
Block Lanczos Tridiagonalization
of Complex Symmetric Matrices

By:

Guohong Liu

Computer Science 4ZP6 Project

Supervised by Dr. Sanzheng Qiao

Professor, Department of Computing and Software

Department of Computing and Software

McMaster University

Hamilton, Ontario L8S 4K1
2005

Abstract

The project is involved with the numerical analysis scheme, the tridiagonalization
of complex symmetric matrices by using block Lanczos algorithm.

The project is required to implement a numerical software using C language to
reduce a complex symmetric matrix to the complex symmetric and tridiagonal form.
The software is given any complex symmetric matrix A of order n. It computes a
unitary Q ∈ Cn×n and the diagonals of the complex symmetric and tridiagonal matrix
T ∈ Cn×n such that

QHAQ̄ = T

This project group is made up of two students. Guohong Liu is responsible for
the high level design, implementation and verification on Windows system and these
corresponding documentations. Ivan Mak is responsible for the requirement part of
the final report, the test of the implementation on UNIX system and the testing
report.

This project is supervised by Professor Qiao. Guohong Liu did the summer re-
search on block Lanczos algorithm under the seasoned guidance of Professor Qiao.
The research and project show Guohong Liu the wonderful world of numerical analy-
sis. We would like to thank Professor Qiao for his help throughout the project. The
project couldn’t be successfully completed without the gaidance of Professor Qiao.

2

Contents

1 Algorithm 2
1.1 Block Tridiagonalization . 2
1.2 Tridiagonalization . 3
1.3 Model of Estimating Orthogonality 5
1.4 Componentwise Detection . 6
1.5 Orthogonalization in Tridiagonalization 8

2 High Level Design 11
2.1 Selection of Numerical Packages . 11
2.2 Selection of Algorithms . 12
2.3 LAPACK Functions . 13
2.4 User Interface . 15
2.5 Modules . 16
2.6 Data Structure . 19

3 Implementation 22
3.1 Project Source Files . 22
3.2 Rules of Naming and Comment . 24
3.3 Functions . 25
3.4 Fortran Array . 29
3.5 Important Variables . 29
3.6 Index to Array . 32
3.7 Memory Operations . 32
3.8 Optimization of LAPACK and BLAS Wrapper 37
3.9 Code Sample 1 . 40
3.10 Code Sample 2 . 41
3.11 Code Sample 3 . 42
3.12 Comment Sample . 44

1

4 Verification 46
4.1 Test Plan for Block Lanczos Algorithm 46
4.2 Verification of LAPACK and BLAS Wrapper 47
4.3 Verification of Block Lanczos Algorithm 47
4.4 Data File for Developing and Testing 48
4.5 Test Case 1 . 51
4.6 Test Case 2 . 56
4.7 Performance Comparison . 63
4.8 Overall Success and Achieved Targets 65

A Compile Preprocessor Definitions 67

B User Manual of Package 68

C MATLAB Implementation 70
C.1 Block Tridiagonalization . 70
C.2 Tridiagonalization . 76
C.3 Matrix-Matrix Multiplication . 80

2

Chapter 1

Algorithm

We would like to present block Lanczos algorithm in details. As we know, Lanczos
method suffers from the loss of orthogonality of the computed Q in the presence
of roudning error. Orthogonalization is necessary for practical Lanczos method. In
fact orthogonalization is the critical component of the block Lanczos algorithm. Two
orthogonalization detection schemes are discussed in S.Qiao[12]. In this chapter we
present only one of them, the componentwise scheme. In Section2.2, we will present
the reason for the selection of componentwise scheme.

The block Lanczos tridiagonalization algorithm consists of two stages: block tridi-
agonalization and tridiagonalization. A complex symmetric matrix is first reduced
to complex symmetric and block tridiagonal form. The second stage reduces the
block tridiagonal complex symmetric matrix to complex symmetric tridiagonal. We
describe the two stages of block Lanczos tridiagonalization algorithm respectively.

1.1 Block Tridiagonalization

Let A be an n-by-n complex symmetric matrix, and assume n = k × b. Then there
exists the decomposition

QHAQ̄ = J =




M1 BT
1 . . . 0

B1 M2
. . .

...
.

...
. BT

k−1

0 . . . Bk−1 Mk




(1.1)

where
Q = [Q1, Q2, . . . , Qk] Qi ∈ Cn×b

3

is orthonormal, Mi ∈ Cb×b are symmetric, and Bi ∈ Cb×b upper triangular. Rewriting
(1.1) as

AQ̄ = QJ (1.2)

and comparing the j th block columns on both sides of (1.2), we have

AQ̄j = Qj−1B
T
j−1 + QjMj + Qj+1Bj Q0B0 = Qk+1Bk = 0

for j = 1...k, which leads to the block Lanczos outer iteration:

Qj+1Bj = AQ̄j −QjMj −Qj−1B
T
j−1. (1.3)

From the orthogonality of Q we have

Mj = QH
j AQ̄j

for j = 1...k. Let Rj = AQ̄j −QjMj −Qj−1B
T
j−1 ∈ Cn×b, then Qj+1Bj = Rj is a QR

factorization of Rj.

Algorithm 1 (Block Tridiagonalization) Given an n-by-b starting matrix S of
orthonormal columns and a subroutine for matrix-matrix multiplication Y = AX for
any X, where A is an n-by-n complex symmetric matrix. This algorithm computes
the diagonal blocks of the block tridiagonal complex symmetric matrix J in (1.1) and
a unitary Q such that J = QHAQ̄

k = n/b;
Q0 = 0; B0 = 0;
Q1 = S;
for j = 1 to k

Y = AQ̄j;
Mj = QH

j Y ;
Rj = Y −QjMj −Qj−1B

T
j−1;

Qj+1Bj = Rj; (QR factorization of Rj)
end.

1.2 Tridiagonalization

We follow Berry [5] to adopt the single vector Lanczos tridiagonalization recursion
for reducing the block tridiagonal complex symmetric matrix to tridiagonal form.

4

Let J be the k-by-k block tridiagonal complex symmetric matrix resulted from
Algorithm 1. We can find a unitary P = [p1,p2, ...,pn], pi ∈ Cn×1, such that

PHJP̄ = T =




α1 β1 . . . 0

β1 α2
. . .

...
.

...
. βn−1

0 . . . βn−1 αn




(1.4)

Rewriting (1.4) as
JP̄ = PT (1.5)

and comparing the j th columns on both sides of (1.5), we have

Jp̄j = βj−1pj−1 + αjpj + βjpj+1 β0p0 = 0

for j = 1:n - 1, which leads to the inner Lanczos recursion:

βjpj+1 = Jp̄j − αjpj − βj−1pj−1 (1.6)

From the orthogonality of P we have

αj = pH
j Jp̄j

for j = 1...n. Let rj = Jp̄j − αjpj − βj−1pj−1 ∈ Cn×1, then βj = ±‖rj‖2 and
pj+1 = rj/βj if rj 6= 0. The symmetric block tridiagonal structure of J is exploited
in the calculation of Jp̄j for efficiency.

Algorithm 2 (Tridiagonalization) Given a starting vector b and a subroutine for
symmetric block tridiagonal matrix-vector multiplication y = Jx for any x, where J is
the complex symmetric and block tridiagonal matrix in (1.1), this algorithm computes
the diagonals of the complex symmetric and tridiagonal matrix T and unitary P in
(1.4).

p0 = 0; β0 = 0;
p1 = b/‖b‖2;
for j = 1 to n

y = Jp̄j; (symmetric block tridiagonal matrix-vector multiplication)
αj = pH

j y;
rj = y − αjpj − βj−1pj−1;
βj = ‖rj‖2;
if βj = 0, quit; end
pj+1 = rj/βj;

end.

5

1.3 Model of Estimating Orthogonality

The algorithms described in the previous sections assume exact arithmetic. In the
presence of rounding error, however, the computed Q loses orthogonality. Thus,
orthogonalization is necessary for practical Lanczos methods. Obviously, to detect
the loss of orthogonality we must measure the orthogonality. Although QHQ can be a
measurement for the orthogonality, it is too expensive to compute in every iteration.
In this section, we present a model of estimating the orthogonality of Q computed
by our block tridiagonalization algorithm. Denoting Wk,j = QH

k Qj, we propose an
efficient recurssion of Wk,j including rounding errors without explicitly computing
QH

k Qj.
Incorporating rounding errors into the jth iteration of (1.3), we have

Qj+1Bj + Fj = AQ̄j −QjMj −Qj−1B
T
j−1, j = 1, ..., k, (1.7)

where Fj represents the rounding error at step j. From (1.7), we have

Qj+1Bj = AQ̄j −QjMj −Qj−1B
T
j−1 − Fj

and
Qk+1Bk = AQ̄k −QkMk −Qk−1B

T
k−1 − Fk.

Premultiplying the above two equations with QH
k and QH

j respectively, we get

Wk,j+1Bj = QH
k AQ̄j −Wk,jMj −Wk,j−1B

T
j−1 −QH

k Fj (1.8)

and
Wj,k+1Bk = QH

j AQ̄k −Wj,kMk −Wj,k−1B
T
k−1 −QH

j Fk. (1.9)

From (1.9) we get

QH
j AQ̄k = Wj,k+1Bk + Wj,kMk + Wj,k−1B

T
k−1 + QH

j Fk. (1.10)

Since the transpose of QH
j AQ̄k is QH

k AQ̄j in (1.8) and W T
k,j = W̄j,k, substituting

QH
k AQ̄j in (1.8) with (1.10) results in

Wk,j+1Bj = BT
k W̄k+1,j +MkW̄k,j +Bk−1W̄k−1,j−Wk,jMj−Wk,j−1B

T
j−1 +Gk,j, (1.11)

where Wj−1,j−1 = W̄j,j = I, for k = 1, ..., j−1, where Gk,j = F T
k Q̄j−QH

k Fj represents
the local rounding error. The above equation (1.11) shows that Wk,j+1 in iteration j+1
can be obtained by Wk−1,j, Wk,j, and Wk+1,j in iteration j and Wk,j−1 in iteration
j − 1. In this model, Wk,j measures the orthogonality QH

k Qj including rounding
error. In the following two sections, we show how to use Wk,j to detect the loss of
orthogonality.

6

1.4 Componentwise Detection

Let wx,y be the (x, y)-entry of Wk,j+1, then wx,y >
√

ε means that the orthogonality
between qx in Qk and qy in Qj+1 is lost. Thus it detects loss of orthogonality more
accurately than the normwise scheme.

Our componentwise orthogonalization scheme is based on the model (1.11). For
the term Gk,j in (1.11), we use a block version of modified partial reorthogonalization
scheme in [1]:

Gk,j = ε(Bk + Bj)(Θr + iΘi), Θr, Θi ∈ N(0, 0.3), (1.12)

where (Bk + Bj)(Θr + iΘi) means that each entry in Bk + Bj is multiplied with a
normally distributed random number with zero mean and variance 0.3. Also, we set
Wj,j+1 so that

Wj,j+1Bj = bεB1(Ψr + iΨi), Ψr, Ψi ∈ N(0, 0.6). (1.13)

Now that we have described the computation of Wk,j+1 for k = 1, ..., j, in the
following we discuss the determination of the orthogonalization intervals. Analogous
to the normwise method, when the absolute value of a component wx,y of Wk,j+1

exceeds
√

ε, we find the largest interval [lk, uk] such that k ∈ [lk, uk] and Wi,j+1 has a
component larger than a tolerance for all i ∈ [lk, uk]. Based on our experiments, we
chose ε7/8, a value between ε and

√
ε, as the tolerance. Our experiments have also

shown that for each j, there is usually only one interval, if it exists, and the lower
end of the interval is close to one and the upper end is near j. Thus, to save search
time, we always set the lower end to 1 and search for the upper end starting from j.

To incorporate rounding error, after the columns of Qj+1 are orthogonalized
against the columns of Qk, we set

Wk,j+1 = ε(Ωr + iΩi), Ωr, Ωi ∈ N(0, 1.5), (1.14)

that is the entries of Wk,j+1 are normally distributed random numbers with zero mean
and variance 1.5.

Whenever we perform the modified partial orthogonalization in iteration j, we
always carry out orthogonalization in the subsequent iteration j + 1 so that the next
block generated by the recurrence is almost orthogonal to its predecessors. Suppose
that the orthogonalization interval in iteration j is [1, u]. As shown in (1.11), the
computation of Wk,j+1 requires Wk−1,j, Wk,j, and Wk+1,j, thus we expand the orthog-
onalization inteval [1, u] to [1, u + 1] for the subsequent iteration.

Algorithm 3 (Componentwise Detection) Given an n-by-b starting matrix S of
orthonormal columns and a subroutine for matrix-matrix multiplication Y = AX for

7

any X, where A is an n-by-n complex symmetric matrix. This algorithm computes
the diagonal blocks of the block tridiagonal complex symmetric matrix J in (1.1) and
a unitary Q such that J = QHAQ̄

steps = n/b;
Q0 = 0; B0 = 0;
Q1 = S;
doOrtho = 0;
second = 0;
for j = 1 to steps

Y = AQ̄j;
Mj = QH

j Y ;
Rj = Y −QjMj −Qj−1B

T
j−1;

Qj+1Bj = Rj; (QR factorization of Rj)

if second == 0
k = 1;
while (k ≤ j) and (doOrtho != 1)

if 1 ≤ k ≤ j − 1
Compute Wk,j+1 using (1.11) (1.12);

else
Compute Wj,j+1 using (1.13);

end
if one component of Wk,j+1 exceeds

√
ε

doOrtho = 1;
end
k = k + 1;

end

if doOrtho == 1
thresh = 0;
k = j;
while (k ≥ 2) and (thresh != 1)

if 1 ≤ k ≤ j − 1
Compute Wk,j+1 using (1.11) (1.12);

else
Compute Wj,j+1 using (1.13);

end
Search every component of just computed Wk,j+1;
if one component of Wk,j+1 exceeds ε7/8

8

up = k;
thresh = 1;

end
k = k − 1;

end
end

end

if (doOrtho == 1) or (second == 1)
Orthogonalize Rj against Q1, ..., Qup;
Reset W1,j+1, ..., Wup,j+1 using (1.14);
Recalculate QR factorization Qj+1Bj = Rj;
if (second == 1)

second = 0;
else

second = 1;
doOrtho = 0;
Adjust the neighborhood to [1, up + 1] for the next iteration;

end
end

end.

1.5 Orthogonalization in Tridiagonalization

Analogous to the orthogonalization algorithm for the block tridiagonalization, we
present a modified partial orthogonalization scheme for the tridiagonalization. We
first identify mechanisms whereby orthogonality is lost and then apply a model of
the loss of orthogonality to determine when to correct the situation. This algorithm
follows the modified partial orthogonalization algorithm of S.Qiao [1].

