
Towards Generating Software

Architectures

Towards Generating Software

Architectures

By

Alexander Schaap, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree

Master of Applied Science

McMaster University

c© Copyright by Alexander Schaap, September 2016

Master of Applied Science (2016) McMaster University

(Software Engineering) Hamilton, Ontario

Title: Towards Generating Software Architectures

Author: Alexander Schaap, B.Sc. (Twente University)

Supervisors: Dr. Jacques Carette & Dr. Mark Lawford

Number of Pages: viii, 91

ii

Abstract

Program generators are programs that produce other programs, thereby saving
time and effort. Program families can be encoded in a generator to produce all
members of such a family while leveraging automation and reducing duplica-
tion. Through multi-stage programming (MSP) in the form of MetaOCaml, a
generator has been created for multiple partial implementations of KeyWord
In Context (KWIC) example from Parnas’ seminal paper on modular decom-
position. What makes this work novel is the generation of different software
architectures, as well as different programming paradigms (imperative or func-
tional). This is achieved by using a common abstract internal representation
of the signatures of the system components, and applying them to a single
abstract representation of the commonalities of the components. Thus the work
challenges commonly held perceptions of concepts such as software architecture
and programming paradigm by being able to generate members of a program
family that varies on both these aspects.

iii

Acknowledgments

An expression of gratitude.

iv

Declaration of

Academic Achievement

The student will declare his/her research contribution and, as appropriate,

those of colleagues or other contributors to the contents of the thesis.

v

Table of Contents

Descriptive Note ii

Abstract iii

Acknowledgements iv

Declaration of Academic Achievement vi

Table of Contents vi

List of Figures ix

List of Tables x

List of Acronyms xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 2
1.3 Approach . 3
1.4 Contribution . 4
1.5 Outline . 5

2 Background 6
2.1 On the Criteria to Be Used in Decomposing Systems into Modules 7

2.1.1 KeyWord In Context (KWIC) 8
2.2 Software Architectures . 8
2.3 Code Generation as Applied to Product Families 9

vi

2.4 Finally Tagless, Partially Evaluated 10

3 Preliminaries & Related Work 11
3.1 KWIC Software Design Architectures 11

3.1.1 Parnas’ Modularizations 12
3.1.2 Parnas’ Comparison . 15
3.1.3 Additional KWIC Software Design Architectures by Gar-

lan and Shaw (1994) . 17
3.1.4 Four-way KWIC Software Design Architecture Comparison 19

3.2 Metaprogramming . 24
3.2.1 String Munging . 25
3.2.2 Macro Systems . 26
3.2.3 Template Metaprogramming 27
3.2.4 Multi-Stage Programming 28

3.3 Related Work . 33

4 Analysis and Design 36
4.1 Goals & Approach . 36

4.1.1 Goals . 36
4.1.2 Approach . 37

4.2 Initial Analysis of KWIC . 38
4.3 Storage Module(s) . 39

4.3.1 Conclusion: Multiple Options 41
4.4 Sorting Module . 42
4.5 Shifting Module . 43
4.6 Input and Output Modules . 43
4.7 Combining Modules Into KWIC 43
4.8 Architectures . 44
4.9 Incrementality . 44
4.10 Subsequent Analysis . 44
4.11 Distinction Between Containers, Elements, and Their Respective

Descriptions . 45

5 Implementation 47
5.1 Concepts . 47

vii

5.1.1 Making the Type of the Generated Code (Fragment)
Abstract . 48

5.1.2 Continuation-Passing Style & State 49
5.1.3 Code Combinators . 53

5.2 Challenges . 57
5.2.1 OUnit2 Integration With MetaOCaml and (GNU) Make 57
5.2.2 Debugging . 58

5.3 Implementation Details . 59
5.3.1 Refinement vs. Usage . 59
5.3.2 Encapsulating What a Word Is: The Value Module . . . 59
5.3.3 Implementing a Storage Module 62
5.3.4 Sorting Module . 76
5.3.5 Summary . 77

6 Conclusions & Future Work 79
6.1 Future Work . 80

Appendices 81

A Implementing Specific Architectures 82
A.1 First Steps . 82
A.2 Dataflow-style KWIC . 85
A.3 A First Attempt at Information-Hiding-style KWIC 85
A.4 Foray Into Phantom Types . 86
A.5 Information Hiding KWIC in Java 86
A.6 Return to Haskell . 86

viii

List of Figures

3.1 Modularization following from a flowchart (Garlan and Shaw 1994) 13
3.2 Modularization resulting from following the information-hiding

principle (Garlan and Shaw 1994) 14
3.3 Modularization using implicit invocation (Garlan and Shaw 1994) 18
3.4 Modularization in the style of pipe-and-filter (Garlan and Shaw

1994) . 19

ix

List of Tables

3.1 Summarizing the comparison between the various KWIC archi-
tectures, based on the table in van Vliet (2000) 24

x

List of Listings

1 Simplest form of metaprogramming by assembling a string.
Based on an example from Wikipedia. (https://en.wikipedia.
org/wiki/Metaprogramming#Examples) 25

2 Simple metaprogramming using the #define macro. 26
3 Elementary template definition 27
4 Instantiating template defined in Listing 3. Note that writeln is

a template function as well; it converts all arguments to!string(arg) 28
5 A slightly more complex template example. 29
6 Running the quicksort from Listing 5 using code from Listing 3

as the comparator . 30
7 Demonstration of MetaOCaml interpreting brackets (Taha 2004) 30
8 Demonstration of MetaOCaml’s escape, using the results shown

in Listing 7 (Taha 2004) . 30
9 Demonstration of MetaOCaml’s run using the result of Listing 8

(Taha 2004) . 31
10 Simple power function in pure OCaml 31
11 Alias for squaring values . 31
12 Preferred function for squaring values 32
13 Staged power function . 32
14 Squaring function using MSP . 32
15 Definition of the TArr signature 64
16 CreateContainer signature . 64
17 UseContainer signature . 65
18 RotatableContainer signature 66
19 OrderableContainer signature 67
20 TaggableContainer . 68

xi

https://en.wikipedia.org/wiki/Metaprogramming#Examples
https://en.wikipedia.org/wiki/Metaprogramming#Examples

