [lk, uk]. The tolerance is chosen
as ε3/4, a value between ε and

√
ε. Whenever we perform orthogonalization in iteration j, we

always carry out orthogonalization in the subsequent iteration j + 1 so that the next block
generated by the recurrence is almost orthogonal to its predecessors.

Algorithm 3 (Normwise Detection) Given an n-by-b starting matrix S of orthonormal
columns and a subroutine for matrix-matrix multiplication Y = AX for any X, where A is
an n-by-n complex symmetric matrix. This algorithm computes the diagonal blocks of the
block tridiagonal complex symmetric matrix J in (1) and a unitary Q such that J = QHAQ̄

steps = n/b;
Q0 = 0; B0 = 0;
Q1 = S;
εs = εb;
ω1,2 = εs;
for j = 1 to steps

Y = AQ̄j ;
Mj = QH

j Y ;

Rj = Y − QjMj − Qj−1B
T
j−1;

Qj+1Bj = Rj ; (QR factorization of Rj)
Compute ωk,j+1 for k = 1, ..., j − 1 using (12);
Set ωj,j+1 = εs;
Set ωj+1,j+1 = 1;
k = 1;
while k ≤ j

if |ωk,j+1| >
√

ε
Find the neighborhood [lk, uk] of k;
k = uk + 1;

else
k = k + 1;

end
end
for each interval [lk, uk]

Orthogonalize Rj against Qlk , ..., Quk
; (See Algorithm 4)

Reset ωi,j+1 = ε b, i = lk, ..., uk ;
Adjust the neighborhood to [lk − 1, uk + 1] for the next iteration;

end
if orthogonalization was performed

Recalculate QR factorization Qj+1Bj = Rj ;

6

end
end.

When the loss of orthogonality is detected, the modified Gram-Schmidt method is used
to orthogonalize two blocks.

Algorithm 4 (Orthogonalization of two matrices) Given two m-by-n complex matri-
ces R and Q, this algorithm orthogonalizes R against Q using Gram-Schmidt method.

for each column ri in R
for each column qj in Q

orthogonalize ri against qj ;
end

end.

6 Componentwise Detection

Normwise estimation combines the orthogonalities of the vectors in the same block. It cannot
reveal the individual orthogonalities in a block. Consequently, unnecessary orthogonalization
may be carried out. In this section, we present a componentwise detection scheme based on
(10). Let wx,y be the (x, y)-entry of Wk,j+1, then wx,y >

√
ε means that the orthogonality

between qx in Qk and qy in Qj+1 is lost. Thus it detects loss of orthogonality more accurately
than the normwise scheme.

Our componentwise orthogonalization scheme is based on the model (10). For the term
Gk,j in (10), we use a block version of modified partial reorthogonalization scheme in [8]:

Gk,j = ε(Bk + Bj)(Θr + iΘi), Θr, Θi ∈ N(0, 0.3), (13)

where (Bk + Bj)(Θr + iΘi) means that each entry in Bk + Bj is multiplied by a normally
distributed random number with zero mean and variance 0.3. Also, we set Wj,j+1 so that

Wj,j+1Bj = bεB1(Ψr + iΨi), Ψr, Ψi ∈ N(0, 0.6). (14)

Now that we have described the computation of Wk,j+1 for k = 1, ..., j, in the following
we discuss the determination of the orthogonalization intervals. Analogous to the normwise
method, when the absolute value of a component wx,y of Wk,j+1 exceeds

√
ε, we find the

largest interval [lk, uk] such that k ∈ [lk, uk] and Wi,j+1 has a component larger than a
tolerance for all i ∈ [lk, uk]. Based on our experiments, we chose ε7/8, a value between ε and√

ε, as the tolerance. Our experiments have also shown that for each j, there is usually only
one interval, if it exists, and the lower end of the interval is very close to one and the upper
end is near j. Thus, to save search time, we always set the lower end to 1 and search for the
upper end starting from j.

7

To incorporate rounding error, after the columns of Qj+1 are orthogonalized against the
columns of Qk, we set

Wk,j+1 = ε(Ωr + iΩi), Ωr, Ωi ∈ N(0, 1.5), (15)

that is the entries of Wk,j+1 are ε multiplied by normally distributed random numbers with
zero mean and variance 1.5.

As Algorithm 3, whenever we perform the modified partial orthogonalization in iteration
j, we always carry out orthogonalization in the subsequent iteration j + 1. Suppose that
the orthogonalization interval in iteration j is [1, u]. As shown in (10), the computation of
Wk,j+1 requires Wk−1,j, Wk,j, and Wk+1,j, thus we expand the orthogonalization interval
[1, u] to [1, u + 1] for the subsequent iteration.