Incorporate roundoff errors into the kth Lanczos iteration (1.6), we write

βjpj+1 + fj = Jp̄j − αjpj − βj−1pj−1, j = 1, .., k, (1.15)

where fj represents roundoff errors. From (1.15), we have

βjpj+1 = Jp̄j − αjpj − βj−1pj−1 − fj

βkpk+1 = Jp̄k − αkpk − βk−1pk−1 − fk

Premultiplying the above two equations with pH
k and pH

j respectively and denoting

9

ωk,j = pH
k pj, we get

βjωk,j+1 = pH
k Ap̄j − αjωk,j − βj−1ωk,j−1 − pH

k fj

βkωj,k+1 = pH
j Ap̄k − αkωj,k − βk−1ωj,k−1 − pH

j fk

Since J is symmetric, pH
k Jp̄j = pH

j Jp̄k. Thus, subtracting the above two equations
and noting that ωk,j = ω̄j,k, we have the following recursion on the orthogonalities of
the Lanczos vectors:

βjωk,j+1 = βkω̄k+1,j + αkω̄k,j − αjωk,j + βk−1ω̄k−1,j − βj−1ωk,j−1 + pH
j fk − pH

k fj

We define
ψj = ωj,j+1

θk,j = pH
j fk − pH

k fj

Using these notations, we get

ωk,j+1 = β−1
j (βkω̄k+1,j + αkω̄k,j − αjωk,j + βk−1ω̄k−1,j − βj−1ωk,j−1) + θk,j (1.16)

for k = 1, ..., j − 1, with

β0 = ω0,j = 0, ωj,j+1 = ψj and ωj+1,j+1 = 1.0

Let ε be the unit of roundoff, we propose that

ψj = nε
β1

βj

(Ψr + iΨi), Ψr, Ψi ∈ N(0, 0.6) (1.17)

where N(0, v) means normal distribution with zero mean and variance v, and

θk,j = ε(βk + βj)(Θr + iΘi), Θr, Θi ∈ N(0, 0.3) (1.18)

To aleviate the problem caused by isolated reorthogonalization, when ωk,j+1 ex-
ceeds the tolerance tol for some k, we perform modified partial orthogonalization
scheme in which rj is orthogonalized against only pk and its neighboring vectors, not
against all p1,...,pj like partial orthogonalization scheme does. Suppose [lk, uk] is the
neighborhood of k, then it is the largest interval such that k ∈ [lk, uk] and |ωi,j+1| ≥ tol
for all i between lk and uk. The tolerance tol should be some value between epsilon
and

√
ε. We choose tol = ε3/4. Theoretically, after the reorthogonalization ωk,j+1 = 0

for k = 1, ..., j. To incorporate the rounding errors, we set

ωk,j+1 = ε(Ωr + iΩi), Ωr, Ωi ∈ N(0, 1.5) (1.19)

As Algorithm 3, we always perform a reorthogonalization in the subsequent it-
eration j + 1. As shown in (1.16), since the computation of ωk,j+1 requires ωk−1,j,
ωk,j, and ωk+1,j, we expand each inteval [lk, uk] to [lk − 1, uk + 1] for the subsequent
iteration.

10

Algorithm 4 (Orthogonalization in Tridiagonalization) Given a starting vec-
tor b and a subroutine for symmetric band matrix-vector multiplication y = Jx for
any x, where J is a k-by-k block complex symmetric matrix, and every block is b-by-
b. Suppose n = k × b. Using the modified partial orthogonalization, this algorithm
computes the diagonals of the complex symmetric and tridiagonal matrix T in (1.4)
and a unitary P such that T = PHAP̄ .

p0 = 0; β0 = 0; ω1,1 = 1;
p1 = b/‖b‖2;
for j = 1 to n

y = Jp̄j; (symmetric band matrix-vector multiplication)
αj = pH

j y;
rj = y − αjpj − βj−1pj−1;
βj = ‖rj‖2;

Compute ωk,j+1 for k = 1, ..., j − 1 using (1.16);
Set ωj,j+1 to ψj using (1.17);
Set ωj+1,j+1 = 1;
k = 1;
while k ≤ j

if |ωk,j+1| >
√

ε
Find the neighborhood [lk, uk] of k;
k = uk + 1;

else
k = k + 1;

end
end

for each inteval [lk, uk]
Orthogonalize rj against plk , ...,puk

;
Reset ωlk,j+1, ..., ωuk,j+1 using (1.19);
Adjust the neighborhood to [lk − 1, uk + 1] for the next iteration;

end
if orthogonalization was performed

Recalculate βj = ‖rj‖2;
end
if βj = 0, quit; end
pj+1 = rj/βj;

end.

11

Chapter 2

High Level Design

Implementing a complicated numerical software involves in many kinds of basic linear
algebra computations. In Section 2.1 we describe the process of selecting existing
numerical software packages to perform these basic computations and speed up the
development. As we said in Chapter 2, We select one of two schemes to detect the
loss of orthogonality of the computed matrix. In Section 2.2 we present our reason
for the selection. In Section 2.4 we describe the design of the user interface of the
implementation. In Section 2.5 we present the hierarchy of modules. Our design of
the data structure is described In Section 2.6.

2.1 Selection of Numerical Packages

The block Lanczos project has many basic matrix and vector computations, for ex-
ample, the matrix-matrix multiplication and division, the transpose or conjugate of
one complex matrix and QR factorization, etc. These routines are critical for the
performance of the project. It is very important to select one software package which
meets the requirement of the project, and which is highly optimized.

LAPACK (Linear Algebra PACKage) is a free, portable and standard library of
Fortran 77 routines for solving the most common problems in numerical linear algebra.
It is designed to be efficient on a wide range of high-performance computers, under
the proviso that the hardware vendor has implemented an efficient set of BLAS (Basic
Linear Algebra Subroutines). LAPACK is a natural choice for the project.

LAPACK++ is an object-oriented C++ extension of the LAPACK library. The
advantages of an object-oriented approach include the ability to encapsulate vari-
ous matrix representations, hide their implementation details, reduce the number
of subroutines, simplify their calling sequences, and provide an extendible software
framework that can incorporate future extensions of LAPACK. LAPACK++ seems

12

to be a better choice than LAPACK. Unfortunately, the LAPACK++ users’ guide
[11] makes the statement that complex support disabled due to the transitory sup-
port among C++ compilers, and new developments and ongoing efforts have shifted
to the Template Numerical Toolkit (TNT) for Linear Algebra project, based on the
Standard Template Library (STL).

The Template Numerical Toolkit (TNT), the successor to the LAPACK++, is a
collection of interfaces and reference implementations of numerical objects useful for
scientific computing in C++. The toolkit defines interfaces for basic data structures
commonly used in numerical applications. The goal of this package is to provide
reusable software components that address many of the portability and maintenance
problems with C++ codes. But this package provides few useful functionalities be-
sides accessing arrays. I haven’t found QR factorization solution in it yet. According
to some web sites it is at an early stage of development.

So at present only LAPACK fits our purposes well. The project is module oriented,
not object oriented because we select LAPACK as our numerical software library, and
the complicated block Lanczos algorithms focus on procedural.

2.2 Selection of Algorithms

In the presence of rounding error the computed Q loses orthogonality. Thus, orthog-
onalization is necessary for the stable block Lanczos tridiagonalization algorithm.
Based on a model of estimating the orthogonality of Q, two schemes are proposed in
S.Qiao[12] for detecting the loss of orthogonality for block tridiagonalization stage.
One is normwise detection involving norm computations. Another is componentwise
detection. These two algorithms and the algorithm in the tridiagonalization stage
have been implemented in MATLAB. The following numerical experiments made by
this MATLAB implementation have shown that componentwise scheme detects loss
of orthogonality more accurately than the normwise scheme.

Example 1. Block Lanczos algorithm in which normwise detection was applied in
block tridiagonalization stage was run on a random complex symmetric matrix of
order 2048. Table 2.1 shows the total number of orthogonalizations and errors for
various block sizes.

Example 2. Block Lanczos algorithm in which componentwise detection was applied
in block tridiagonalization stage was run on a random complex symmetric matrix of
order 2048. Table 2.2 shows the total number of orthogonalizations and errors for
various block sizes. This example shows that the componentwise algorithm performed
fewer orthogonalizations than the normwise alogrithm.

Example 3. To compare the performance, we generated random complex symmetric

13

block total number of error in error in
size orthogonalizations orthogonality factorization
2 602542 2.66E − 13 2.44E − 13
4 633830 1.34E − 13 1.27E − 13
8 662991 8.81E − 14 8.38E − 14
16 677998 2.79E − 14 2.63E − 14
32 810810 3.53E − 14 3.21E − 14

Table 2.1: Efficiency and accuracy of block Lanczos algorithm in which normwise
detection was applied on a complex symmetric matrix of order 2048.

block total number of error in error in
size orthogonalizations orthogonality factorization
2 437969 8.13E − 14 7.92E − 14
4 444056 1.32E − 12 2.28E − 13
8 425837 8.00E − 14 7.72E − 14
16 433081 1.40E − 13 1.38E − 13
32 413307 1.64E − 13 1.52E − 13

Table 2.2: Efficiency and accuracy of block Lanczos algorithm in which component-
wise detection was applied on a complex symmetric matrix of order 2048.

matrices of various sizes and ran the single vector algorithm and the two block algo-
rithms. Figure 2.1 depicts the run times which are normalized so that the execution
time of the single vector algorithm is 100. In all cases, the block size in the block
algorithms is 32. This example shows that the block algorithm with componentwise
detection has the best performance for large matrices.

Since componentwise detection is more efficient than the normwise detection, we
select componentwise detection scheme as the algorithm in the block tridiagonaliza-
tion stage.

2.3 LAPACK Functions

We decide to follow LAPACK style to design and document the data structure and
interface of the project. To use LAPACK from C in real application, it is important
to keep in mind that LAPACK is written in Fortran 77. There are differences between
Fortran and C programming:

• Fortran uses only call by reference. To call a Fortran routine from C, it is

14

1 2 3 4
0

50

100

150

matrix size

re
la

tiv
e

ex
ec

ut
io

n
tim

e

single vector
Algorithm 3, 6
Algorithm 5, 6

256 512 1024 2048

Figure 2.1: Comparison of the efficiency of block Lanczos algorithms. The y axis
shows the execution times normalized to the execution time of the single vector algo-
rithm.

necessary to pass pointers to the relevant variables, not the variables themselves.

• When invoking a compiled Fortran library subroutine, it is necessary to put
the name in lower case followed by an underscore. The reason is that the
Fortran compiler adds the underscore to the routine name when it generates
the compiled code.

• Two-dimensional arrays in Fortran are stored by columns, in the opposite order
from C.

• Fortran arrays start indexing at 1 by default; C arrays start at 0.

• Dynamic allocation, commonly used in C, is part of the Fortran 90 standard but
not the Fortran 77 standard, so Fortran LAPACK rountines typically require
the passing of work arrays.

• In C, a function may or may not return a value. In Fortran, it must.

The name of each LAPACK routine is a coded specification of its function. All
driver and computational routines have the names of the form XYYZZZ. The first

15

letter, X, indicates the data type. The next two letters, YY, indicate the type of
matrix. The last three letters ZZZ indicate the computation performed. For example,
the following is a LAPACK routine to reduce a complex Hermitian matrix A to real
symmetric tridiagonal form T by a unitary similarity transformation:

int zhetrd (char *uplo,
integer *n, doublecomplex *a, integer *lda,
doublereal *d, doublereal *e,
doublecomplex *tau, doublecomplex *work,
integer *lwork, integer *info)

2.4 User Interface

Based on the rules of LAPACK, we design the following procedural which user invokes
to perform the tridiagonalization of a complex symmetric matrix:

int zcstrd (integer *n, doublecomplex *A,
integer *bs, doublecomplex *S,
doublecomplex *a, doublereal *b,
doublecomplex *Q, doublecomplex *P,
integer *info)

The first letter, z, indicates double complex. The next two letters, cs, indicate the
complex symmetric matrix. The last three letters, trd, indicate the tridiagonalization
reduction of one matrix. We adopt the data type in LAPACK, like integer, double-
complex, and doublereal, etc. The idea of the design is to allow users to seamlessly
invoke the block Lanczos algorithm routine with other LAPACK routines.

The following are descriptions of arguments of the procedural:

Input:
n The order of the matrix A. n >= 0
A Double complex array, size = n ∗ n
bs Size of the block. bs > 0.
S Double complex array, size = n ∗ bs

The starting orthonormal columns matrix.
Output :

a Double complex array, size = n
The diagonal elements of the tridiagonal matrix T.

b Double real array, size = n− 1
The off-diagonal elements of the tridiagonal matrix T.

16

Q Double complex array, size = n ∗ n
Q is computed in block tridiagonalization stage.

P Double complex array, size = n ∗ n
P is computed in tridiagonalization stage.
(QP)HA ¯(QP) = T

info 0 Successful exit
< 0 If info = −i, the i-th argument had an illegal value
> 0 Exception is thrown

Return:
always 0

Matirx A is not stored in packed form which LAPACK supports due to the sake
of performance which the project requires. It would not be hard to implement the
tridiagonalization of complex symmetric matrices in packed storage. Matrix Q and
P are matrices which are computed in block tridiagonalization stage and tridiago-
nalization stage respectively. The return value of this routine is always 0 due to the
reason related to the differences between Fortran and C.

We studied LAPACK’s routines to figure out what arguments LAPACK checks
for illegal values. We follow its way to check the arguments of our project:

• The order of matrix A is illegal if it is less than or equal to 0.

• The size of one block is illegal if it is less than or equal to 0.

• The order of matrix A can’t be divided by the block size. Then block size is
regarded illegal.

2.5 Modules

We design several layers for the modules implemented in the project. Figure 2.2 shows
the hierarchy of modules.

We follow software design principles to design the modules. There is a weak cou-
pling between modules and a strong cohesion within modules. Each module depends
on as few other modules as possible. User of the block Lanczos tridiagonalization
package maybe interested in only how to invoke the routine to perform tridiagonal-
ization of a complex symmetric matrix. The block Lanczos algorithm user interface
is what he can see and use. User can include only one file, zcstrd.h, which has the
prototype of the routine, zcstrd , in his C code, and then link the block lanczos tridi-
agonalization package. The user interface module hides the secret of the algorithm
and the implementation.

17

Block Lanczos algorithm
modules

LAPACK and BLAS wrapper
and

low level computing module

LAPACK and BLAS modules

User’s application

Block Lanczos algorithm
user interface

Figure 2.2: hierarchy of modules

Block Lanzcos algorithm modules are only related to the algorithm itself. They
don’t invoke any LAPACK or BLAS routine explicitly. The algorithm itself places
the most important role in the performance of the project. If the algorithm has the
possibility to improve, then only the block Lanzcos algorithm modules should be
changed without the change of other modules.

LAPACK and BLAS wrapper module implements the computations which block
Lanzcos algorithm modules require by calling LAPACK and BLAS routines. For
example QR factorization, matrix-matrix operations and matrix-vector operations.
Block Lanczos algorithm requires some low level computations which LAPACK and
BLAS don’t provide explicitly. These requirements are implemented in one separate
module, low level computing module. The LAPACK and BLAS wrapper and the low
level computing module are at the same layer in the module hierarchy. The changes
to these computing modules should not affect the block Lanczos algorithm modules
provided the interface between block Lanczos algorithm modules and the computing
modules is not changed.