21 TaggingA signature . 69
22 TraversableContainer signature 70
23 BubbleSortContainer signature 71
24 Function signature of traverse 71
25 Function signature of traverseTwo 72
26 BubbleSortG3 implementation 77
27 KWIC, the Haskell way (a pipe-and-filter software architecture) 83
28 KWIC (as specified by Parnas), the Haskell way (a pipe-and-filter

software architecture) . 84

xii

List of Acronyms

API application programming interface . 3

AST abstract syntax tree . 26

CGAL Computational Geometry Algorithms Library . 33

CPS continuation-passing style . 38

DSL domain-specific language . 6

GE Gaussian Elimination . 38

KWIC KeyWord In Context . iii

LEDA Library of Efficient Data types and Algorithms . 33

MSP multi-stage programming. iii

xiii

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Chapter 1

Introduction

Products belonging to the same family share common features. When the

products are software, it is often possible to decompose them into modules in

such a way that the common features are separated from the product-specific

ones. Automated assembly of different combinations results in all products

being created while costs are reduced through reuse of modules as well as said

automation. While a generator that does this must be specific to the program

family, the idea can be applied wherever program families exist.

In order to identify the commonalities and differences between members

of a program family, one needs to decompose them and analyze the resulting

components. Decomposition of tasks is documented and rationalized by Parnas

(1972), who uses the KeyWord In Context (KWIC) program to illustrate. Since

then, (Garlan and Shaw (1994) and van Vliet (2000)) have illustrated more

architectures using KWIC.

Program generators typically produce implementations that vary depending

on low-level design choices, such as variations in certain algorithms. This

thesis explores generating implementations that vary on the higher-level design

1

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

choices of software architecture and programming paradigm. To achieve this,

MSP using MetaOCaml is combined with novel code-generation techniques.

1.1 Motivation

Many industries have to support product lines over many years, and these

undergo significant architectural evolutions such as the current switch from

single-core to multi-core processors in the automotive industry. To support

software product lines, one would likely use generative programming, which

has proven effective when there are low-level design variations. However, the

question remains whether generative programming is well-suited for high-level

design variations such as variation in software architecture and variation in pro-

gramming paradigm. This thesis is a first step in that direction, demonstrating

multi-paradigm multi-architecture generation from a single ‘model’ – in this

case an umbrella architecture – for a simple example well known in literature.

1.2 Goals

One goal is to create a generator that produces multiple implementations of

KWIC which reflect different software architectures (or none at all, as Parnas

(1972) suggested). Ideally, it would be able to generate code reflecting decompo-

sitions including those described by Parnas, as well as ‘spaghetti code’ resulting

from using any of these modularizations and then inlining everything.

In order to generate multiple architectures, all information they contain must

be known. This seems like an obvious statement, but the implication is that

the generator must contain all architectures combined. This means that there

2

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

is an umbrella architecture, and all resulting architectures are simplifications

of it. Finding this umbrella architecture is a vital subgoal.

Another subgoal was to improve and expand upon the modularizations

presented by Parnas through more thorough application of his decomposition

criteria. He described the principle and applied it to an example, but pointed out

some flaws in this application. Furthermore, due to the age of the publication,

certain assumptions are no longer necessarily true.

The last goal is the generation of imperative and functional code from

the same application programming interface (API), which implies they can

be generalized to the same design concepts. An example would be looping,

for which the imperative approach tends to be a for-loop or a while-loop,

where typically an index or a condition changes respectively. In functional

programming, this would be done through recursion, avoiding the notion of

mutable state that the previous examples implied. However, there is still a

condition on which to loop, whether the function needs to call itself or the

condition of the while-loop changes. Abstracting the implementation-specific

details away leaves us with a higher-level design language, as described in

Curutan (2013). In theory, these loops have long been known to be equivalent,

but to the best of the author’s knowledge, this has never been put into practice

using a generator providing a unified API.

1.3 Approach

The first intermediate goal is to find the umbrella architecture. The first step

towards this is to implement the architectures described. The benefits of this

are deepened understanding, better command of the programming language

3

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

used, and a target for the generator to generate. Deepened understanding leads

to better subsequent implementations that encapsulate more design decisions

in separate modules, creating increasingly complex architectures. Some notable

assumptions to be challenged are: the need for characters, the definition of

a word, the use of indices to manipulate arrays, and the need for imperative

programming. Once a sufficient umbrella architecture has been implemented,

the generator can be created. MetaOCaml will be combined with techniques

described by Carette (2006), Carette, Kiselyov, and Shan (2009) and Carette

and Kiselyov (2011).

1.4 Contribution

This work explores the possibility of creating a program family encompassing

different software architectures using generative programming (specifically,

multi-stage programming). A detailed look at the KWIC program and an analysis

of some of the published comparisons between different software architectures it

illustrates give a foundation for the analysis and a more thorough application of

Parnas’ criteria for decomposition (Parnas 1972) that follow. It also reconfirms

the existence of a paradigm-independent design language that is more abstract

than actual code but less abstract than the high-level language used to describe

algorithms (Curutan 2013). However, it also shows that this design language

can be employed to adequately describe both imperative and functional code

in a unified API.

4

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1.5 Outline

This thesis starts with background material in chapter 2, explaining the key

concepts and techniques used throughout the document. This is followed by

preliminaries and related work in chapter 3, in which software architectures

are discussed and illustrated using KWIC, metaprogramming is introduced, and

an overview of related work is provided. Subsequently, chapter 4 discusses the

goals for the generator and the approach taken before an in-depth analysis

resulting in design constraints. The implementation is described in chapter 5.

Finally, chapter 6 concludes the thesis and discusses future work. Preliminary

research is included in Appendix A.

Note that later chapters reference paths such as /ge-based-kwic/ a num-

ber of times; these are both hyperlinks to the relevant file or directory and

paths in the accompanying archive file found at https://www.cas.mcmaster.

ca/~schaapal/mthesis/code.tar.gz. Not including code listings in the ap-

pendices reduces the number of pages by approximately 150 pages, saving a

significant amount of paper for every hard copy printed.