Algorithm 5 (Componentwise Detection) Given an n-by-b starting matrix S of or-
thonormal columns and a subroutine for matrix-matrix multiplication Y = AX for any X,
where A is an n-by-n complex symmetric matrix. This algorithm computes the diagonal
blocks of the block tridiagonal complex symmetric matrix J in (1) and a unitary Q such that
J = QHAQ̄

steps = n/b;
Q0 = 0; B0 = 0;
Q1 = S;
doOrtho = 0;
second = 0;
for j = 1 to steps

Y = AQ̄j ;
Mj = QH

j Y ;

Rj = Y − QjMj − Qj−1B
T
j−1;

Qj+1Bj = Rj ; (QR factorization of Rj)
if second == 0

k = 1;
while (k ≤ j) and (doOrtho != 1)

if 1 ≤ k ≤ j − 1
Compute Wk,j+1 using (10) (13);

else
Compute Wj,j+1 using (14);

end
if one component of Wk,j+1 exceeds

√
ε

doOrtho = 1;
end
k = k + 1;

end
if doOrtho == 1

8

thresh = 0;
k = j;
while (k ≥ 2) and (thresh != 1)

if 1 ≤ k ≤ j − 1
Compute Wk,j+1 using (10) (13);

else
Compute Wj,j+1 using (14);

end

if one component of Wk,j+1 exceeds ε7/8

up = k;
thresh = 1;

end
k = k − 1;

end
end

end
if (doOrtho == 1) or (second == 1)

Orthogonalize Rj against Q1, ..., Qup;
Reset W1,j+1, ...,Wup,j+1 using (15);
Recalculate QR factorization Qj+1Bj = Rj ;
if (second == 1)

second = 0;
else

second = 1;
doOrtho = 0;
Adjust the neighborhood to [1, up + 1] for the next iteration;

end
end

end.

7 Orthogonalization in Tridiagonalization

We apply the modified partial orthogonalization technique described in [8] to the second
stage, the tridiagonalization of the block tridiagonal J . The symmetric and block tridiagonal
structure of J is exploited in matrix-vector multiplication for efficiency.

Algorithm 6 (Orthogonalization in Tridiagonalization) Given a starting vector b and
a subroutine for symmetric block tridiagonal matrix-vector multiplication y = Jx for any x,
where J is the complex symmetric block tridiagonal matrix in (1). Using the modified par-
tial orthogonalization, this algorithm computes the diagonals of the complex symmetric and
tridiagonal matrix T and the unitary P in (4).

p0 = 0; β0 = 0; ω1,1 = 1;

9

p1 = b/‖b‖2;
for j = 1 to n

y = Jp̄j ;
αj = pH

j y;

rj = y − αjpj − βj−1pj−1;
βj = ‖rj‖2;
Compute the estimates ωk,j+1 for pH

k pj+1, for k = 1, ..., j;
Set ωj+1,j+1 = 1;
for each k = 1, ..., j such that |ωk,j+1| >

√
ε

Find the neighborhood [lk, uk] of k;
end
for each interval [lk, uk]

Orthogonalize rj against pi, i = lk, ..., uk;
Reset ωi,j+1, i = lk, ..., uk;
Adjust the neighborhood to [lk − 1, uk + 1] for the next iteration;

end
if orthogonalization was performed

Recalculate βj = ‖rj‖2;
end
if βj = 0, quit; end
pj+1 = rj/βj ;

end.

8 Experiments

Algorithms 3, 5 and 6 were programmed in MATLAB. The random complex symmetric
matrices in the following examples were generated as follows. First, a set of n random
numbers with normal Gaussian distribution with zero mean and variance 1 was generated.
Their absolute values were chosen as the singular values σ1, ..., σn. Then, a random unitary
matrix U of order n was generated to form a complex symmetric matrix A = UΣUT.
The starting matrix S of orthonormal columns was generated from the QR factorization
of a random complex n-by-b matrix. The error in the orthogonality of Q was measured
by ‖I − QHQ‖F/n2. The error in the tridiagonalization T = QHAQ̄ was measured by
‖QHAQ̄− T‖F/n2. When a vector qj was orthogonalized against qk, it was counted as one
orthogonalization.

Example 1. Algorithm 3 (normwise detection) and Algorithm 6 were run on a random com-
plex symmetric matrix of order 2048. Table 1 shows the total number of orthogonalizations
and errors for various block sizes.

Example 2. Algorithm 5 (componentwise detection) and Algorithm 6 were run on a random
complex symmetric matrix of order 2048. Table 2 shows the total number of orthogonal-
izations and errors for various block sizes. This example shows that the componentwise

10

block total number of error in error in
size orthogonalizations orthogonality factorization

2 602542 2.66E − 13 2.44E − 13
4 633830 1.34E − 13 1.27E − 13
8 662991 8.81E − 14 8.38E − 14
16 677998 2.79E − 14 2.63E − 14
32 810810 3.53E − 14 3.21E − 14

Table 1: Efficiency and accuracy of Algorithms 3 and 6 on a complex symmetric matrix of
order 2048.

algorithm performed fewer orthogonalizations than the normwise algorithm.

block total number of error in error in
size orthogonalizations orthogonality factorization

2 437969 8.13E − 14 7.92E − 14
4 444056 1.32E − 12 2.28E − 13
8 425837 8.00E − 14 7.72E − 14
16 433081 1.40E − 13 1.38E − 13
32 413307 1.64E − 13 1.52E − 13

Table 2: Efficiency and accuracy of Algorithms 5 and 6 on a complex symmetric matrix of
order 2048.