18

LAPACK and BLAS have the incomparable performance. But explicitly calling
any one of LAPACK and BLAS routines in the block Lanczos algorithm modules
would be a nightmare. Take a look at the prototype of one LAPACK routine which
is frequently called in block Lanczos algorithm modules. It computes the solution of
A/B, where B is upper triangular:

int ztrsm (char *side, char *uplo,
char *transa, char *diag, integer *m, integer *n,
doublecomplex *alpha, doublecomplex *a, integer *lda,
doublecomplex *b, integer *ldb)

After we studied the LAPACK and BLAS routines, we developed the LAPACK
and BLAS wrapper as the beginning of the project implementation. We generalized
what kinds of computations may be used in the block Lanczos algorithm modules,
then implemented them. For example, one of level 3 BLAS functions, zgemm (),
implements the computation of αop(A)op(B) + βop(C) where op(X) = X, XT , XH .
We found out that we only need op(A)op(B) + op(C) in block Lanczos algorithm
after carefully generalizing this matrix-matrix operation. So we developed a function,
mmult(), to wrap this LAPACK function to meet our specific need. The caller of
mmult() needn’t worry about arguments α and β any longer.

Due to the importance of the accuracy of the wrapper, we took considerable time
to make stress tests to verify the wrapper. We used as many cases as possible to test
every path in the routine of the wrapper. We must guarantee the wrapper’s accuracy
before we started the implementation of block Lanczos algorithm modules.

The fact proved that this work is valuable and even more than the project requires.
You can imagine we have a lot of computation troubles in the block Lanczos algorithm
modules. But we never worried much about whether these troubles came from the
LAPACK and BLAS wrapper and low level computing modules. We concentrated
on the block Lanczos algorithm modules to check errors. This bottom-up strategy
guaranteed the smooth development.

After we finished and verified the whole project implementation, we figured out
there were areas we could improve to achieve as best performance as possible. The
LAPACK and BLAS wrapper was one of them. The wrapper was so general that
it could handle more cases than the project requires. Many cases never happen in
the block Lanczos algorithm modules. But the tests of these cases affected a lot
on the performance of the project. So at the last stage of the project we modified
the LAPACK and BLAS wrapper to handle the cases that may happen only in the
block Lanczos algorithm. We found out the performance of the project was greatly
improved. When we made these modification, we never touched other modules, like
block Lanczos algorithm modules.

19

If LAPACK and BLAS are not selected as the support package in the future, only
the LAPACK and BLAS wrapper needs to be replaced. The change of the wrapper
is transparent to other modules.

The low level computing module deals with computations like element-by-element
product of two complex matrices and multiplication and addition of complex numbers.
We developed them by referring to the implementation of the related BLAS routines.
Professor Qiao considered to use GNU package to replace them in the future work.
This replacement can be done in only one module without any modification of other
modules.

At the bottom of the hierarchy of the modules are the LAPACK and BLAS rou-
tines.

It has other advantages to design the modules as this hierarchy. Users of the
block Lanczos tridiagonalization package can understand the sizable block Lanczos
algorithm implementation more easily. Although the code of the project is imple-
mented all by Guohong Liu, it could be implemented by several programmers. Each
programmer develops a separate module.

2.6 Data Structure

We design the following structure for a m-by-n complex matrix,

typedef struct doubleComplexMat {
doublecomplex *mat;
int m;
int n;

} DoubleComplexMat;

This data structure wraps the LAPACK data type, doublecomplex, with the di-
mension of a matrix. It is used between modules to simplify the arguments of the
routines. For example, LAPACK’s QR factorization module is like the following by
using doublecomplex,

void qr (int m, int n,
doublecomplex *A,
doublecomplex *Q, doublecomplex *R)

The same routine can be changed to a simpler and more readable form by using
the data type we define,

void qr (DoubleComplexMat *A,
DoubleComplexMat *Q, DoubleComplexMat *R);

20

We would like to use a example to show that the LAPACK and BLAS wrapper
and the data structure can make the implementation of the project more easily un-
derstood. It is related to LAPACK’s matrix-matrix multiplication routine which is
widely used in the project. The prototype of it is as the following,

int zgemm (char *transa, char *transb, integer *m, integer *n,
integer *k, doublecomplex *alpha,
doublecomplex *a, integer *lda,
doublecomplex *b, integer *ldb,
doublecomplex *beta, doublecomplex *c ,
integer *ldc)

There is a corresponding routine in LAPACK wrapper to perform the computation
R = op(A)op(B) + C or R = −op(A)op(B) + C. The prototype and the description
of arguments of the routine are as the following,

int mmult (char *signa, DoubleComplexMat *A, char *transa,
DoubleComplexMat *B, char *transb,
DoubleComplexMat *C, DoubleComplexMat *R)

signa ” + ”, op(A) ∗ op(B) + C
”− ”, −op(A) ∗ op(B) + C

A Matrix.
transa ”N”, op(A) = A

”T”, op(A) = AT

”H”, op(A) = AH

B Matrix.
transb ”N”, op(B) = B

”T”, op(B) = BT

”H”, op(B) = BH

”C”, op(B) = B̄
C Matrix.

if C = NULL, then R = op(A) ∗ op(B) or R = −op(A) ∗ op(B)
R Matrix.

Suppose there are four matrices, DoubleComplexMat∗A, ∗Q, ∗R, ∗M . We would
like to perform the following computation in the block Lanczos algorithm:

R = AQ̄
M = QHR
R = R−QM

21

Then the corresponding C implementation would be:

mmult (” + ”, A, ”N”, Q, ”C”, NULL, R);
mmult (” + ”, Q, ”H”, R, ”N”, NULL, M);
mmult (”− ”, Q, ”N”, M, ”N”, R, R);

It has simpler and more understandable form than LAPACK routines. More
importantly it decreases the chances of introducing errors when writing down so many
arguments in one LAPACK routine. It is headache to read the manual of LAPACK,
and to be very careful about the arguments. This design allows us to concentrate
on the business of block Lanczos algorithm, not disturbed by LAPACK routines any
more once the LAPACK and BLAS wrapper is believed to be correctly implemented.

By the same consideration we define the following data types for double complex
vector and double real vector:

typedef struct doubleComplexVec {
DoubleComplex *vec;
int n;

} DoubleComplexVec;

typedef struct doubleRealVec {
DoubleReal *vec;
int n;

} DoubleRealVec;

22

Chapter 3

Implementation

We describe the implementation of block Lanczos tridiagonalization algorithm in de-
tails. Section 3.1 describes the hierarchy of the source code and the description of ev-
ery files. Section 3.2 is about the naming standard in the project. Section 3.3 presents
some important functions we implemented for the project. Section 3.4 presents the
data type and the technology to access FORTRAN arrays that LAPACK expects.
The important variables used in block tridiagonalization stage and tridiagonalization
stage are described in Section 3.5. We describe the memory operation principles in
Section 3.7. The optimization we made for the project is described in Section 3.8.
The we present some samples of code and comment in Section 3.9, 3.10, 3.11 and
3.12.

3.1 Project Source Files

There are 16 C files we developed in the project. Figure 3.1 shows the hierarchy of
these files. They are listed as the following:

• BlkLanApp.c BlkLanApp.h
Sample application of the block Lanczos tridiagonalization algorithm. User can
refer to this sample to invoke our routine to perform the tridiagonalization of a
complex symmetric matrix.

• zcstrd.h
The prototype of the routine user can invoke to perform the tridiagonalization
of a complex symmetric matrix.

• zcstrd.c
Implement the user interface of block Lanczos tridiagonalization algorithm. It

23

User’s application

BlkLanApp.h BlkLanApp.c

Block Lanczos algorithm
user interface

zcstrd.h zcstrd.c

Bidiagonalization

Bidiagonal.h
Bidiagonal.c

Block Lanczos algorithm modules

BlkLan.h
BlkTri.c LanTri.c BlkLanAux.c
BlkTriAux.c LanTriAux.c DataFile.c

LAPACK and BLAS wrapper and
low level computing module

Computing.h
LapackWrap.c MatComputing.c

LAPACK and BLAS routines

blaswrap.h clapack.h
 f2c.h fblaswr.h

 clapack.lib blas.lib
libF77.lib libI77.lib

Figure 3.1: hierarchy of modules

invokes routines implemented in block Lanczos algorithm modules to perform
the tridiagonalization of a complex symmetric matrix.

• Bidiagonal.c Bidiagonal.h
Implement the bidiagonalization of general complex matrices by invoking LA-
PACK’s routines. Bidiagonalization of a complex matrix is used to compare the
performance with the block Lanczos tridiagonalization algorithm.

• BlkLan.h
Define prototypes of all routines implemented for block Lanczos algorithm.

• BlkTri.c
Implement routines in the block tridiagonalization stage.

24

• BlkTriAux.c
Perform initialization for the block tridiagonalization. It is also responsible for
dealing with exceptions thrown in this stage, and releasing resources when block
tridiagonalization is done.

• LanTri.c
Implement the procedurals used in the tridiagonalization stage.

• LanTriAux.c
Perform initialization in the tridiagonalization stage. It also deals with excep-
tions thrown in this stage. It releases resources when tridiagonalization is done.

• BlkLanAux.c
Implement some auxiliary routines used in block Lanczos algorithm.

• DataFile.c Implement the functionality to read one data file which includes
the specific matrices and vectors coming from MATLAB. It is for verification
purpose.

• Computing.h
Define the data structures and the prototypes of routines in LAPACK and
BLAS wrapper and low level computing module.

• LapackWrap.c
Implement routines of LAPACK and BLAS wrapper.

• MatComputing.c
Implement computing routines which are required by the block Lanczos algo-
rithm, but are not provided by LAPACK or BLAS explicitly.

3.2 Rules of Naming and Comment

The naming of variables and functions follows conformed rules. We referred to the
naming standard of LAPACK, BLAS and MATLAB. The name of the matrix begins
with the big capital, the vector with the small capital. In LAPACK and BLAS
wrapper the input matrix is specified as A, B or C. The solution of the computation
is R if it is a matrix. The input vector is specified as x, y or z. The solution of the
computation is r if it is a vector. The constant in the LAPACK and BLAS wrapper
is called alpha or beta.

In tridiagonalization stage, two kinds of vectors, double real vector and double
complex vector, are involved in computation. ’D’ or ’d’ in the name of a variable

25

or a function means double, ’Z’ or ’z’ means complex. This is LAPACK’s naming
standard.

The names of functions in the LAPACK and BLAS wrapper and low level com-
puting module are all in small capital. The names of functions in other modules are
mixed with big capital and small capital characters. For the arguments of functions,
the input arguments are in front of output arguments, and in the order they are in the
computing. The following is the sample of a routine which performs matrix-vector
operation r = op(A) ∗ x + y, where op(A) = A or AT :

int mvmult (DoubleComplexMat *A, char *transa,

DoubleComplexVec *x, DoubleComplexVec *y,

DoubleComplexVec *r)

We adopt MATLAB style in the comment of the code. Q.′ means QT . Q′ means
QH , and conjg(Q) means Q̄.

3.3 Functions

We describe some important routines implemented in block Lanczos algorithm mod-
ules, LAPACK and BLAS wrapper and low level computing module respectively.

The following are the important routines implemented for the block tridiagonal-
ization stage:

• blkTri
The main procedural to perform block tridiagonalization.

• detectW
Compute W’s, the detectors of the loss of orthogonality in block tridiagonaliza-
tion stage.

• orthInterval
Determine the orthogonalization intervals

• completeW
In the second orthogonalization stage, compute W’s which are not computed in
last iteration due to orthogonalization.

• orthR
Orthogonalize Qj+1, current Q block, against all Q’s blocks which are in the
orthogonalization intervals.

26

• blkTriInit
Perform initialization for block tridiagonalization operation. Allocate necessary
memories for computations.

• blkTriEnd
Release memories after block tridiagonalization is done.

• blkTriExcept
Handle exceptions thrown in the block tridiagonalization stage. Then release
memories one after another.

The following are important routines implemented for tridiagonalization stage:

• lanTri
Main procedural in tridiagonalization stage.

• detectw
Compute w’s, the detectors of the loss of orthogonality in tridiagonalization
stage.

• orthr
Carry out orthogonalization in tridiagonalization stage.

• sbmvmul
Complex symmetric and block tridiagonal matrix-vector multiplication, r =
JP̄j, where J is complex symmetric and block tridiagonal whose main diagonal
blocks are matrices M , and subdiagonal blocks are matrices B. Matrices M
and B are computed in the block tridiagonalizaition stage.

• lanTriInit
Perform initialization for tridiagonalization operation. Allocate necessary mem-
ories for computation.

• lanTriEnd
Release memories after tridiagonalization is done.

• lanTriExcept
Handle exceptions thrown in the tridiagonalization stage. Then release memo-
ries one after another.

The routines implemented in LAPACK and BLAS wrapper are listed below:

• wrapperInit
Allocate work memories for the routines of Lapack wrapper.

27

• freeWrapper
Release work memories occupied by LAPACK and BLAS wrapper.

• qr
Perform QR factorization.

• orthogonalize
Apply Gram-Schmidt method to orthogonalizing A against B.

• mmult
±op(A) ∗ op(B) + C

• bmmult
This function is the same as mmult() except matrices A and B are two bigger
matrices, n-by-n for example. mmult() has better performance than this one.
’b’ means bigger. This function is only used to check errors in factorization and
orthogonality of block Lanczos algorithm.

• mdiv
R = A/B

• mplus
R = A + B

• mscal
R = α ∗ A,
where α is a real constant.

• matnorm
Compute the norm of a matrix.

• mvmult
r = op(A) ∗ x + y

• symvmult
r = A ∗ x + y,
where A is a complex symmetric matrix.

• vmult
r = xT ∗ y or r = xH ∗ y

• vztplus
y = ±α ∗ x + y,
where α is a complex scalor. ’z’ means complex. ’t’ means times.

28

• vdtplus
y = ±α ∗ x + y,
where α is a real scalor. ’d’ means real. ’t’ means times.

• vplus
y = x + y

• vscal
r = α ∗ x,
where α is a real scalor.

• vecnorm
Compute the norm of a vector.

• randComplexMat
Generate a random complex matrix. The real and imaginary part of each ele-
ment are in uniform (-1,1) distribution.

• randOrthMat
Generate starting matrix of orthonormal columns by using QR factorizatoin.

• randComplexVec
Generate a random vector. The real and imaginary part of each element are in
uniform (-1,1) distribution.

• randComplexNum
Generate a random complex number.

Routines implemented in low level computing module are listed below:

• memult
R = α ∗ A. ∗B + C
’e’ means element.

• vzemult
r = x. ∗ y + z, r = x. ∗ ȳ + z

• vdemult
r = α ∗ x. ∗ y + z, or r = α ∗ x. ∗ ȳ + z,
where α is real number, and x is a real vector

• zzmult
±a ∗ b + c or ±a ∗ b̄ + c
a, b, c are complex numbers.