5

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code.tar.gz
https://www.cas.mcmaster.ca/~schaapal/mthesis/code.tar.gz

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Chapter 2

Background

This chapter aims to briefly explain the concepts that are key to the work

presented in this thesis. First, a brief overview of Parnas’ seminal paper is

given in section 2.1, along with a description of the KeyWord In Context

(KWIC) example program. Decomposition of tasks into modules is the basis

for software architectures, which are defined in section 2.2. (Four architectures

are illustrated using KWIC in section 3.1.) Given that there are components,

the connection to product families becomes apparent. Product families and

code generation is elaborated upon in section 2.3. After that, a novel approach

towards embedding a domain-specific language (DSL) and generating a result

is succinctly described in section 2.4; this is the foundation of the generator

presented in this work.

6

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

2.1 On the Criteria to Be Used in Decomposing

Systems into Modules

The title of this section is also the title of an often-cited paper by David

L. Parnas (1972). In it, he rationalizes the modularization of programs.

Modularization in this case means separating the whole into logical parts which

connect and communicate through their interfaces (which define the inputs and

outputs). The advantages of modularization listed by Parnas are managerial,

product flexibility and comprehensibility. The managerial benefit is that it

allows multiple people to work on the different parts, potentially allowing for

faster completion. Product flexibility hints at creating a family of products,

because it would allow for substantial changes to a program by modifying

only one module. Comprehensibility would allow for larger systems because

one would not have to look at the whole but only study modules one by one.

Another benefit one can infer would be faster debugging and maintenance

because a problem is first traced to a module, at which point only that module

needs to be considered. Furthermore, modules have the potential to be reused,

either as a whole or in part. Modularization is typically done intuitively, based

on the tasks a program needs to perform; these can also be represented by

a flowchart. Parnas argues that the resulting modules should have minimal

interfaces, allowing for greater variation of module implementations. This is also

called information hiding. These variations should be meaningful, allowing for

certain anticipated changes (which dictate the modularization). One anticipated

change could be the sorting algorithm, creating the need for a decomposition

which enables changing the sorting algorithm by changing only one module,

leaving interfaces and other modules untouched. Conversely, the aspects of the

7

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

program that are expected to stay unchanged can be used as the boundaries

for modularization. This approach requires more thought but produces better

results than the intuitive approach.

2.1.1 KeyWord In Context (KWIC)

Parnas illustrates his approach on examples, and also shows that the application

of his approach is not a simple process and that improvement to the resulting

modularization is often possible. The simplest example (and the only one in

some versions of this paper) is a small program named “Keyword in Context”,

or KWIC. As Parnas succinctly puts it:

The KWIC index system accepts an ordered set of lines, each line is

an ordered set of words, and each word is an ordered set of characters.

Any line may be “circularly shifted” by repeatedly removing the

first word and appending it at the end of the line. The KWIC

index system outputs a listing of all circular shifts of all lines in

alphabetical order.

KWIC is small enough that modularization is optional, but illustrates the point

in an overseeable and comprehensible manner.

2.2 Software Architectures

When designing a system, its top-level decomposition and the expected interac-

tion between the resulting components is known as its software architecture

(van Vliet 2000). This represents early design decisions. Architecture also

provides a basis from which one can work when considering product families,

8

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

providing boundaries for potential software reuse. While some architectures

work better than others for certain systems, there is not always one unquestion-

ably best solution. The best solution can conceivably depend on the features

requested.

The KWIC program is a commonly used program to explain and differentiate

various software architectures as will be shown in section 3.1.

2.3 Code Generation as Applied to Product Fam-

ilies

According to Parnas 1976, program families are “defined (analogously to hard-

ware families) as sets of programs whose common properties are so extensive

that it is advantageous to study the common properties of the programs before

analyzing individual members.”.

One could write each member of such a family by hand, repeating a lot of

work every time a common property is reimplemented. Intuitively, one feels the

need for reusable software components. Decomposition of all members using

Parnas’ criteria (Parnas 1972) while keeping the commonalities between them

in mind should yield a set of highly reusable components. Various selections

of these along with member-specific components can then be combined into

a product family member. Applying automated code generation techniques

to the problem of creating members of product families is the next logical

step. Through generative programming, one can specify the member to be

generated via an abstract configuration and have the generator produce a

complete product in the form of code (Czarnecki and Eisenecker 2000).

9

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

2.4 Finally Tagless, Partially Evaluated

Another paper that greatly contributed to the results presented in this thesis is

“Finally Tagless, Partially Evaluated: Tagless Staged Interpreters for Simpler

Typed Languages” by Jacques Carette, Oleg Kiselyov and Chung-chieh Shan.

When one embeds a domain-specific language (DSL) in another language, there

is typically some overhead as a result when executing the embedded language;

dispatching on syntax of that language and tagging types of values in that

language. Dispatch overhead can be avoided using code generation (through

multi-staged programming, for example). The way tagging overhead can

be avoided is described in this paper, though it humbly claims credit only

for combining ideas present in other papers. When specifying types for the

embedded language, one typically creates a number of type constructors for

each of them. Types are certainly desirable, because they further restrict the

existence of nonsensical code, ensuring proper execution. When evaluating,

these type constructors (tags) are first pattern-matched on and then removed,

which is not without cost. Instead, the solution presented here uses functions

for everything (hence tagless). The word ‘Finally’ in the title denotes a final

approach, which means representing each term by its “denotation in a semantic

algebra” rather than its abstract syntax (initial approach).

10

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Chapter 3

Preliminaries & Related Work

First, four software architectures are explored, discussed, analyzed and compared

using KWIC to illustrate. Next, various metaprogramming techniques are

reviewed, culminating in an overview of MetaOCaml. Finally, an overview of

related work is presented.