Example 3. The single vector Lanczos algorithm with modified partial orthogonalization
in [8] and the two block algorithms were run on a random complex symmetric matrix of size
2048. The block size in the block algorithms was set to 32. Table 3 shows the total number
of orthogonalizations, errors, and execution time in seconds. This example shows that the
block algorithms are almost twice as fast as the single vector algorithm, although the block
algorithms performed more orthogonalizations than the single vector algorithm.

algorithm total number of error in error in run time
orthogonalizations orthogonality factorization (seconds)

single vector 213477 5.56E − 14 5.15E − 14 2151
normwise 807009 4.81E − 14 4.40E − 14 1287

componentwise 453775 4.09E − 14 3.79E − 14 1075

Table 3: Comparison of block Lanczos algorithms with single vector Lanczos algorithm.

Example 4. To compare the performance, we generated random complex symmetric matri-
ces of various sizes and ran the single vector algorithm and the two block algorithms. Figure

11

1 depicts the run times which are normalized so that the execution time of the single vector
algorithm is 100. In all cases, the block size in the block algorithms is 32. This example
shows that the block algorithm with componentwise detection has the best performance for
large matrices.

1 2 3 4
0

50

100

150

matrix size

re
la

tiv
e

ex
ec

ut
io

n
tim

e

single vector
Algorithm 3, 6
Algorithm 5, 6

256 512 1024 2048

Figure 1: Comparison of the efficiency of block Lanczos algorithms with single vector Lanczos
algorithm. The y axis shows the execution times normalized to the execution time of the
single vector algorithm.

Example 5. This example shows the effect of block size on the efficiency of the block
Lanczos algorithms. A complex symmetric matrix of order 2048 was generated and ran
on the single vector Lanczos algorithm and the two block Lanczos algorithms with various
block sizes. Figure 2 shows the execution times of these algorithms in seconds. This example
shows that the block Lanczos algorithms with the large block size are very efficient.

Conclusion. In this paper, we have presented the block Lanczos tridiagonalization algo-
rithms of a complex symmetric matrix. Experimental results show that the block Lanczos
tridiagonalization algorithms are more efficient than the single vector Lanczos tridiagonal-
ization algorithm for large matrices and block sizes. Our experiments also show that the
componentwise detection for the loss of orthogonality in block tridiagonalization is more
efficient than the normwise detection.

12

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

block size

ex
ec

ut
io

n
tim

e

single vector
Algorithm 3, 6
Algorithm 5, 6

2 4 8 16 32

Figure 2: The effect of the block size on the efficiency of block Lanczos algorithms. The y
axis is the execution time in seconds.

References

[1] M. Berry, T. Do, G. O’Brien, V. Krishna, and S. Varadhan. SVDPACKC (version
1.0) user’s guide. Technical Report CS-93-194, University of Tennessee, Department of
Computer Science, 1993.

[2] A. Bunse-Gerstner and W. B. Gragg. Singular value decompositions of complex sym-
metric matrices. Journal of Computational and Applied Mathematics, 21 (1988) 41–54.

[3] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Ap-
plied Mathematics, Philadelphia, 1997.

[4] G. H. Golub and C.F. Van Loan. Matrix Computations, 3rd Ed. The Johns Hopkins
University Press, Baltimore, MD, 1996.

[5] R.G Grimes, J.G.Lewis and H.D.Simon. A Shifted Block Lanczos Algorithm For Solving
Sparse Symmetric Generalized Eigenproblems. SIAM J. matrix Anal. Appl. 15 (1994),
228-272

[6] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,
1985.

13

[7] F. T. Luk and S. Qiao. A fast singular value algorithm for Hankel matrices. Fast Algo-
rithms for Structured Matrices: Theory and Applications, Contemporary Mathematics
323 , Editor V. Olshevsky, American Mathematical Society. 2003. 169–177.

[8] S. Qiao. Orthogonalization Techniques for the Lanczos Tridiagonalization of Complex
Symmetric Matrices, to appear in Advanced Signal Processing Algorithms, Architec-
tures, and Implementations XIV, Franklin T. Luk, Editor, Proc. SPIE Vol. 5559, 2004.

[9] Horst D. Simon. The Lanczos algorithm with partial reorthogonalization. Mathematics
of Computation. 42 (1984), 115-142.

[10] T. Takagi. On an algebraic problem related to an analytic Theorem of Carathédory and
Fejér and on an allied theorem of Landau. Japan J. Math. 1 (1924) 82–93.

14