29

• dzmult
±a ∗ b + c or ±a ∗ b̄ + c
a is a real number, b and c are complex number.

• zdiv
r = a/b
a is a complex number, b is a real number.

• conjg
Conjugate of a complex number.

3.4 Fortran Array

Fortran stores the two-dimensional arrays by columns, in the opposite order from C.
We must use a one-dimensional C array of size m ∗ n to store a matrix of size m ∗ n.
As an example of accessing Fortran-style arrays in C, the following code shows how to
allocate memory for double matrix A of size m ∗n which LAPACK will be expecting,
and initialize A so that all of column j has the value j:

double *A;

A = (double *)malloc(m * n * sizeof (double));

for (j = 0; j < n; j++) {

for (i = 0; i < m; i++) {

A[j * m + i] = j

}

}

Note the loop over the row index i is the inner loop, since column entries are
contiguous.

3.5 Important Variables

The project is implemented on the basis of corresponding block Lanczos algorithm
[12]. Appendix C.1 C.2 and C.3 are the main source codes of MATLAB implementa-
tion. The project strictly follows the procedural of MATLAB implementation. The
important variables in the project have the corresponding variables in the MATLAB
implementation. Table 3.1 3.2 lists the variables used in block tridiagonalization and
tridiagonalization stage respectively. Table 3.3 lists the work buffers used in these

30

MATLAB Variable C Variable Variable Size
A DoubleComplexMat *A n ∗ n
Q DoubleComplexMat *Q n ∗ n

DoubleComplex *Q m
M DoubleComplexMat *M bs ∗ bs

DoubleComplex **M m
B DoubleComplexMat *B bs ∗ bs

DoubleComplex **B m
W(:,:,:,cur) DoubleComplexMat *WCur bs ∗ bs

DoubleComplex **WCur m
W(:,:,:,old) DoubleComplexMat *WOld bs ∗ bs

DoubleComplex **WOld m
R DoubleComplexMat *R n ∗ bs

Table 3.1: Variables in block tridiagonalization stage in MATLAB and C implemen-
tations. n is the order of given matrix A. bs is the block size.

two stages. There is ” m” in some of the names of variables which means the memory
of the matrix or vector.

Some variables need to be further explained. In the following examples which all
come from the project, we suppose n is the order of given matrix, bs is the block
size. Please note the index to any array is supposed to start from 1 not from 0
like in C language tradition. In the block Lanczos algorithm Q is a matrix of n-by-
n. However usually one of its blocks of n-by-bs is involved in computing. Another
variable, DoubleComplex ∗Q m, represents the pointer to the data of the matrix Q
of n-by-n. The following code performs R = AQ̄j where Qj means the jth block of
Q.

Q->m = n;

Q->n = bs;

Q->mat = Q_m + j * bs;

mmult ("+", A, "N", Q, "C", NULL, R);

Usually Q → m and Q → n are set only once. Only Q → mat is dynamically set
to a new memory address before invoking wrapper routines.

Some variables represent a sequence of matrices. These matrices look like differ-
ent blocks, for example DoubleComplex ∗ ∗ M m. Variable DoubleComplex ∗M is
responsible for being a representative of one of these blocks to perform computation.
Suppose variable DoubleComplexMat ∗Q is already set. Then the following code
computes R = R−QjMj:

31

MATLAB Variable C Variable Variable Size
P DoubleComplexMat *P n

DoubleComplex *P m
a DoubleComplexVec *a, n

DoubleComplex *a m
b DoubleRealVec *b n− 1

DoubleReal *b m
wCur DoubleComplexVec *wCur n

DoubleComplex *wCur m
wOld DoubleComplexVec *wOld n

DoubleComplex *wOld m
r DoubleComplexVec *r n

Table 3.2: Variables in tridiagonalization stage in MATLAB and C implementations.
n is the order of given matrix A

Variable Variable Size
DoubleComplexMat *Work1 bs ∗ bs
DoubleComplexMat *Work2 bs ∗ bs
DoubleComplexVec *workZ, n
DoubleComplex *workZ m
DoubleComplexVec *workD n
DoubleComplex *workD m

Table 3.3: The work buffers in the block Lanczos algorithm.

M->m = bs;

M->n = bs;

M->mat = M_m[j];

mmult ("-", Q, "N", M, "N", R, R);

There are other variables similar to DoubleComplex ∗ ∗M m in the block tridi-
agonalization stage, like DoubleComplex ∗ ∗ B m, ∗ ∗WCur m, ∗ ∗WOld m.

In tridiagonalization stage sometimes one part of vector, or one element of vec-
tor is involved in computing. Suppose variables DoubleComplexVec ∗a, ∗wCur and
∗workZ represent vectors of size n, variablies DoubleComplex ∗a m, ∗wCur m and
∗workZ m are the pointers to the memory of these vectors. Then the following code
performs computation which involves element multiplication and addition of vectors,
workZ = workZ + a(2 : j − 1). ∗ conjg(wCur(2 : j − 1))

32

a->vec = &a_m[2];

a->n = j - 2;

wCur->vec = &wCur_m[2];

wCur->n = j - 2;

workZ->vec = &workZ_m[1];

workZ->n = j - 2;

vzemult (a, wCur, "C", workZ, workZ);

3.6 Index to Array

In C language standard, the index to an array starts from 0. In MATLAB program-
ming, however, the index is from 1. We found out that LAPACK and BLAS uses a
simple technique to make the index start from 1. Conforming to MATLAB imple-
mentation of block Lanczos algorithm can reduce the opportunity of introducing new
errors and new unnecessary troubles. So we adopt this technique to make the index
to the array start from 1.

At the beginning of the procedural to perform the block tridiagonalization, we
decrease the memory pointers used in this stage by 1 as the following,

--M_m;

--B_m;

--WCur_m;

--WOld_m;

Of course before the procedural runs into the next stage to perform tridiagonal-
ization, we increase the pointers:

++M_m;

++B_m;

++WCur_m;

++WOld_m;

In the procedural to perform tridiagonalization we use the same technique to
adjust the memory pointers.

3.7 Memory Operations

The user interface of block Lanczos algorithm, zcstrd (), has already shown the prin-
ciple of the memory operations in the project. The caller of the function is respon-
sible for providing the memory to store the result. For example user should provide

33

memories for matrix Q and P to store the result of block tridiagonalization and tridi-
agonalization stage before zcstrd () is invoked. The callee may allocate local work
buffers. It is callee’s responsibility to release the work buffers before it returns to the
caller.

From Table 3.1, 3.2 and 3.3 you can find out that there are lots of memories that
need to be allocated and freed. The project should be robust to handle memory
operations. we pay much attention on the cases when the program fails to allocate
memory for a variable. It can happen after some memories have already been success-
fully allocated before the failure. We don’t invoke C function exit() to simply return
to the operating system. That would not be the user’s expectation. We use the sys-
tematic steps to handle this case. Suppose the caller A calls function B to perform
some kinds of operations, and function B needs to allocate memories. If function
B is successful to allocate memories it needs, then B is responsible for releasing all
memories it has allocated before it returns to caller A. If it fails, it should release
the already allocated memories before the failure. Function B must guarantee that
there is no memory which is not released. Caller A should check the return code from
function B.

We also specify that function B doesn’t necessarily check if the pointer to the
memory, transferred to function B as an argument, is NULL or not, or the size of
memory is correct. It is function A’s responsibility to guarantee that the pointer is
not NULL, and the memory of correct size is allocated. By this strategy function
B saves many memory correctness tests, like ”if(ptr == NULL)”. It is one of our
methods to achieve as best performance as we can. We don’t find memory correctness
check in LAPACK either.

We list several code samples in block tridiagonalization stage to show our memory
operations. The memory operations in Lanczos tridiagonalization has similar proce-
dural. The following code is to allocate memory for DoubleComplexMat ∗ ∗ M in
Table 3.1, where n is the order of given matrix, bs is the block size:

if (!(M=(DoubleComplexMat *)malloc(sizeof(DoubleComplexMat)))) {

blkTriExcept("blkTriInit", "Malloc for *M failed");

return 1;

}

if (!(M_m=(DoubleComplex **)malloc(steps*sizeof(DoubleComplex *)))) {

blkTriExcept("blkTriInit", "Malloc for **M_m failed");

return 1;

}

for (i = 0; i < steps; i++) {

if (!(M_m[i]=(DoubleComplex *)malloc(bs*bs*sizeof(DoubleComplex)))) {

blkTriExcept("blkTriInit", "Malloc for M_m[i] failed");

34

return 1;

}

}

We use the following code to release DoubleComplexMat ∗ ∗M .

free (M);

M = NULL;

for (i = 0; i < blks; i++) {

free (M_m[i]);

M_m[i] = NULL;

}

free (M_m);

M_m = NULL;

They are many memories need to be allocated and freed in the project. We release
the memories in the order of their allocation. So we don’t lose any memory which
needs to be released.

In the above example function blkTriExcept (char ∗ pos, char ∗msg) is called
whenever exception is thrown in the block tridiagonalization stage. The memories at
this stage is listed in Table 3.1. Function blkTriExcept() releases memories allocated
before the exception, and prints in which function the exception was thrown and the
reason. The implementation of this function is as the following:

void blkTriExcept (char *pos, char *msg) {

int i;

printf("%s: %s\n", pos, msg);

if (A != NULL) {

free (A);

A = NULL;

}

if (Q != NULL) {

/* Q->mat is assigned by user instead, So don’t free Q->mat*/

free (Q);

Q = NULL;

}

if (M != NULL) {

35

free (M);

M = NULL;

}

if (M_m != NULL) {

for (i = 0; i < steps; i++) {

if (M_m[i] != NULL) {

free (M_m[i]);

M_m[i] = NULL;

}

}

free (M_m);

M_m = NULL;

}

if (B != NULL) {

free (B);

B = NULL;

}

if (B_m != NULL) {

for (i = 0; i < steps - 1; i++) {

if (B_m[i] != NULL) {

free (B_m[i]);

B_m[i] = NULL;

}

}

free (B_m);

B_m = NULL;

}

if (WCur != NULL) {

free (WCur);

WCur = NULL;

}

if (WCur_m != NULL) {

for (i = 0; i < steps; i++) {

if (WCur_m[i] != NULL) {

free (WCur_m[i]);

WCur_m[i] = NULL;

}

}

36

free (WCur_m);

WCur_m = NULL;

}

if (WOld != NULL) {

free (WOld);

WOld = NULL;

}

if (WOld_m != NULL) {

for (i = 0; i < steps; i++) {

if (WOld_m[i] != NULL) {

free (WOld_m[i]);

WOld_m[i] = NULL;

}

}

free (WOld_m);

WOld_m = NULL;

}

if (R != NULL) {

if (R->mat != NULL) {

free (R->mat);

R->mat = NULL;

}

free (R);

R = NULL;

}

if (Work1 != NULL) {

if (Work1->mat != NULL) {

free (Work1->mat);

Work1->mat = NULL;

}

free (Work1);

Work1 = NULL;

}

if (Work2 != NULL) {

if (Work2->mat != NULL) {

free (Work2->mat);

Work2->mat = NULL;

37

}

free (Work2);

Work2 = NULL;

}

}

To allocate, release memory and handle exceptions in the project is so complicated
that the functions in two files, blkTriAux.c and lanTriAux.c, are supposed to do
nothing but these operations in the block tridiagonalization and tridiatgonalization
stage.

3.8 Optimization of LAPACK and BLAS Wrapper

The performance is one requirement of the project. It is mainly determined by the
block Lanczos algorithm. On the other hands, some design and implementation
strategies also play very important role.

After the implementation is almost done and fully verified, we compared our per-
formance with LAPACK’s routine of bidiagonalization of general complex matrices.
See Section 3 for the reason. Our implementation is faster than the LAPACK’s bidi-
agonalization routine. But we had the feeling that we could improve the performance
even further. We examined the LAPACK and BLAS wrapper implementation and
figured out that the wrapper might be a little bit too general. For example function
mmult(), which performs R = op(A)op(B) + C, is frequently called in block Lanczos
algorithm. Its performance affects a lot on the efficiency of the whole software. We
took care of the case when op(A) = Ā. However this case is believed not to happen
in block Lanczos algorithm. The test of this case in function mmult() has no use but
to waste time. Function mdiv() is another example. It computes R = A/B. Our
implementation even checks whether the result of computing is specified to store not
in matrix R, but in matrix B, ie B = A/B. We found out this case can never happen
in the algorithm. We had such similar useless checks when we implemented other
functions of the wrapper. We examined and modified every function in the wrapper
for this issue.

Function mmult() deals with the case op(B) = B̄. The LAPACK’s function,
zlacgv (), which is used to compute the conjugate of matrix B, would store the
conjugate of matrix B in B itself. So it is necessary to allocate a memory to keep
the original matrix B. This operation is frequently performed. It makes sense to
avoid the dynamic memory allocation. We asked ourselves the question about how
many memory blocks are common between the wrapper’s functions, and what is the

38

size of every such memory. After careful generalization we introduced several global
work buffers which are allocated in advance before the computations. The following
is definition:

/***

*

* Global variablies

*

* For the sake of performance, specify work buffers which frequently

* involve in computing.

* *mat Work buffer for a matrix. Max size = n * bs

* *tau Work buffer for QR fact. Max size = n

* *work Work buffer for QR fact. Max size = n

*

***/

DoubleComplex *mat = NULL;

DoubleComplex *tau = NULL;

DoubleComplex *work = NULL;

During the initialization of block Lanczos algorithm, a function in the LAPACK
and BLAS wrapper, wrapperInit (int n, int bs), is called to allocate memories and
assign these global variables the pointers to the allocated memories. At the end of
block Lanczos algorithm, we call function freeWrapper () to release these memories.
Every function in the wrapper can freely use these three memories provided it doesn’t
require larger size than the maximum of these memories.

The numerical experiments have shown that we improved the performance of our
project greatly by these strategies. We compared the run time of our implementation
before and after the optimization. Please note in these experiments we multiplied
the matrix Q which is computed in block tridiagonalization stage by matrix P which
is computed in tridiagonalization stage to generate a final matrix. The run time
demonstrated below includes this procedural. The first example is the run time of
tridiagonalization of a random complex symmetric matrix of size 1024 before the
optimization:

Block Lanczos tridiagonalization: 438.80 seconds

Bidiagonalization: 476.00 seconds

Next is the run time of our optimized implementation for another random complex
symmetric matrix of size 1024:

39

Block Lanczos tridiagonalization: 399.77 seconds

Bidiagonalization: 482.77 seconds

The three auxiliary buffers have specific sizes. This limitation makes the functions
of LAPACK and BLAS wrapper not suitable for all general cases. We make comments
about the limitation for every function of the wrapper in our implementation. The
following comment of function mmult() is a typical one:

/***

*

* Abstract

* Compute the multiplication and addition of matrices,

* R = op(A) * op(B) + C,

* R = -op(A) * op(B) + C,

* BLAS doesn’t support conjg(B), we must implement it.

*

* Input

* signa "+", op(A) * op(B) + C

* "-", -op(A) * op(B) + C

* A Matrix. Size of op(A) = m * k

* transa "N", op(A) = A

* "T", op(A) = A.’ nonconjugate transpose.