3.1 KWIC Software Design Architectures

Even though one can easily come up with an implementation of KWIC, one

tends to make several implicit assumptions while doing so. However, a more

structured approach will quickly lead to considerations such as performance on

large data sets, different use cases and whether or not the process is iterative,

to name a few. The size of the data set varies, but ultimately one chooses to

take a certain upper bound into account. However, this bound may change

in the future, and this can be taken into account by allowing certain parts to

be swapped out. For example, the sorting module could keep the entire data

set in working memory while sorting – this does not scale well, and warrants

11

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

replacing it with a module that only keeps a small portion in working memory,

or perhaps one that distributes sorting over other computers possibly connected

over a network. Similarly for other considerations, one determines a number of

anticipated changes within the system. Every architecture enables a different

(possibly overlapping) set of anticipated changes.

A number of modularizations or decompositions are described and com-

pared below. The two words will be used interchangeably in this document.

Comparison between the architectures and further discussion of anticipated

changes occurs in subsection 3.1.2 and subsection 3.1.4. The KWIC program is

discussed in subsection 2.1.1. To summarize, the tasks that need to be carried

out are:

1. Read lines from the input medium

2. Create all possible circular shifts from these lines

3. Sort all shifts alphabetically

4. Output the result

3.1.1 Parnas’ Modularizations

Parnas (1972) compares and contrasts two decompositions, namely the more

intuitive modularization that typically follows from a flowchart, and the one

he proposes which employs information hiding. Others have built on this

and proposed and compared more architectures. Garlan and Shaw (1994)

elaborate on two more architectures, namely an event-based one attributed

to Garlan, Kaiser and Notkin and a pipe-and-filter one “inspired by the Unix

12

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

index utility”. They also provide a more detailed comparison structured around

specific criteria.

Flowchart-Based Modularization (Shared Data Architecture)

Master Control

Input Circular Shift Alphabetizer Output

Input

Medium

Characters Index Alphabetized
Index

Output

Medium

Direct Memory Access

System I/O

Subprogram Call

Figure 3.1: Modularization following from a flowchart (Garlan and Shaw 1994)

Following the steps the program needs to carry out (outlined above), one

can intuitively see how it will be decomposed into five modules:

1. Input - reads lines from some input medium and stores them in the format

accepted by the other modules

2. Circular Shift - stores index of all possible shifts of all lines

3. Alphabetizing - stores index of sorted shifts using the results of the

previous two modules

4. Output - prints “nicely formatted” result using the results of modules 1

and 3

13

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

5. Master Control - runs aforementioned modules sequentially, possibly

taking care of errors, memory allocation and other miscellaneous tasks

Information-Hiding Modularization (Abstract Data Architecture)

Master Control

Input Output

Input
Medium

Output
Medium

System I/O

Subprogram Call

Characters Circular Shift
Alphabetic

Shifts

s
e
tc

h
a
r

c
h
a
r

w
o
rd

s
e
tc

h
a
r

c
h
a
r

w
o
rd

s
e
tu

p

a
lp

h

i-
th

Figure 3.2: Modularization resulting from following the information-hiding
principle (Garlan and Shaw 1994)

There are a number of ways the previous decomposition can be improved.

Parnas believed that every design decision that might be revisited, or anticipated

change, should be contained within its own module. He proposed the following

modules, but pointed out some flaws in his choices which illustrate that this is

not a trivial task.

1. Line Storage - provides functions that access and modify the data structure

in which lines can be stored

14

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

2. Input - reads lines from the input medium and calls the appropriate

functions from the Line Storage module to store them

3. Circular Shifter - provides functions analog to those in module 1 that

give access to shifts, as well as a setup function that must be run first in

order to construct the index used by the other functions

4. Alphabetizer - presents function to access sorted shifts, as well as a sort

function which must be run first, to create the index used by the access

function (analog to the setup function of module 3)

5. Output - prints shifts

6. Master Control - calls the other modules in the appropriate order

3.1.2 Parnas’ Comparison

Parnas describes these two decompositions as being “different ways of cutting

up what may be the same object”. The conclusion he draws from that is

that the final result after assembling both decompositions might be identical.

The differences are therefore limited to the interfaces between modules and

the chunks of work being done at a time by a module. This also means that

one program has multiple representations, namely a runnable one and one for

making modifications and human reading.

However, differences come to light when considering the property of change-

ability. Parnas provides a partial list of design decisions he calls “questionable

and likely to change under many circumstances”. Among these are the input

format, location where lines are stored, a fixed number of characters per words

(four), representing shifts using indices versus writing them out, and whether to

15

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

sort alphabetically all at once or distributing that computation. More design

decisions can be called into question, such as what exactly a word is, which

order to sort in, and whether one or multiple locations to store things in are

advantageous to name a few. Some of these changes would affect every module

of the first decomposition, such as where the lines are stored or how many

characters a word contains. In contrast, the information-hiding modularization

confines changes to the line storage location to a single module.

Other criteria for comparison are independent development and compre-

hensibility. Parnas considers interfaces between modules representative of

design decisions. The flowchart-based decomposition results in more complex

interfaces because it requires more design decisions to be made before the

interfaces are finalized. This delays the point at which independent develop-

ment can commence. Because many details are hidden within modules, less

design decisions will need to be made for interfaces in the second decomposition,

making them more abstract. Less decisions and less interdependence means

less interaction is required between developers, and therefore more indepen-

dent development which can begin at an earlier time. Parnas argues that the

flowchart-based modularization “will only be comprehensible as a whole” due

to the interdependence between modules. He believes this is not the case for

the information-hiding decomposition.

The criteria used to create each modularization is also taken into account.

The first decomposition essentially follows from a flowchart, and will not be

sufficient for larger systems. Modules are seen as subroutines. In contrast,

information-hiding is used to construct the second decomposition. Every module

essentially has a “secret”, which consists of the design decision contained. The

interfaces between modules therefore try to hide as much of the inner workings

16

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

as possible. The result is a design that allows for change. Every design decision

contained in a module will only require changes to that specific module, should

that decision be revisited. Consequently, decisions that are likely to change

should be contained in their own module.

Parnas also considers efficiency, noting that the information-hiding decom-

position will easily be less efficient for KWIC due to the function call overhead.

He therefore hints at an unusual compilation process that assembles code,

treating functions as subroutines that are effectively inlined. This results in the

decomposition not being apparent from the final result of this process, which

adds meaning to his earlier statement describing the possibility of the end result

being equal when assembling both decompositions.