* "H", op(A) = A’ conjugate transpose

* B Matrix. Size of op(B) = k * n

* transb "N", op(B) = B

* "T", op(B) = B.’ nonconjugate transpose.

* "H", op(B) = B’ conjugate transpose

* "C", op(B) = conjg (B) just conjugate.

* C Matrix. Size = m * n

* if C = NULL, then R = (+, -) op(A) * op(B)

*

* Output

* R Matrix. Size = m * n.

*

* Return

* 0 Success exit

* 1 Exception occurs

*

* NOTE

40

* (1) The function assumes matrix R is not matrix A or B to

* achieve the best performance. That means the result of

* computing should be put in C or another matrix.

* (2) The function doesn’t deal with the case that op(A) = "C"

* because block Lanczos method doesn’t has this operation.

* (3) Only one of the matrices, A, B or C, can be n-by-n size

* if one of them involves "T", "H" or "C" operation.

* Otherwise call routine bmmult (), where ’b’ means big

* matrix-matrix operation. If there is no such operations

* at all, matrix A and B can be n-by-n size.

*

***/

We also paid attention on some trivial details to get better performance. Function
call is time-consuming, so we try to avoid calling a function if possible. For example,
the conjugate function in the wrapper is simple, and is found to be used only by
function mmult(). We added the conjugate function implementation into function
mmult(), then deleted the conjugate function from the wrapper.

3.9 Code Sample 1

We list some parts of implementation of the project here. The MATLAB implemen-
tation of the first example is as the following,

R=Tmp-Q(:,qLow:qUp)*M(:,:,j)-Q(:,(qLow-bs):(qUp-bs))*B(:,:,j-1).’;

[Q(:,(qLow+bs):(qUp+bs)),B(:,:,j)]=qr(R, 0);

Suppose we define DoubleComplexMat Q pre and Q next as local variables to
represent two blocks of matrix Q, Q(:, (qLow−bs) : (qUp−bs)) and Q(:, (qLow+bs) :
(qUp + bs)), respectively. The C implementation is as the following:

Q->m = n;

Q->n = bs;

Q->mat = Q_m;

M->m = bs;

M->n = bs;

B->m = bs;

B->n = bs;

41

Q_pre.m = Q->m;

Q_pre.n = Q->n;

Q_pre.mat = Q->mat - Q->m * bs;

Q_next.m = Q->m;

Q_next.n = Q->n;

Q_next.mat = Q->mat + Q->m * bs;

M->mat = M_m[j];

/* R = R - Q(j) * M(j) - Q(j-1) * B(j-1).’ */

mmult ("-", Q, "N", M, "N", R, R);

B->mat = B_m[j-1];

mmult ("-", &Q_pre, "N", B, "T", R, R);

B->mat = B_m[j];

qr (R, &Q_next, B);

3.10 Code Sample 2

MATLAB implementation of the second sample is as the following:

W(:,:,k,old) = M(:,:,k)*conj(W(:,:,k,cur)) ...

- W(:,:,k,cur)*M(:,:,j) ...

+ (eps*0.3)*((B(:,:,1)+B(:,:,2)) ...

.*(randn(bs,bs)+IM*randn(bs,bs)));

Suppose we define DoubleComplexMat B2 as a local variable. Then the corre-
sponding C implementation is:

M->m = bs;

M->n = bs;

WCur->m = bs;

WCur->n = bs;

WOld->m = bs;

WOld->n = bs;

B->m = bs;

B->n = bs;

B2->m = bs;

B2->n = bs;

Work1->m = bs;

42

Work1->n = bs;

Work2->m = bs;

Work2->n = bs;

M->mat = M_m[k];

WCur->mat = WCur_m[k];

WOld->mat = WOld_m[k];

mmult ("+", M, "N", WCur, "C", NULL, WOld);

M->mat = M_m[j];

mmult ("-", WCur, "N", M, "N", WOld, WOld);

B->mat = B_m[1];

B2.mat = B_m[2];

mplus (B, &B2, Work1);

randComplexMat (Work2);

WOld->mat = WOld_m[k];

memult (eps * 0.3, Work1, Work2, WOld, WOld);

3.11 Code Sample 3

Next is the MATLAB code in tridiagonalization stage:

wOld(2:j-1) = (b(2:j-1).*conj(wCur(3:j)) ...

+ a(2:j-1).*conj(wCur(2:j-1)) ...

- a(j)*wCur(2:j-1) ...

+ b(1:j-2).*conj(wCur(1:j-2)) ...

- b(j-1)*wOld(2:j-1))/b(j) ...

+ eps*0.3*(b(2:j-1)+b(j)*ones(j-2,1)) ...

.*(randn(j-2,1) + IM*randn(j-2,1));

To implement this one line of MATLAB code, C seems cumbersome:

/* workZ = b(2:j-1) .* conjg(wCur(3:j))

* + a(2:j-1) .* conjg(wCur(2:j-1))

* - a(j) * wCur(2:j-1)

* + b(1:j-2) .* conjg(wCur(1:j-2))

*/

workZ->vec = &workZ_m[1];

workZ->n = j - 2;

b->vec = &b_m[2];

b->n = j - 2;

43

wCur->vec = &wCur_m[3];

wCur->n = j - 2;

vdemult (1.0, b, wCur, "C", NULL, workZ);

a->vec = &a_m[2];

a->n = j - 2;

wCur->vec = &wCur_m[2];

vzemult (a, wCur, "C", workZ, workZ);

vztplus ("-", &a_m[j], wCur, workZ, workZ);

b->vec = &b_m[1];

wCur->vec = &wCur_m[1];

vdemult (1.0, b, wCur, "C", workZ, workZ);

/* workZ = workZ - b(j-1)*wOld(2:j-1) */

wOld->vec = &wOld_m[2];

wOld->n = j - 2;

vdtplus ("-", b_m[j-1], wOld, workZ, workZ);

/* wOld(2:j-1) = workZ / b(j) */

vscal (1 / b_m[j], workZ, wOld);

/* workD = b(2:j-1)+b(j)*ones(j-2,1) */

workD->vec = &workD_m[1];

workD->n = j - 2;

setRealArray (workD->vec, workD->n, b_m[j]);

b->vec = &b_m[2];

b->n = j - 2;

vplus (b, workD, workD);

/* workZ = randn(j-2,1) + IM*randn(j-2,1) */

randComplexVec (workZ);

/* wOld(2:j-1) = wOld(2:j-1) + eps*0.3*workD.*workZ */

vdemult (eps*0.3, workD, workZ, "N", wOld, wOld);

44

3.12 Comment Sample

The following is the comment for function blkTriInit. There is a notice to describe
some important issues:

/***

*

* Abstract:

* Perform initialization for block tridiagonalization operation.

* Allocate necessary memories.

*

* Input:

* na Order of matrix A.

* A_p Pointer to the memory of matrix A.

* blk Block size.

* S_p Pointer to the starting matrix S.

*

* Output:

* a_p Pointer to the memory of vector a.

* b_p Pointer to the memory of vector b.

* Q_p Pointer to the memory of matrix Q.

* P_p Pointer to the memory of matrix P.

*

* Return:

* 0 Success exit

* 1 Memory allocation exception occurs

*

* NOTE:

* There is a little difference in the definition of MIDEPS in

* C implementation from the paper and MATLAB code. Matlab code:

* SQRTEPS = sqrt(eps)

* MIDEPS = sqrt(sqrt(SQRTEPS))^7

*

* Later in the detection of loss of orthogonality,

* max(abs(W(:, colW, k, old))) >= SQRTEPS

* Supporse w is maximum element of matrix W, then

* max(abs(W(:, colW, k, old))) > = SQRTEPS means

* sqrt(w.r^2 + w.i^2) >= sqrt(eps)

*

* For the sake of performance, C implementation will be,

45

* MIDEPS = sqrt(sqrt(eps))^7

* Supporse w is one element of matrix W, then use the following code

* to test if this element loses orthogonality,

* w.r^2 + w.i^2 >= eps

*

***/

46

Chapter 4

Verification

The project’s last stage, verification, is described in this chapter. First our test plan
is present in Section 4.1. Then the verification of LAPACK and BLAS wrapper, and
block Lanczos algorithm implementation are present in Section 4.2 and 4.3. The
format of the data file, which we used for verification, is present in Section 4.4. In
Section 4.5 and 4.6 we present two typical test cases. We compared our block Lanczos
tridiagonalization implementation wiht LAPACK’s routine of bidiagonalization of
complex matrices. Section 4.7 shows the comparison result. The targets the project
achieved are described in Section 4.8.

4.1 Test Plan for Block Lanczos Algorithm

We have the following test plans:

• A random complex symmetric matrix generator is developed since the project
requires the software to be able to handle any complex symmetric matrix. The
generator sets every element of the matrix to be uniformly distributed.

• The starting orthonormal columns matrix S is generated from QR factorization
of a random complex n-by-b matrix.

• The error in the orthogonality of Q was measured by:

‖I −QHQ‖F/n2

The error in the tridiagonalization T = QHAQ̄ was measured by:

‖QHAQ̄− T‖F/n2

47

• Compare the performance with LAPACK’s routine of bidiagonalization of gen-
eral complex matrices. We supposed to compare with LAPACK’s routine of
tridiagonalization of general complex matrices. Unfortunately LAPACK sup-
ports only the tridiagonalization of Hermitian matrices, not general complex
matrices. With the advice of Professor Qiao, we compared with LAPACK’S
routine of bidiagonalization of general complex matrices, zgebrd().

• Test our implementation on the matrices of large size, say, 1024.

• Perform stress testing to determine the ability of the implementation to cope
with large matrices or prolonged computing, examine whether there exists mem-
ory leak danger.

4.2 Verification of LAPACK and BLAS Wrapper

The accuracy of LAPACK and BLAS wrapper and the low level computing module
play important role in the success of the project. We applied three methods to test.
One is to compute the error. For example, function qr() computes QR factorization
of given matrix A, it generates two matrices, Q and R. We computed ‖QR−A‖F/n2

to test the accuracy of the function. Using MATLAB is another method. We gave
MATLAB and our function the same data, then compared their result. Sometimes
we applied both the error computing and MATLAB to the full test of a function
to make sure that it is correct and robust. Some functions need to handle many
cases. The frequently used function mmult() computes R = op(A) ∗ op(B) + C or
R = −op(A) ∗ op(B) + C, where op(X) maybe X, XT orXH . We developed test
programs to go through every path in mmult().

4.3 Verification of Block Lanczos Algorithm

When we began to develop the block Lanczos algorithm on the basis of LAPACK
and BLAS wrapper and the low level computing module, we faced one problem: how
do we know the computing in every step of every iteration in block tridiagonalization
and tridiagonalization stage is correct? In the final testing we can check errors in
orthogonality and factorization. In the development stage we need a fast and efficient
way to locate and correct errors. MATLAB is the big help for this purpose. By the
same method as we applied in the verification of LAPACK and BLAS wrapper, we
gave MATLAB and our C implementation the same data to compute. We compared
the result of every trivial computation made by C implementation with MATLAB
implementation. MATLAB helped us efficiently find all errors in the block Lanczos

48

algorithm implementation. We also developed several routines which print out the
data of matrices and vectors. After we corrected one error or changed the function-
ality, both MATLAB and these print routines helped us check the computation more
easily and quickly.

4.4 Data File for Developing and Testing

In order to input the data coming from MATLAB into C program, we first stored
matrix A, starting matrix S, one random matrix and one random vector generated
by MATLAB into a text file. Then we developed a C function to read the text file
into the corresponding memories.

We set the configuration of MATLAB so that it prints a matrix or a vector in the
command window in ”long g” format and compact form. We decreased the size of
MATLAB window so that MATLAB can print out any size of matrix and vector in
only one column. The following is a typical MATLAB output of a matrix:

>> A

A =

Column 1

0.0716881986569971 - 0.00767011476577342i

-0.016811636657866 + 0.0134989080664658i

......

......

-0.0991974048156785 + 0.0957366734282219i

-0.0587775546633594 + 0.0229676758117651i

Column 2

-0.016811636657866 + 0.0134989080664658i

0.0684827583322591 - 0.0106944620780606i

......

......

-0.0287528136042179 - 0.00673593437374433i

0.0373572489045463 + 0.0215571535732i

Column 3

......

......

Column 128

-0.0587775546633594 + 0.0229676758117651i

0.0373572489045463 + 0.0215571535732i

......

49

......

0.0391611913210441 + 0.0271795819142423i

0.0209261831926791 + 0.0396159133305231i

The data file which is input into C program has the following format:

n bs

matrix A

starting matrix S

random block matrix

random vector

The following is a sample data file. The line starting with ”%” means it is com-
ment. This sample shows that it requires as least work as possible to edit the data
from MATLAB to generate the file. We just changed MATLAB’s ”Column” to be
comment, then put several matrices and vectors together into one file.

% Matrix and block size.

15 3

% Matrx A. Size = n * n --

% Column 1

0.0478589394560227 - 0.0428073419593041i

0.283574922665358 + 0.0264951601674461i

......

......

-0.180698010996064 + 0.00319292523110796i

-0.140536270515727 - 0.21671273149041i

% Column 2

0.283574922665358 + 0.0264951601674461i

-0.102703286196567 - 0.108509759880881i

......

......

-0.203457543499649 - 0.0556994850689247i

0.109460499990275 - 0.204705548917621i

% Column 3

......

......

% Column 15

-0.140536270515727 - 0.21671273149041i

50

0.109460499990275 - 0.204705548917621i

......

......

0.0488464556736896 - 0.0155762855663472i

0.137928067945508 + 0.0961066192839481i

% Start matrx S. size = n * bs -------------------------------------

% Column 1

-0.387614354984968

-0.0119714591590236

......

......

-0.209863793806297

-0.0665062941010241

% Column 2

0.492110768859258

-0.43587178334902

......

......

-0.239240659896391

-0.0106846213254676

% Column 3

-0.0615874188133977

-0.0461140236170074

......

......

0.353201583530759

0.131974824336085

% Random block matrix. Size = bs * bs ------------------------------

% Column 1

0.528743010962225 + 0.591282586924176i

0.219320672667622 - 0.643595202682526i

-0.921901624355539 + 0.38033725171391i

% Column 2

-2.17067449430526 - 1.00911552434079i

-0.0591878245211912 - 0.0195106695302893i

-1.01063370647425 - 0.0482207891453123i

% Column 3

0.614463048895481 + 4.3191841625545e-005i

51

0.507740785341986 - 0.317859451247688i

1.69242987019052 + 1.09500373878749i

% Random Vector. Size = n * 1 --------------------------------------

-0.432564811528221 + 0.11393131352081i

-1.6655843782381 + 1.06676821135919i

......

......

2.1831858181971 - 1.44096443190102i

-0.136395883086596 + 0.571147623658178i

4.5 Test Case 1

The data file shown in Section ?? was used from the beginning of block Lanczos al-
gorithm implementation after LAPACK and BLAS wrapper and low level computing
module were finished. The matrix A in the data file is deliberately specified to be
15-by-15, the block size is specified to be 3. Matrix A is not big, but it is enough to
help us go through every path of the algorithm to find all possible errors. This data
file played a very important role in the completeness of the project. The following is
output of our C implementation on this data file:

=================== Block Lanczos Algorithm ===================

Order of matrix A = 15. Block size = 3.

Matrix A

0.0478589395 -0.0428073420i ... -0.1405362705 -0.2167127315i

0.2835749227 +0.0264951602i ... 0.1094605000 -0.2047055489i

0.2126834343 +0.1010314229i ... 0.0728396097 -0.0321435091i

0.0340301898 -0.1170237713i ... 0.1198303864 +0.2465204200i

......

......

0.0930588095 -0.0108819143i ... -0.0638638363 +0.0725416028i

0.1279936798 -0.0006970399i ... 0.0467403617 -0.1217547535i

-0.1806980110 +0.0031929252i ... 0.0488464557 -0.0155762856i

-0.1405362705 -0.2167127315i ... 0.1379280679 +0.0961066193i

52

Starting matrix S

-0.3876143550 +0.0000000000i ... -0.0615874188 +0.0000000000i

-0.0119714592 +0.0000000000i ... -0.0461140236 +0.0000000000i

-0.2314101541 +0.0000000000i ... -0.2587480752 +0.0000000000i

-0.0856510685 +0.0000000000i ... -0.1363600296 +0.0000000000i

......

......

-0.1492539258 +0.0000000000i ... -0.1036389505 +0.0000000000i

-0.1948120134 +0.0000000000i ... 0.3645636182 +0.0000000000i

-0.2098637938 +0.0000000000i ... 0.3532015835 +0.0000000000i

-0.0665062941 +0.0000000000i ... 0.1319748243 +0.0000000000i

===================== BlkTri Iteration #4 =====================

Matrix Q block #5

-0.0237943123 -0.0230355910i ... 0.2144107268 -0.1121143141i

-0.4447218553 +0.0205433687i ... 0.0753316986 -0.2005011249i

0.0346898896 -0.0462275251i ... -0.1301028749 -0.1127984841i

-0.0857878112 +0.0762725490i ... 0.3313906096 -0.1729874419i

......

......

0.1172680257 -0.0649908712i ... -0.1971375633 +0.1700256952i

0.1371619099 -0.3726888987i ... -0.2716242849 +0.1334174181i

0.0819607628 +0.1199584190i ... 0.1380740139 -0.0654531821i

0.0863491842 -0.0725421391i ... -0.0503035860 +0.1019349581i

Matrix M block #4

0.3114919166 +0.1436544414i ... 0.2231779007 +0.0286534411i

0.0644497831 -0.0056412862i ... 0.0577689467 -0.0712097797i

0.2231779007 +0.0286534411i ... 0.0074985421 -0.2149166194i

Matrix B block #4

0.3521671481 +0.0000000000i ... -0.2174270369 -0.0977944839i

0.0000000000 +0.0000000000i ... -0.0759708992 +0.0387181555i

0.0000000000 +0.0000000000i ... 0.2608633275 +0.0000000000i

===================== LanTri Iteration #14 =====================

Matrix P column #15

53

-0.2384590400 -0.3009164102i -0.0954178108 -0.1969373769i

-0.0737626662 -0.0585505882i 0.1968172044 -0.1068801589i

0.1706240239 +0.1771808314i 0.0396924044 +0.2207635223i

-0.2979288003 +0.1057655403i -0.2936485570 +0.0351849059i

......

......

-0.0428570719 -0.0254166999i 0.2347595726 +0.1999805341i

0.3400777653 +0.0472979508i -0.1825663841 -0.0854940114i

0.0666418432 +0.0904082649i 0.0608288089 +0.2285311562i

0.1151987079 -0.3309174602i

Vector a

0.4132803969 -0.1607432363i -0.2191385078 -0.1845246417i

0.1738547341 -0.0359881760i -0.0621378994 -0.0384280844i

-0.0884579866 +0.0802786025i -0.0806427002 +0.1349532193i

0.1383766603 +0.2654783824i 0.0955196537 +0.2948483760i

......

......

0.0790878959 +0.0115411736i 0.3767681478 +0.0248356685i

-0.0653626625 -0.3457474798i -0.1716503934 -0.4603941507i

-0.0823728291 -0.3353493908i 0.2536401538 -0.5080346759i

Vector b

0.6557260600 0.3122593127 0.5351583737 0.4362215701

0.5870279458 0.3991668196 0.3685844057 0.4496510986

0.4384279361 0.2769169967 0.3888436648 0.3983887749

0.3131608130 0.3442559780

Block Lanczos tridiagonalization: 0.01 seconds

Error in orthogonality: 2.364e-016

Error in factorization: 1.770e-016

=================== LAPACK Bidiagonalization ===================

Bidiagonalization: 0.01 seconds

Error in orthogonality of Q: 1.079e-017

Error in orthogonality of P: 1.098e-017

Error in factorization: 7.490e-018

54

Next is the output of MATLAB implementation. It is clear that our C implemen-
tation of block Lanczos algorithm has exactly the same computation as MATLAB
implementation.

==================== Block Lanczos Algorithm (MATLAB) ====================

Order of matrix A = 15, block size = 3

Matrix A:

0.04785893945602 -0.04280734195930i...-0.18069801099606 +0.00319292523111i

0.28357492266536 +0.02649516016745i...-0.20345754349965 -0.05569948506892i

0.21268343429027 +0.10103142293987i... 0.17211543844081 -0.05425759812987i

0.03403018976937 -0.11702377129074i... 0.08657862532985 +0.09501768369865i

......

......

0.09305880952240 -0.01088191434569i...-0.05762133793361 +0.29714182101118i

0.12799367975477 -0.00069703991728i... 0.22165793911916 -0.16196028035689i

-0.18069801099606 +0.00319292523111i... 0.01462084819687 -0.01229791026297i

-0.14053627051573 -0.21671273149041i... 0.04884645567369 -0.01557628556635i

Starting Matrix S:

-0.38761435498497 +0.00000000000000i... 0.49211076885926 +0.00000000000000i

-0.01197145915902 +0.00000000000000i...-0.43587178334902 +0.00000000000000i

-0.23141015405530 +0.00000000000000i...-0.25663699776637 +0.00000000000000i

-0.08565106851322 +0.00000000000000i...-0.20604272597600 +0.00000000000000i

......

......

-0.14925392576933 +0.00000000000000i... 0.03791128365443 +0.00000000000000i

-0.19481201342857 +0.00000000000000i...-0.27609893979653 +0.00000000000000i

-0.20986379380630 +0.00000000000000i...-0.23924065989639 +0.00000000000000i

-0.06650629410102 +0.00000000000000i...-0.01068462132547 +0.00000000000000i

============================= BlkLan iter #4 ==============================

Matrix Q block #5

-0.02379431234652 -0.02303559100384i... 0.07279969475170 -0.17329927703256i

-0.44472185530834 +0.02054336871827i...-0.16139888159055 -0.02083455626194i

0.03468988955630 -0.04622752512405i...-0.33568530829753 +0.00592836963793i

55

-0.08578781119378 +0.07627254900486i... 0.39549556149190 +0.42236929197806i

......

......

0.11726802574352 -0.06499087119617i... 0.19891528042628 -0.16570248772914i

0.13716190987916 -0.37268889873881i... 0.16017101854865 +0.21437164588139i

0.08196076279288 +0.11995841899699i... 0.00159121810166 -0.07466791161679i

0.08634918416893 -0.07254213910534i... 0.08836184601459 +0.16134487613958i

Matrix M block #4

0.31149191661281 +0.14365444135118i... 0.06444978313071 -0.00564128622986i

0.06444978313071 -0.00564128622986i...-0.01497473580488 -0.39712600214300i

0.22317790070853 +0.02865344108820i... 0.05776894668822 -0.07120977972422i

Matrix B block #4

0.35216714806776 +0.00000000000000i... 0.16510896897047 +0.08466700528600i

0.00000000000000 +0.00000000000000i... 0.29954496787334 +0.00000000000000i

0.00000000000000 +0.00000000000000i... 0.00000000000000 +0.00000000000000i

============================= LanTri iter #14 =============================

Matrix P column #15

-0.23845904002821 -0.30091641020487i -0.09541781082930 -0.19693737694301i

-0.07376266620061 -0.05855058819109i 0.19681720438358 -0.10688015888984i

0.17062402386220 +0.17718083137892i 0.03969240438029 +0.22076352225411i

-0.29792880034058 +0.10576554031181i -0.29364855702353 +0.03518490586966i

-0.04285707188984 -0.02541669993110i 0.23475957259174 +0.19998053407358i

0.34007776529120 +0.04729795078215i -0.18256638413998 -0.08549401137922i

0.06664184320247 +0.09040826488977i 0.06082880886547 +0.22853115622808i

0.11519870787504 -0.33091746024892i

Vector a

0.41328039687186 -0.16074323630622i -0.21913850780044 -0.18452464169751i

0.17385473405649 -0.03598817600496i -0.06213789941431 -0.03842808438983i

-0.08845798661262 +0.08027860245079i -0.08064270022562 +0.13495321932444i

0.13837666031634 +0.26547838236782i 0.09551965368060 +0.29484837601359i

0.07908789588384 +0.01154117362022i 0.37676814783093 +0.02483566852594i

-0.06536266250309 -0.34574747975281i -0.17165039344675 -0.46039415067483i

-0.08237282908419 -0.33534939080096i 0.25364015384886 -0.50803467587901i

Vector b

56

0.65572606003296 0.31225931266052 0.53515837366451 0.43622157009151

0.58702794578677 0.39916681957557 0.36858440573782 0.44965109860803

0.43842793611461 0.27691699670491 0.38884366483228 0.39838877493217

0.31316081300382 0.34425597796063

Error in orthogonality = 7.31e-016

Error in factorization = 6.76e-016

4.6 Test Case 2

In this section we present another example to show that both C and MATLAB im-
plementation have the same computation. The matrix A is 256-by-256, and block
size is specified as 8. The following is the content of the data file.

% Matrix and block size.

256 8

% A. Size = n * n

% Column 1

0.0312026273811561 - 0.0277405655728896i

-0.0317817413376722 + 0.0395099713223415i

......

......

-0.00956079401462568 + 0.00789967560148603i

0.00916347590916092 - 0.00763644962180457i

% Column 2

-0.0317817413376722 + 0.0395099713223415i

-0.0175922919556229 + 0.0194548558352152i

......

......

0.0338716739966944 + 0.0181251095130932i

0.0585077801039869 - 0.0501774347262309i

% Column 3

......

......

% Column 256

0.00916347590916092 - 0.00763644962180457i

0.0585077801039869 - 0.0501774347262309i

57

......

......

0.0334029993869039 - 0.0422870261996952i

-0.0103104449515434 + 0.0691266791184281i

% S. size = n * bs

% Column 1

-0.02300868931295

-0.00693418671303187

......

......

-0.0890764745322856

-0.0139155303592929

% Column 2

0.0256088915957461

-0.0412761315010268

......

......

-0.0698434042045308

-0.0548597794552349

% Column 3

......

......

% Column 8

0.0328690052645199

0.0581720559916915

......

......

0.0544384942394926

-0.0147017582092159

% RandMat. Size = bs * bs

% Column 1

0.465214197711276 + 0.327334626514537i

0.402821302367635 + 0.206260223527035i

......

......

0.2129783190453 + 0.235910570652193i

0.61452401389579 + 0.744343321451221i

% Column 2

58

0.639227876381669 + 0.355846858016115i

0.453382407108533 + 0.246128622853403i

......

......

0.29726598873376 + 0.4614816018226i

0.938337127933372 + 0.605022500009319i

% Column 3

......

......

% Column 8

0.323728455810956 + 0.178763140465727i

0.946928018208132 + 0.3269335623422i

......

......

0.0682468105769109 + 0.0890911004036379i

0.864204556312917 + 0.577133836408033i

% randVec. Size = n * 1

0.984370873595866 + 0.833936168042149i

0.60502217897123 + 0.0382491752681705i

......

......

0.84288173280989 + 0.856360969833307i

0.516026572249778 + 0.239707840407361i

The following is the computation of C implementation:

=================== Block Lanczos Algorithm ===================

Order of matrix A = 256. Block size = 8.

Matrix A

0.0312026274 -0.0277405656i ... 0.0091634759 -0.0076364496i

-0.0317817413 +0.0395099713i ... 0.0585077801 -0.0501774347i

0.0542177053 +0.0367214293i ... 0.0092103173 -0.0393992628i

-0.0119076565 +0.0041115583i ... -0.0139858036 -0.0257877252i

......

......

59

0.0147562430 +0.0017638672i ... -0.0340190268 -0.0767703354i

0.0358197067 +0.0047915540i ... 0.0393892014 -0.0043480459i

-0.0095607940 +0.0078996756i ... 0.0334029994 -0.0422870262i

0.0091634759 -0.0076364496i ... -0.0103104450 +0.0691266791i

Starting matrix S

-0.0230086893 +0.0000000000i ... 0.0328690053 +0.0000000000i

-0.0069341867 +0.0000000000i ... 0.0581720560 +0.0000000000i

-0.0762014162 +0.0000000000i ... 0.0134324304 +0.0000000000i

-0.0198493799 +0.0000000000i ... -0.0782806744 +0.0000000000i

......

......

-0.0549302269 +0.0000000000i ... 0.0842830277 +0.0000000000i

-0.0194649000 +0.0000000000i ... 0.0610104961 +0.0000000000i

-0.0890764745 +0.0000000000i ... 0.0544384942 +0.0000000000i

-0.0139155304 +0.0000000000i ... -0.0147017582 +0.0000000000i

===================== BlkTri Iteration #31 =====================

Matrix Q block #32

-0.0367529915 +0.0118624123i ... -0.0106191623 +0.0578109763i

-0.0157152654 +0.0443186412i ... -0.0425620476 -0.0512112398i

0.0191917817 +0.0232078928i ... -0.0529285443 +0.0233952072i

-0.0048907069 -0.0204786374i ... -0.0448977035 -0.0231779171i

......

......

-0.0034118633 +0.0216172700i ... 0.0723035285 -0.0196731434i

0.0053284497 -0.0254471937i ... 0.0147565666 +0.0193208947i

0.0461914204 -0.0110963994i ... -0.0221963302 -0.0504245577i

-0.0487913557 +0.0234821221i ... 0.0100788353 +0.0373870456i

Matrix M block #31

-0.0322006397 +0.0240044678i ... -0.0041488165 +0.0083286961i

-0.0169865395 -0.0200360229i ... 0.0083210202 -0.0164958005i

0.0240500315 +0.0124625461i ... -0.0181730052 +0.0143416164i

-0.0105348760 +0.0107974974i ... 0.0046209777 +0.0176032251i

Matrix B block #31

-0.1334418091 +0.0000000000i ... -0.0116578014 +0.0028999693i

0.0000000000 +0.0000000000i ... -0.0104809789 -0.0237587636i

60

0.0000000000 +0.0000000000i ... 0.0210302696 -0.0338663519i

0.0000000000 +0.0000000000i ... -0.0465052624 +0.0524685621i

===================== LanTri Iteration #255 =====================

Matrix P column #256

0.0044883997 -0.0321760159i 0.0226965581 -0.0328469249i

-0.0465114062 -0.0578798600i 0.0100612894 +0.0073166057i

0.0088722111 +0.0045145654i 0.0205656249 +0.0120150000i

0.0178407619 -0.0402421794i 0.0673424290 -0.0562659985i

......