While Parnas envisioned this assembly process to be at a low level, a lot

of information is already discarded at that stage; multi-stage programming

assembles code fragments at a much higher level, and is therefore able to make

more guarantees in terms of syntactic correctness and type-safety. It is for this

reason that a language like MetaOCaml1 was chosen.

3.1.3 Additional KWIC Software Design Architectures by

Garlan and Shaw (1994)

Implicit Invocation Modularization (Event-Based Architecture)

Garlan, Kaiser and Notkin argue that the Information-Hiding Modularization

(Abstract Data Architecture) is not as conducive to addition of functionality

as some might desire. They therefore propose the modularization seen in

Figure 3.3, which does not require modifying existing modules to add new
1http://okmij.org/ftp/ML/MetaOCaml.html

17

http://okmij.org/ftp/ML/MetaOCaml.html

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Output
Medium

Master Control

Input Output

Input

Medium Lines

Circular
Shift

Alphabetizer

Lines

System I/O

Subprogram Call

Implicit Invocation

in
s
e
rt

d
e
le

te

i-
th

in
s
e
rt

d
e
le

te

i-
th

Figure 3.3: Modularization using implicit invocation (Garlan and Shaw 1994)

ones. While there are no new kinds of modules compared to the previous

modularization, the interaction is slightly different. There are two places where

lines are stored, and every next step is implicitly called. The storage containing

lines is now an event, and another module can register with this one to be

notified of such an event. The advantage over a conventional function call

is that no modification to either module is necessary, as long as they fit this

observer pattern; the observer (“interested” module) simply registers itself with

an observable (module that can produce events), which maintains a list of

observers to notify. The storage modules still hide the actual data structures

used to store their contents. One potential issue is the order in which these

implicitly invoked modules are executed, since all observers are called at once.

The presence of two storage modules also implies more space is required.

Pipe-and-filter Modularization (Dataflow Architecture)

Lastly, this modularization is essentially a sequence of filters. There is no

centralized control through a Master Control module, instead it is distributed

18

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Input

Output

Input
Medium

Output
Medium

Circular
Shift

Alphabetizer
System I/O

Pipe

Figure 3.4: Modularization in the style of pipe-and-filter (Garlan and Shaw
1994)

– each module calling the next. New functionality can easily be added by

inserting a new module at the appropriate point in the pipeline. However, data

representation has to be considered between every pair of modules that are

connected, and any kind of interactivity (such as deleting lines) is not what

this approach is well-suited for. Garlan and Shaw (1994) also argue that space

would be used inefficiently since modules have to pass all data on to the next

module instead of manipulating it while it resides in some storage. van Vliet

(2000) explains that error handling is also difficult when using this architecture.

This architecture could potentially work incrementally, but assuming the output

will be sequential, the sorting module will requires all lines to ensure the proper

order.

3.1.4 Four-way KWIC Software Design Architecture Com-

parison

It should be pointed out that the contents of the comparison table presented by

Garlan and Shaw (1994) appears to be debatable2. For this reason, van Vliet
2van Vliet 2000, and possibly Murray Wood in 2004 (according to PDF metadata):

http://www.csee.wvu.edu/~ammar/CU/swarch/lecture%20slides/slides%206%20sw%
20arch%20design/lecture%20slides%206%20Architecture%20Design/supporting%
20slides/KWIC%20example%20Architecture3.pdf

19

http://www.csee.wvu.edu/~ammar/CU/swarch/lecture%20slides/slides%206%20sw%20arch%20design/lecture%20slides%206%20Architecture%20Design/supporting%20slides/KWIC%20example%20Architecture3.pdf
http://www.csee.wvu.edu/~ammar/CU/swarch/lecture%20slides/slides%206%20sw%20arch%20design/lecture%20slides%206%20Architecture%20Design/supporting%20slides/KWIC%20example%20Architecture3.pdf
http://www.csee.wvu.edu/~ammar/CU/swarch/lecture%20slides/slides%206%20sw%20arch%20design/lecture%20slides%206%20Architecture%20Design/supporting%20slides/KWIC%20example%20Architecture3.pdf

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

(2000) was also consulted.

The criteria used to compare the four architectures described above are as

follows:

Changes in (overall) algorithm such as when the lines are shifted – either

when they are read, when the sorting module requires them or all at once

Changes in data representation such as the way lines are stored, and how

circular shifts are represented (index and offset or explicitly)

Enhancements such as ensuring the circular shifting module omits shifts that

start with noise words such as “a”, “an”, “and”, etc – typically module-

specific

Performance in terms of both space and time

Reuse in the sense that modules can serve as reusable entities; van Vliet (2000)

explains that while the simplicity of the interaction between modules is

an important factor, “whether the abstraction it embodies is useful in

another context” is of much more consequence.

Independent Development which can start when all decisions affecting

multiple modules have been made; how soon programmers can begin

working on their own

Comprehensibility in terms of time and effort required to understand a part

of the program

The last two criteria are mentioned in Parnas’ comparison, and the table

from Garlan and Shaw (1994) is expanded upon by van Vliet (2000) using

20

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

these two. van Vliet (2000) also adds a neutral or ‘somewhere in the middle’

evaluation in addition to Garlan and Shaw (1994)’s ‘+’ and ‘–’.

Shared Data Architecture

Changes to data representation are a lot of work because all modules contain

explicit references to this representation. The modules are tightly coupled,

containing explicit references to the data structure used to store the words.

This means the components are not generally reusable, but efficient. Garlan

and Shaw (1994) argue that adding enhancements also accessing the shared

data (such as the example above) is easy, but van Vliet (2000) notes that others

might not be. Changes to the overall algorithm might be easy or difficult,

depending on the change. As noted in Parnas’ Comparison, many design

decisions pertaining to the format of the shared data need to be made before

independent development can begin, resulting in complex interfaces. As Parnas

(1972) argues, understanding of a module usually requires understanding of

other modules if not the whole program, slowing comprehensibility.

Abstract Data Architecture

As Parnas pointed out, changing the data representation will be easy, since

this design decision is encapsulated in its own module. No modification to

other modules is required. Since there is looser coupling, modules are better

suited for reuse. However, it is probably more difficult to enhance functionality.

Removing shifts starting with noise words would be doable, but it might become

complicated. Garlan and Shaw (1994) and van Vliet (2000) both argue that

the interaction between modules is still explicit within each module, potentially

making enhancements more work. For the same reason, changes to the overall

21

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

algorithm may also prove complex. van Vliet (2000) argues that this depends

however, since a change in algorithm that pertains a module’s secret will be

easy, but cross-module changes in algorithm might prove more challenging.

Performance would be good if an assembler as described by Parnas existed.

Otherwise, function call overhead and possibly larger space requirements would

slow this architecture down. Apparently, both Garlan and Shaw (1994) and

van Vliet (2000) do not consider this to have much effect. The interfaces of this

decomposition will be much more abstract in comparison to those of the shared

data architecture, allowing independent development to commence earlier. As

Parnas (1972) argues, the comprehensibility should be much improved for this

architecture compared to the shared data one due to better encapsulation of

design decisions resulting in requiring less knowledge of other modules.

Event-driven Architecture

Changes to the overall algorithm as well as enhancements are easier now due

to the interaction between modules being much less explicit. Identical to

section 3.1.4, van Vliet (2000) argues for cross-module algorithm changes still

being difficult. Reuse should also benefit from this, but Garlan and Shaw (1994)

feel that this architecture is closer to the Information-Hiding Modularization

(Abstract Data Architecture) and therefore has poor reusability. For the

same reason, they conclude that data representation is not easy to change.

Fortunately, van Vliet (2000) disagrees. Hence the † in Table 3.1. A change in

data representation should be easy, since this is still encapsulated in a separate

module (which Garlan and Shaw (1994) explicitly mentions). Performance

will be bad, lines and shifts are both explicitly stored, doubling the space

requirement. Function calls and the Observer pattern further increase overhead.

22

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

van Vliet (2000) explicitly mentions the event-scheduling overhead as a possible

cause for reduced performance. The order of execution as well as potential

cycles due to the event-driven nature of this architecture could be a problem.

Similar to the abstract data architecture, independent development can begin

early because the interfaces are going to be abstract. Comprehensibility suffers

from the lack of knowledge regarding which module(s) will respond when an

event is raised, and especially the order in which they do so. It can therefore

be unclear which module is in control at a given time.

Dataflow Architecture

Garlan and Shaw (1994) are quick to assert that the pipe-and-filter architecture

supports changes in the processing algorithm, enhancements and reuse well

due to the fact that it allows one to easily add new filters to the pipeline.

However, in their words “it is virtually impossible to modify the design to

support an interactive system”, which is one of the examples they use to

illustrate changes in the overall algorithm. The algorithm is also limited to

the sequential style of the architecture. Performance is considered poor due

to every module having to parse, unparse, and pass on the entire dataset to

the next module. For this reason, changes in data representation between two

modules are difficult to implement as well, since this would affect both modules,

and the changes might cascade (van Vliet 2000). The data representation

within a single module can be changed with relative ease though. Only the

format of the datastreams between filters will need to be decided, and these

formats tend to be simple, so independent development of filters will be easy.

The architecture is comparatively straight-forward and sequential, giving little

cause for comprehensibility to suffer.

23

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Shared
Data

Abstract
Data
Types

Events Dataflow Ideal
Goal

Changes in algo-
rithm

– 0–† 0+† +$ +

Changes in data
representation

– + +–† – +

Enhancements 0+† – + + +
Performance + +$ – – +
Reuse – + +–† + +
Independent devel-
opment

– + + + +

Comprehensibility – + 0 + +
Note:

+/–† Garlan and Shaw (1994) and van Vliet (2000) disagree, superscript symbol
from the former

$ Debatable

Table 3.1: Summarizing the comparison between the various KWIC architectures,
based on the table in van Vliet (2000)

3.2 Metaprogramming

Metaprogramming is the act of writing programs that handle and/or produce

other programs. The example familiar to most people would be compilers,

which take a program in the form of source code and produce a program

in the form of bytecode or machine-specific instructions. Another example

would be a program that attempts halting analysis, producing either a proof

that the program always halts, or a counterexample showing that under some

circumstances, it will not. Note that the latter program is an undecidable

problem, so there are only partial solutions. Intuitively, one could see the

counterexamples posing a potential problem, because one does not have infinite

time to check whether it truly does not terminate at some point.

There are various approaches to metaprogramming:

• String munging

24

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

• Macro systems

• Template metaprogramming

• Staged metaprogramming

3.2.1 String Munging

This is the simplest technique, consisting of simply cutting and pasting strings,

with no guarantees regarding syntactic or type correctness. This is because the

resulting program consists of concatenated strings that could contain anything.

A basic example of this can be found in Listing 1. It shows a shell script

that produces another shell script upon execution. This newly created script

will contain 992 echo statements and will print the numbers 1 to 992 upon

subsequent execution. However, any character can be inserted into the new file,

so this approach is error-prone and difficult to maintain.

1 #!/bin/sh
2 # metaprogram
3 OUTPUT=’program.sh’
4 echo ’#!/bin/sh’ > $OUTPUT
5 for I in $(seq 992)
6 do
7 echo "echo $I" >> $OUTPUT
8 done
9 chmod u+x $OUTPUT

Listing 1: Simplest form of metaprogramming by assembling a string.
Based on an example from Wikipedia. (https://en.wikipedia.org/wiki/
Metaprogramming#Examples)

25

https://en.wikipedia.org/wiki/Metaprogramming#Examples
https://en.wikipedia.org/wiki/Metaprogramming#Examples

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

3.2.2 Macro Systems

Two examples of macro systems are the C preprocessor and the macros found

in Lisp. The former are textual macros, which manipulate code at the token

level, whereas the latter are syntactic macros, working at the abstract syntax

tree (AST) level. Despite its name, Template Haskell also belongs in this

category. To demonstrate a To illustrate this concept briefly and in a way least

foreign to the reader, a simple example of a C preprocessor macro is shown in

Listing 2. This program defines a swap macro that is subsequently called as if

it were a function, but the call will be replaced by the three statements from

the definition by the preprocessor. The curly braces scope the variable c so

that it will not be visible outside the routine defined in the macro, but note

that this is left up to the programmer. While similar to the previous example

in Listing 1, the C preprocessor ensures that the macros consist only of valid

tokens, which is a step up from having no guarantees at all. However, this

leaves a lot to be desired because not all combinations of tokens result in valid

programs.