......

-0.0247010270 -0.1277335779i 0.1285968206 +0.0831373779i

0.0189975284 -0.0831392346i 0.0698593469 -0.0151709710i

-0.0653907993 +0.0316690225i 0.2527139619 -0.1395290052i

-0.2152443200 +0.0654564457i 0.1874963574 +0.0492414659i

Vector a

0.1254847031 -0.0009226228i -0.0530484165 -0.0246746118i

0.0328794864 -0.0184175065i -0.0327814264 -0.0483311172i

-0.0504806317 +0.0074421816i 0.0116692834 -0.0046485868i

-0.0542514500 +0.0000087815i 0.0048199762 +0.0330069680i

......

......

0.1234371497 +0.1599291800i -0.0511678042 +0.0331034644i

-0.0471556243 -0.0601698617i 0.0533264394 -0.0591544711i

0.0033431951 -0.0016256022i 0.0075518086 -0.0133600886i

-0.0534723062 +0.0181474936i 0.0621931972 +0.0260588735i

Vector b

0.6141465790 0.5555112757 0.4593802073 0.4736957027

0.5166386590 0.4944338974 0.4954400789 0.4930741077

0.4894921335 0.5158897457 0.4730315743 0.5113437820

0.4963722428 0.4794938214 0.5113726439 0.4725432549

......

......

0.1900443994 0.1215158865 0.1642722445 0.0976237551

0.1149252681 0.1423279784 0.0812899000 0.0972691640

0.0893512289 0.1264892956 0.1509597134 0.0513350618

0.0330792103 0.0264689137 0.0251211572 0.0053627372

61

Block Lanczos tridiagonalization: 5.66 seconds

Error in orthogonality: 1.300e-013

Error in factorization: 1.162e-013

=================== LAPACK Bidiagonalization ===================

Bidiagonalization: 14.09 seconds

Run time comparison: Block Lanczos/Bidiagonalization = 40.2%

Error in orthogonality of Q: 3.740e-019

Error in orthogonality of P: 3.805e-019

Error in factorization: 2.788e-019

The output of MATLAB implemenation is as the following:

==================== Block Lanczos Algorithm (MATLAB) =====================

Order of matrix A = 256, block size = 8

Matrix A:

0.03120262738116 -0.02774056557289i...-0.00956079401463 +0.00789967560149i

-0.03178174133767 +0.03950997132234i... 0.03387167399669 +0.01812510951309i

0.05421770534143 +0.03672142927183i...-0.01335588861391 +0.00450656448502i

-0.01190765646822 +0.00411155832224i...-0.03044945264622 -0.00088589742111i

......

......

0.01475624303577 +0.00176386717331i...-0.02466496544510 +0.00081845524647i

0.03581970672308 +0.00479155395313i...-0.02664679883110 -0.01569299287080i

-0.00956079401463 +0.00789967560149i... 0.04406692139138 +0.00733241251491i

0.00916347590916 -0.00763644962180i... 0.03340299938690 -0.04228702619970i

Starting Matrix S:

-0.02300868931295 +0.00000000000000i... 0.12623543839259 +0.00000000000000i

-0.00693418671303 +0.00000000000000i... 0.05572760631818 +0.00000000000000i

-0.07620141622993 +0.00000000000000i... 0.06016153644789 +0.00000000000000i

-0.01984937988051 +0.00000000000000i... 0.00480904747401 +0.00000000000000i

62

......

......

-0.05493022688580 +0.00000000000000i... 0.06295294994872 +0.00000000000000i

-0.01946489996336 +0.00000000000000i... 0.10315374305325 +0.00000000000000i

-0.08907647453229 +0.00000000000000i...-0.04481759111243 +0.00000000000000i

-0.01391553035929 +0.00000000000000i...-0.03559041983095 +0.00000000000000i

============================= BlkLan iter #31 =============================

Matrix Q block #32

-0.03675299151360 +0.01186241230621i... 0.03226939120892 +0.05664427099199i

-0.01571526536330 +0.04431864121262i... 0.02372888727725 +0.05268720213871i

0.01919178170733 +0.02320789278627i...-0.04504448669993 -0.02044385364875i

-0.00489070687917 -0.02047863742156i...-0.08959896745769 +0.02279466980650i

......

......

-0.00341186330521 +0.02161726999385i... 0.07604634833103 -0.04244922102971i

0.00532844974443 -0.02544719365573i...-0.00746866237971 -0.01765106030741i

0.04619142043060 -0.01109639938237i...-0.01876130613818 +0.01461011488604i

-0.04879135565755 +0.02348212208675i... 0.06951558668193 -0.01120721292890i

Matrix M block #31

-0.03220063966021 +0.02400446778255i... 0.00110614780808 -0.00053369979192i

-0.01698653945203 -0.02003602294069i...-0.01664071155632 +0.02505836213542i

0.02405003153725 +0.01246254606456i...-0.02201679897366 -0.00532312081674i

-0.01053487595451 +0.01079749739880i... 0.00612400500969 -0.01318830528272i

Matrix B block #31

-0.13344180907058 +0.00000000000000i... 0.03762344668029 -0.00045770686708i

0.00000000000000 +0.00000000000000i... 0.02210499374265 +0.00019261378627i

0.00000000000000 +0.00000000000000i... 0.00570340109414 -0.04154561528219i

0.00000000000000 +0.00000000000000i...-0.05987770212611 +0.01602531098780i

============================= LanTri iter #255 ============================

Matrix P column #256

0.00448839972115 -0.03217601588943i 0.02269655814886 -0.03284692489117i

-0.04651140617880 -0.05787985999630i 0.01006128942190 +0.00731660571955i

0.00887221112310 +0.00451456542510i 0.02056562491731 +0.01201500001683i

0.01784076189626 -0.04024217940410i 0.06734242900742 -0.05626599848490i

63

......

......

-0.02470102705042 -0.12773357790423i 0.12859682058425 +0.08313737792711i

0.01899752838514 -0.08313923457857i 0.06985934691182 -0.01517097101719i

-0.06539079928162 +0.03166902245374i 0.25271396190746 -0.13952900517727i

-0.21524431999132 +0.06545644572476i 0.18749635744771 +0.04924146585988i

Vector a

0.12548470313001 -0.00092262284008i -0.05304841647537 -0.02467461182453i

0.03287948639787 -0.01841750649283i -0.03278142644982 -0.04833111716616i

-0.05048063168846 +0.00744218161159i 0.01166928335368 -0.00464858681930i

-0.05425144998647 +0.00000878145896i 0.00481997617850 +0.03300696801871i

......

......

0.12343714966975 +0.15992918004993i -0.05116780420383 +0.03310346438776i

-0.04715562432670 -0.06016986170335i 0.05332643944328 -0.05915447113377i

0.00334319507784 -0.00162560224557i 0.00755180859916 -0.01336008857342i

-0.05347230624802 +0.01814749363475i 0.06219319717875 +0.02605887354005i

Vector b

0.61414657900984 0.55551127566723 0.45938020729813 0.47369570272906

0.51663865903613 0.49443389740628 0.49544007893108 0.49307410765742

0.48949213352516 0.51588974574209 0.47303157430025 0.51134378195326

0.49637224283247 0.47949382143015 0.51137264388339 0.47254325487993

......

......

0.19004439941232 0.12151588653826 0.16427224452253 0.09762375512978

0.11492526813316 0.14232797835112 0.08128990001094 0.09726916401558

0.08935122894726 0.12648929561624 0.15095971335330 0.05133506181854

0.03307921026819 0.02646891367048 0.02512115720075 0.00536273716332

Error in orthogonality = 2.99e-013

Error in factorization = 2.54e-013

4.7 Performance Comparison

We compared the performance of block Lanczos tridiagonalization implementation
with LAPACK’s routine of bidiagonalization of general complex matrices, zgebrd ().

64

zgebrd () doesn’t support the bidiagonalization of complex symmmetric matrices. It
treats complex symmetric matrices as general complex matrices to perform bidiago-
nalization. The first comparison was made on complex symmetric matrix of 1024-by-
1024. The block size is 4.

D:\Project\Debug>blklanapp 1024 4

=================== Block Lanczos Algorithm ===================

Block Lanczos tridiagonalization: 231.87 seconds

Error in orthogonality: 9.185e-014

Error in factorization: 4.142e-012

=================== LAPACK Bidiagonalization ===================

Bidiagonalization: 539.33 seconds

Run time comparison: Block Lanczos/Bidiagonalization = 43.0%

Error in orthogonality of Q: 9.190e-020

Error in orthogonality of P: 9.120e-020

Error in factorization: 3.051e-018

Next is another comparison on complex symmetric matrix of size 1280. The block
size is 4.

D:\Project\Debug>blklanapp 1280 4

=================== Block Lanczos Algorithm ===================

Block Lanczos tridiagonalization: 448.00 seconds

Error in orthogonality: 7.774e-014

Error in factorization: 2.737e-012

=================== LAPACK Bidiagonalization ===================

65

Bidiagonalization: 1042.34 seconds

Run time comparison: Block Lanczos/Bidiagonalization = 43.0%

Error in orthogonality of Q: 8.979e-020

Error in orthogonality of P: 9.075e-020

Error in factorization: 3.024e-018

4.8 Overall Success and Achieved Targets

The block Lanczos tridiagonalization of complex symmetric matrices C package achieved
the accuracy and performance requirements of the project. Table 4.1 lists the result
of numerical experiment on accuracy. Figure 4.1 shows the performance comparison
with LAPACK’s bidiagonalization routine.

matrix block error in error in
order size orthogonality factorization
512 4 4.750E − 013 1.612E − 011
1024 4 9.185E − 014 4.142E − 012
1024 8 7.473E − 014 3.334E − 012
1024 16 8.338E − 014 3.891E − 012
1280 4 7.774E − 014 2.737E − 012

Table 4.1: Accuracy of block Lanczos tridiagonalization implementation.

66

256 512 1024 1280
0

20

40

60

80

100

120

matrix size

re
la

tiv
e

ex
ec

ut
io

n
tim

e

Bidiagonalization
Block Lanczos Alg

Figure 4.1: Comparison of the efficiency of block Lanczos tridiagonalization imple-
mentation. The y axis shows the execution times normalized to the execution time
of LAPACK’s bidiagonalization of complex matrices

67

Appendix A

Compile Preprocessor Definitions

Two preprocessor definitions are listed as the following:

• INFO
Information at the midpoint of iterations in block tridiagonalization stage and
tridiagonalization stage is printed out. Section 4.5, 4.6 are the samples of output
of the executive program made by this preprocessor definition.

Run command: blklanapp n bs
n: the order of matrix A.
bs: the block size. n should be divisible by bs.

• MATLAB COMP
Some specific data, which is needed in block Lanczos alogrithm like matrix A
and starting matrix S, etc., come from a data file. The data file is edited from
the output of MATLAB. Section ?? describes the format of the file.

Run command: blklanapp datafile
datafile: the name of the data file.

68

Appendix B

User Manual of Package

The manual follows LAPACK documentation style.

int zcstrd (integer *n, doublecomplex *A,
integer *bs, doublecomplex *S,
doublecomplex *a, doublereal *b,
doublecomplex *Q, doublecomplex *P,
integer *info)

n (input) integer *
The order of the matrix A. n >= 0.

A (input) double complex array, dimension (n, n)
The complex symmetric matrix A.

bs (input) integer *
The order of one block. bs >= 0.

S (input) double complex array, dimension (n, bs)
The starting matrix of orthonormal columns.

a (output) double complex array, dimension (n)
The diagonal elements of the tridiagonal matrix T.

b (output) double real array, dimension (n− 1)
The off-diagonal elements of the tridiagonal matrix T.

Q (output) double complex array, dimension (n ∗ n)

69

It is computed in block tridiagonalization stag.
(QP)HA ¯(QP) = T

P (output) double complex array, dimension (n ∗ n)
It is computed in tridiagonalization stag.
(QP)HA ¯(QP) = T

info (output) integer *
= 0: successful exit
< 0: if info = -i, the ith argument had an illegal value.
> 0: Exception is thrown.

70

Appendix C

MATLAB Implementation

C.1 Block Tridiagonalization

function [M,B,Q,steps,nVec] = BlkTri(A,R,steps)

% [M,B,Q,steps,nVec] = BlkTri(A,R,steps)

%

% Lanczos block tridiagonalization of a complex-symmetric matrix.

% Componentwise orthogonalization scheme is applied.

%

% Input

% A complex-symmetric matrix.

% R starting matrix of orthonormal columns, assuming the

% number of columns is the block size.

% steps number of iterations

% Output

% M 3-d array, M(:,:,i) are the main diagonal blocks of the

% resulting block tridiagonal

% B 3-d array, B(:,:,i) are the subdiagonal blocks of the

% resulting block tridiagonal

% Q unitary

% steps number of iterations actually run

% nVec number of vectors selected for reorthogonalization

% so that

% A = Q*J*Q.’

% where J is block tridiagonal whose main diagonal blocks are

% M(:,:,i) and subdiagonal blocks are B(:,:,i).

%

71

[n,bs] = size(R); % get the size of the starting matrix

if steps > n/bs

steps = n/bs;

end

%

% constants

IM = sqrt(-1); SQRTEPS = sqrt(eps);

MIDEPS = sqrt(sqrt(SQRTEPS))^7; % between sqrt(eps) and eps

%

Q(:,1:bs) = R; % initial block in Q

M = zeros(bs,bs,steps); % initialize M and B

B = zeros(bs,bs,steps-1);

W = zeros(bs,bs,steps,2); % orthogonality estimates

%

up = 0; % upper bound

doOrtho = 0; % if do orthogonalization

second = 0; % if this is the second ortho

nBlk = 0; % number of blocks for reortho

%

% start the first block Lanczos iteration

cur = 1; % indices of W for the recursion

old = 2;

qLow = 1; % initial low and up indices of Q

qUp = bs; Tmp = A*conj(Q(:,qLow:qUp));

M(:,:,1) = Q(:,qLow:qUp)’*Tmp; %M(1)=Q(1)’*A*conj(Q(1))

R = Tmp - Q(:,qLow:qUp)*M(:,:,1); %R(1)=A*conj(Q(1))-Q(1)M(1)

[Q(:,(qLow+bs):(qUp+bs)),B(:,:,1)]=qr(R, 0); %QR. Q(2)B(1)=R

W(:,:,1,cur) = (eps*bs*0.6*B(:,:,1) ... %compute W(:,:,1,2)

.*(randn(bs,bs)+IM*randn(bs,bs)))/B(:,:,1);

%

% following block Lanczos iterations

cur = 2; old = 1; for j = 2:steps-1

qLow = qLow + bs; % update low and up indices of Q

qUp = qUp + bs;

Tmp = A*conj(Q(:,qLow:qUp));

M(:,:,j) = Q(:,qLow:qUp)’*Tmp;

R = Tmp - Q(:,qLow:qUp)*M(:,:,j) ...