1 #include <stdio.h>
2 #define SWAP(a, b, type) { type c; c = b; b = a; a = c; }

3 int main(){
4 int a = 3;
5 int b = 5;
6 printf("a is %d and b is %d\n", a, b);
7 SWAP(a, b, int);
8 printf("a is now %d and b is now %d\n", a, b);
9 return 0;

10 }

Listing 2: Simple metaprogramming using the #define macro.

26

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

3.2.3 Template Metaprogramming

In this approach, the compiler uses templates to generate temporary code, which

is then merged into the rest of the source before an executable is generated.

Depending on the template system, certain guarantees can be made. In general,

syntactic correctness is assumed. However, type safety is optional and often

difficult. A well-known language that implements this is C++, but there are

many, including D3. D is a language that tries to improve over C++, so

its syntax will appear to be similar. An easy example introducing template

programming in D can be seen in Listing 3 and Listing 4.

1 module lt;

2 bool lessthan(T)(T a, T b) {
3 return a < b;
4 }

Listing 3: Elementary template definition

Listing 3 defines a module so that it can subsequently be imported by another

file. This module contains one function, namely lessthan; this function takes

a type argument T, and two arguments of type T. The result is a Boolean value

denoting whether a is less than b. In Java, the first T would have been enclosed

like so: <T>. The implicit assumption here is that arguments a and b can be

ordered in some way.

Listing 4 instantiates imports Listing 3, and instantiates lessthan for

integers, comparing 3 to 4 in order to get a true back.

Generic Quicksort

3http://dlang.org/

27

http://dlang.org/

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 import std.stdio;
2 import lt;
3 void main(string[] args) {
4 writeln(lessthan!int(3,4));
5 }

Listing 4: Instantiating template defined in Listing 3. Note that writeln is a
template function as well; it converts all arguments to!string(arg)

Listing 5 contains a generic quicksort algorithm implemented in D. It

imports a swap function, which simply swaps to elements in an array. This

quicksort implementation also takes a comparison function by which the list

will be ordered. Arrays of any type will be sorted, as long as the comparison

function is applicable to this type.

Listing 6 runs the quicksort presented in Listing 5. The function used to

order elements by is from Listing 3. Casting to type int on line 7 is the result

of the length call. It is necessary because it returns a long integer instead of a

regular one.

3.2.4 Multi-Stage Programming

The aim of multi-stage programming (MSP) is to develop generic software that

does not pay a runtime penalty for this generality (Taha 2004). It does this by

generating and executing code at runtime. Unfortunately, there is little support

for writing MSP generators in C or Java. However, an extension to OCaml

called MetaOCaml (Kiselyov 2015) was created with this specific purpose in

mind. MetaOCaml ensures both syntactic correctness and type safety. The

basics of MSP with MetaOCaml will be explained briefly below; Taha 2004

provides a more comprehensive tutorial.

28

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 module quicksort;
2 import std.algorithm : swap;
3 void qs2(T)(T[] values, int start, int end, bool function(T, T)

compare) {↪→

4 if (end - start > 0) {
5 int p = partition2(values, start, end, compare);
6 qs2(values, start, p - 1, compare);
7 qs2(values, p + 1, end, compare);
8 }
9 }

10 int partition2(T)(T[] values, int start, int end, bool
function(T, T) compare) {↪→

11 int storeIndex = start;
12 for (int i = start; i < end; i++) {
13 if (compare(values[i], values[end])) {
14 swap(values[i], values[storeIndex]);
15 storeIndex++;
16 }
17 }
18 swap(values[end], values[storeIndex]);
19 return storeIndex;
20 }

Listing 5: A slightly more complex template example.

There are three basic MSP constructs (as first introduced in Lisp; Larjani

2013).

• Brackets: .< and >. – these delay execution of any expression, creating

typed code fragments as demonstrated by the MetaOCaml interpreter

in Listing 7. While 1+2 is simply 3, enclosing the expression in brackets

creates code, which can subsequently be combined with other code before

eventually being executed.

• Escape .~ – for combining code fragments, as demonstrated in Listing 8.

It takes the code produced in the demonstration shown in Listing 7

29

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 import std.stdio;
2 import lt;
3 import quicksort;

4 void main(string[] args) {
5 int[] values = [5,2,3];
6 writeln("Initially: ", values);
7 qs2(values, 0, cast(int) values.length - 1, &lessthan!int);
8 writeln("Result using lessthan: ", values);
9 }

Listing 6: Running the quicksort from Listing 5 using code from Listing 3 as
the comparator

let a = 1+2;;
val a : int = 3
let a = .<1+2>.;;
val a : int code = .<1+2>.

Listing 7: Demonstration of MetaOCaml interpreting brackets (Taha 2004)

and “splices” it into a larger code fragment which multiplies the given

expression with itself. The types check out because a is of type int code,

which will be just int when escaped, which is in turn exactly what the

multiplication operator expects. Note that the parentheses to preserve

the order of operations are inserted automatically.

let b = .<.~a * .~a >. ;;
val b : int code = .<(1 + 2) * (1 + 2)>.