- Q(:,(qLow-bs):(qUp-bs))*B(:,:,j-1).’;

[Q(:,(qLow+bs):(qUp+bs)), B(:,:,j)] = qr(R, 0);

%

72

% block orthogonalization

if (second == 0) % not second orthogonalization

k = 1;

while ((k <= j) & (doOrtho ~= 1)) %compute W(k,j+1),k=1...j

if (k == j)

W(:,:,k,old) = (eps*bs*0.6)*(B(:,:,1) ...

.*(randn(bs,bs)+IM*randn(bs,bs)));

else % k<j

W(:,:,k,old) = M(:,:,k)*conj(W(:,:,k,cur)) ...

- W(:,:,k,cur)*M(:,:,j) ...

+ (eps*0.3)*((B(:,:,1)+B(:,:,2)) ...

.*(randn(bs,bs)+IM*randn(bs,bs)));

if (j > 2)

if (k > 1)

W(:,:,k,old) = W(:,:,k,old) ...

+ B(:,:,k-1)*conj(W(:,:,k-1,cur));

end % if (k>1)

if (k < j-1)

W(:,:,k,old) = W(:,:,k,old) ...

+ ((B(:,:,k).’)*conj(W(:,:,k+1,cur)) ...

- W(:,:,k,old)*(B(:,:,j-1).’));

end % if (k<j-1)

end % if (j>2)

end % if (k=j)

W(:,:,k,old) = W(:,:,k,old)/B(:,:,j);

%

% find the first W which loses orthogonality

for colW = 1:bs % each column of W(:,:,k,j+1)

if (max(abs(W(:,colW,k,old))) >= SQRTEPS)

doOrtho = 1; % found loss of ortho

up = k;

break;

end

end % for colW

k = k + 1;

end % while ((k <= j) & (doOrtho ~= 1))

%

if ((doOrtho == 1) & (up < j))

% if loss of ortho was found and not the last W

thresh = 0; % flag if MIDEPS is found

73

k = j; % search from the last W

while ((k >= 2) & (thresh ~= 1))

if (k == j)

W(:,:,k,old) = (eps*bs*0.6)*(B(:,:,1) ...

.*(randn(bs,bs)+IM*randn(bs,bs)));

else % k<j

W(:,:,k,old) = M(:,:,k)*conj(W(:,:,k,cur)) ...

+ B(:,:,k-1)*conj(W(:,:,k-1,cur)) ...

- W(:,:,k,cur)*M(:,:,j) ...

+ (eps*0.3)*((B(:,:,k)+B(:,:,j)) ...

.*(randn(bs,bs)+IM*randn(bs,bs)));

if (k < j - 1)

W(:,:,k,old) = W(:,:,k,old) ...

+ (B(:,:,k).’)*conj(W(:,:,k+1,cur)) ...

- W(:,:,k,old)*(B(:,:,j-1).’);

end % if (k<j-1)

end % if (k=j)

W(:,:,k,old) = W(:,:,k,old)/B(:,:,j);

%

% check if W(:,:,k,j+1) exceeds MIDEPS

for colW = 1:bs % for each column of W

if (max(abs(W(:,colW,k,old))) >= MIDEPS)

thresh = 1; % found a W

up = k;

break;

end

end % for colW

k = k - 1;

end % while ((k >= 2) & (thresh ~= 1))

end % if ((doOrtho == 1) & (up ~= j))

else % second orthogonalization

if (up < j) % compute Ws in [up j]

for k = up:j

if (k == j)

W(:,:,k,old) = (eps*bs*0.6)*(B(:,:,1) ...

.*(randn(bs,bs)+IM*randn(bs,bs)));

else % k<j

W(:,:,k,old) = M(:,:,k)*conj(W(:,:,k,cur)) ...

+ B(:,:,k-1)*conj(W(:,:,k-1,cur)) ...

- W(:,:,k,cur)*M(:,:,j) ...

74

+ (eps*0.3)*(B(:,:,k)+B(:,:,j)) ...

.*(randn(bs,bs)+IM*randn(bs,bs));

if (k < j-1)

W(:,:,k,old) = W(:,:,k,old) ...

+ (B(:,:,k).’)*conj(W(:,:,k+1,cur)) ...

- W(:,:,k,old)*(B(:,:,j-1).’);

end % if (k<j-1)

end % if (k=j)

W(:,:,k,old) = W(:,:,k,old)/B(:,:,j);

end % for k = up:j

end % if (up < j)

end % if (second == 0)

%

tmp = old; % swap indices old and cur

old = cur;

cur = tmp;

%

if ((doOrtho == 1) | (second == 1))

% orthogonalize Q(j+1) against Q(k), k is inside the interval

qLow2 = 1 - bs; % initial low and up indices

qUp2 = 0; % for Q which is reorthogonalized

for (k = 1:up)

qLow2 = qLow2 + bs;

qUp2 = qUp2 + bs;

for (colR = 1:bs)

for (colQ = qLow2:qUp2)

R(:,colR) = R(:,colR) ...

- (Q(:,colQ)’*R(:,colR))*Q(:,colQ);

end

end

%reset orthogonality estimates

W(:,:,k,cur) = eps*1.5*(randn(bs,bs) + IM*randn(bs,bs));

end % for (k = 1:up)

[Q(:,(qLow+bs):(qUp+bs)), B(:,:,j)] = qr(R, 0);

nBlk = nBlk + up; % update number of blocks selected

% for orthogonalization

%

if (second == 1)

second = 0;

up = 0; % clear upper bounds for next iter

75

else

second = 1;

doOrtho = 0;

up = min(j + 1, up + 1); % adjust for second ortho

end

end % if ((doOrtho == 1) | (second == 1))

end % for j = 2:steps-1

%

% the last iteration

qLow = qLow + bs; qUp = qUp + bs; Tmp = A*conj(Q(:,qLow:qUp));

M(:,:,steps) = Q(:,qLow:qUp)’*Tmp;

%

nVec = nBlk * bs; % update the number of vectors

% selected for orthogonalization

76

C.2 Tridiagonalization

function [a,b,P,nVec] = LanTri(M,B,r)

% [a,b,P,nVec] = LanTri(M,B,r)

%

% Lanczos tridiagonalization of a complex-symmetric and block

% tridiagonal matrix. Modified partial orthogonalization is

% applied if required.

%

% Input

% M M(:,:,i) are main diagonal blocks of the block tridiagonal

% B B(:,:,i) are subdiagonal blocks of the block tridiagonal

% r starting vector

% Outputs

% a main diagonal of the tridiagonal

% b subdiagonal of the tridiagonal

% P unitary

% nVec number of vectors selected for reorthogonalization

% so that

% J = P*(diag(a) + diag(b,1) + diag(b,-1))*P.’

% where J is block tridiagonal whose main diagonal blocks are

% M(:,:,i) and the subdiagonal blocks are B(:,:,i).

%

% Dependency

% ./sbmvmul.m symmetric block tridiagonal matrix and vector

% multiplication

%

n = length(r); % dimension of starting vector

%

% constants

IM = sqrt(-1); SQRTEPS = sqrt(eps);

MIDEPS = sqrt(SQRTEPS)^3; % between sqrt(eps) and eps

%

% initialize two column vectors for diagonals

a = zeros(n,1); b = zeros(n-1,1);

wOld = zeros(n,1); % orthogonality estimates

wCur = zeros(n,1); wOld(1) = 1.0;

%

up = ones(n,1); % upper and lower bounds for

low = ones(n,1); % orthogonalization intervals

77

interNum = 0; % orthogonalization interval number

doOrtho = 0; % if do orthogonalization

second = 0; % if this is the second partial ortho

nVec = 0; % number of vectors for reortho

%

P(:,1) = r/norm(r); % set the first column of P

%

for j=1:n

tmp = sbmvmul(M,B,conj(P(:,j))); % J*conj(p(j)).Band multiply

a(j) = P(:,j)’*tmp; % a(j) = p(j)’*J*conj(p(j))

% calculate r = J*conj(p(j)) - a(j)*p(j) - b(j-1)*p(j-1)

if j == 1

r = tmp - a(j)*P(:,j);

else

r = tmp - a(j)*P(:,j) - b(j-1)*P(:,j-1);

end

%

if (j < n)

b(j) = norm(r);

%

if (j > 2) % compute orthogonality estimates

wOld(1) = (b(1)*conj(wCur(2)) + a(1)*conj(wCur(1)) ...

- a(j)*wCur(1) - b(j-1)*wOld(1))/b(j) ...

+ eps*(b(1)+b(j))*0.3*(randn + IM*randn);

wOld(2:j-1) = (b(2:j-1).*conj(wCur(3:j)) ...

+ a(2:j-1).*conj(wCur(2:j-1)) ...

- a(j)*wCur(2:j-1) ...

+ b(1:j-2).*conj(wCur(1:j-2)) ...

- b(j-1)*wOld(2:j-1))/b(j) ...

+ eps*0.3*(b(2:j-1)+b(j)*ones(j-2,1)) ...

.*(randn(j-2,1) + IM*randn(j-2,1));

%

% swap wOld and wCur

tmp = wOld(1:j-1);

wOld(1:j-1) = wCur(1:j-1);

wCur(1:j-1) = tmp;

wOld(j) = 1.0;

end % if j>2

wCur(j) = eps*n*(b(1)/b(j))*0.6*(randn + IM*randn);

wCur(j+1) = 1.0;

78

%

if (second == 0) % not second time,determine intervals

doOrtho = 0; % initialization

interNum = 0;

k = 1;

while k <= j

if (abs(wCur(k)) >= SQRTEPS) % lost ortho

doOrtho = 1;

interNum = interNum + 1;

% find the upper bound

p = k + 1;

while ((p < (j + 1)) & (abs(wCur(p)) >= MIDEPS))

p = p + 1; % nearly lost ortho

end % while

up(interNum) = p - 1;

% find the lower bound

p = k - 1;

while ((p > 0) & (abs(wCur(p)) >= MIDEPS))

p = p - 1; % nearly lost orthogonality

end % while

low(interNum) = p + 1;

%

k = up(interNum) + 1; % continue search

else

k = k + 1;

end % if lost orthogonality

end % while k

end % if not second time

%

if ((doOrtho == 1) | (second == 1)) % now we have intervals,

% carry out orthogonalization

for (k = 1:interNum) % for each interval

for (i = low(k):up(k))

r = r - (P(:,i)’*r)*P(:,i); % do ortho

% reset ortho estimates

wCur(i) = eps*1.5*(randn + IM*randn);

end % for i

%

nVec = nVec + up(k) - low(k) + 1;

% count the number of vectors selected

79

if (second == 1) % this is the second time

second = 0; % reset

low(k) = 0;

up(k) = 0;

else

second = 1; % do second time

doOrtho = 0; % reset

% adjust ortho intervals for the second time

low(k) = max(1, low(k) - 1);

up(k) = min(j + 1, up(k) + 1);

end % if

end % for k

b(j) = norm(r); % recalculate b(j)

end % if

%

if (abs(b(j)) < eps) % b(j)=0, quit

a = a(1:j);

b = b(1:j-1);

return

else

P(:,j+1) = r/b(j);

end % if

end

end

80

C.3 Matrix-Matrix Multiplication

function [r] = sbmvmul(M,B,v)

% [r] = sbmvmul(M,B,v)

%

% Complex-symmetric and block tridiagonal matrix-vector

% multiplication. Inner product version.

%

% Input

% M M(:,:,i) are the main diagonal blocks

% B B(:,:,i) are the subdiagonal blocks

% v column vector

% Outputs

% r product vector so that

% r = J*v,

% where J is complex-symmetric and block tridiagonal whose main

% diagonal blocks are M(:,:,i) and subdiagonal blocks are B(:,:,i).

%

[b,b,k] = size(M); % block size, number of diagonal blocks

n = b*k; % matrix size

%

r = zeros(n,1); % initialize a column vector

%

r(1:b) = M(:,:,1)*v(1:b) + B(:,:,1).’*v(b+1:2*b);

%

for i = 1:k-2

low = i*b +1; % lower bound

up = (i+1)*b; % upper bound

r(low:up) = B(:,:,i)*v((low-b):(low-1)) ...

+ M(:,:,i+1)*v(low:up) ...

+ B(:,:,i+1).’*v(up+1:up+b);

end

%

r(n-b+1:n) = B(:,:,k-1)*v((n-2*b+1):(n-b)) + M(:,:,k)*v(n-b+1:n);

81

Bibliography

82

[1] S. Qiao. Orthogonalization Techniques for the Lanczos Tridiagonalization of
Complex Symmetric Matrices.

[2] Horst D. Simon. The Lanczos algorithm with partial reorthogonalization. Math-
ematics of Computation. 42 (1984), 115-142.

[3] James W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and
Applied Mathematics, Philadelphia, 1997.

[4] G.H. Golub and C. F. Van Loan. Matrix Computations , 3rd Ed. The Johns
Hopkins University Press, Baltimore, MD, 1996.

[5] M. Berry, T. Do, G. O’Brien, V. Krishna, and S. Varadhan. SVDPACKC (version
1.0) user’s guide. Technical Report CS-93-194, University of Tennessee, Depart-
ment of Computer Science, 1993

[6] F.T. Luk and S. Qiao. A fast singular value algorithm for Hankel matrices.
Fast Algorithms for Structured Matrices: Theory and Applications, Contempo-
rary Mathematics 323 , Editor V. Olshevsky, American Mathematical Society.
2003. 169–177.

[7] A. Bunse-Gerstner and W.B. Gragg. Singular value decompositions of complex
symmetric matrices. Journal of Computational and Applied Mathematics , 21
(1988) 41–54.

[8] Roger A. Horn and Charles R. Johnson. Matrix Analysis . Cambridge University
Press, 1985.

[9] T. Takagi. On an algebraic problem related to an analytic Theorem of
Carathédory and Fejér and on an allied theorem of Landau. Japan J. Math.
1 (1924) 82–93.

[10] E.Anderson, Z.Bai, C.Bischof, J.Demmel, J.Dongarra, J.DuCroz, A.Greenbaum,
S.Hammarling, A.McKenney, S.Ostrouchov, and D.Sorensen. LAPACK Users’
Guide, Third edition. SIAM Publications, Philadelphia, 1999.

[11] Jack Dongarra, Roldan Pozo, David Walker. LAPACK++ V1.1 High Perfor-
mance Linear Algebra Users’ Guide. National Institute of Standards and Tech-
nology, University of Tennessee, Knoxville, Oak Ridge National Laboratory.
1996.

[12] Guohong Liu, Wei Xu and Sanzheng Qiao. Block Lanczos Tridiagonalization of
Complex Symmetric Matrices . Technical Report, No. CAS 04-07-SQ Department
of Computing and Software, McMaster University. September 2004.

83