Listing 8: Demonstration of MetaOCaml’s escape, using the results shown in
Listing 7 (Taha 2004)

• Run .! or Runcode.run – for executing a code fragment, as seen in

the demonstration contained in Listing 9. Here the code assembled in

30

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Listing 8 is executed.

let c = .! b;;
val c : int = 9

Listing 9: Demonstration of MetaOCaml’s run using the result of Listing 8
(Taha 2004)

The method for building MSP programs is as follows:

1. single-stage program is developed, implemented and tested

2. Organization and data-structures are studied to ensure they can be used

in a staged manner – may require “factoring”

3. Staging annotations are introduced, program is tested

However, one can consider this idealized because in practice it is useful and

often necessary to iterate. This process is illustrated below. A simple power

function is shown in Listing 10. Assuming that computing x2 is a common

1 let rec power (n, x) =
2 match n with
3 0 -> 1 | n -> x * (power (n-1, x));;

Listing 10: Simple power function in pure OCaml

operation, one creates an alias for the power function where n is always 2,

as shown in Listing 11. Unfortunately, every time power2 is called, power is

1 let power2 = fun x -> power (2,x);;

Listing 11: Alias for squaring values

31

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

called twice. Ideally, the function shown in Listing 12 is executed, because

it avoids function call overhead. Because this is a simple example designed

1 power2 = fun x -> 1*x*x;;

Listing 12: Preferred function for squaring values

to illustrate MSP, the function in Listing 10 will not have to be refactored for

staging. Adding stage annotations results in Listing 13. Note that when the

input is 0, the result still needs to be a code fragment containing 1 because when

the result is not 0, the result is a code fragment. Using the staged function, x2

1 let rec power (n, x) =
2 match n with
3 0 -> .<1>. | n -> .<.~x * .~(power (n-1, x))>.;;

Listing 13: Staged power function

becomes the function shown in Listing 14. Using this version results in less

1 let power2 = .! .<fun x -> .~(power (2,.<x>.))>.;;

Listing 14: Squaring function using MSP

runtime overhead, because the final code fragment produced at compile time is

.<x*x*1>.. One can see how adding the case 1 -> .<x>. will further reduce

the number of calculations at runtime; calculating x1 would simply result in

.<x>.. This means that calculating x2 would result in .<x*x>., removing

the redundant multiplication by one in both and subsequent cases. Arguably,

0 -> .<1>. could be removed, but this depends on whether x0 ever needs to

32

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

be computed. If negative exponents need to be evaluated, relevant cases should

be added as well.

3.3 Related Work

This chapter is by no means comprehensive, but serves to provide some context

for this work.

As shown in section 3.2, there are various approaches to metaprogramming.

The Library of Efficient Data types and Algorithms (LEDA) described by

Mehlhorn and Näher (1999) and the Computational Geometry Algorithms

Library (CGAL) described by Fabri et al. (2000) are libraries using C++

templates to improve abstraction. Elsheikh (2010) and Carette, Elsheikh, and

Smith (2011) note for both cases that while C++ templates provide genericity,

maintainability is an issue due to limited abstraction mechanisms of this

technique.

Blitz++ (Veldhuizen 1998) eliminates abstraction costs at runtime through

metaprogramming with C++ templates. It preceded LEDA and CGAL, explor-

ing many of the metaprogramming techniques those two use. Unfortunately,

metaprogramming with C++ templates means that there are fewer guarantees.

The elimination of overhead is dependent on the compiler inlining methods,

something that is reportedly difficult to ensure. Many errors such as type errors

and composition errors are only detected when compiling the generated code,

and finding the source of these errors in the generator is quite a daunting task.

A project that uses string munging to generate code is ATLAS, presented

by Whaley, Petitet, and Dongarra (2001). As noted in subsection 3.2.1, this ap-

proach guarantees nothing about the resulting code. This makes improvements

33

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

and maintenance quite complicated. (In contrast, MetaOCaml guarantees that

generated code is type-safe and well-formed.)

Object-oriented programming techniques typically achieve abstraction in a

more conventional way, namely through dynamic binding at runtime. As Schorn

(1991) and Simpson (1999) demonstrate, this can create runtime overhead due

to dynamic dispatch.

Multi-stage programming using MetaOCaml addresses many of the issues

encountered when using the above techniques. Multi-stage programming ensures

that all generated code is well-typed at generation time, and monads combined

with the finally tagless technique described by Carette, Kiselyov, and Shan

(2009) allow for better maintainability and extensibility.

Program generators have been used successfully to generate program families

(Larjani 2013, Carette 2006, Szymczak 2014, Elsheikh 2010 and all of the above).

MetaOCaml has already shown its usefulness in this area, as illustrated by

Elsheikh 2010 and Carette 2006. Haskell is also demonstrated as an able

language for this purpose by Curutan (2013) and Szymczak (2014). Curutan

(2013) may look similar at first glance, but uses abstract data types rather than

the finally tagless approach presented by Carette, Kiselyov, and Shan (2009)

which this work uses. The above examples generate implementations where

the differences typically concern lower level design decisions. However, to the

best of the author’s knowledge, no work has been published on generating a

program family where the architecture or other high-level design decisions vary.

Many of the techniques for creating a generator found in Carette 2006 and

Carette and Kiselyov 2011 still apply. One way to interact with generators is a

DSL, as seen in Larjani 2013 and Szymczak 2014, for example.

The monad used in this thesis is identical to the one used in Carette (2006),

34

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

and as mentioned in that publication, it bears resemblance to the monad from

Kiselyov, Swadi, and Taha (2004) and Swadi et al. (2006).

As shown by Curutan (2013), there is a design language that is less abstract

than algorithm descriptions but more abstract than implementation languages.

Note that this is not just pseudo-code; this language is paradigm-agnostic.

This concept is used in this thesis, both to express the functionality of each

KWIC module as well as to unify the functional and imperative programming

paradigms. The mapping between these two has been theorized and reasoned

about, but to the best of the author’s knowledge, no generator that can produce

both has been implemented until now.

35

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Chapter 4

Analysis and Design

This chapter begins by describing the goals and the approach taken to accom-

plish them. It then analyzes a number of the design decisions required for the

KWIC program, and what the minimal interface of modules encapsulating them

should expose.

4.1 Goals & Approach

This section is a more detailed description of what the aim of this thesis is

than that provided in the Introduction. Subsequently, an initial approach to

achieving this aim is provided.

4.1.1 Goals

The objective is to create a program generator in MetaOCaml. This genera-

tor should produce different implementations of KWIC, which embody various

software architectures. For example, the generator should produce both imple-

mentations that reflect the pipe-and-filter architecture described in section 3.1.3

36

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

as well as the abstract data architecture from section 3.1.1. Adhering to a

single architecture could also be optional; combining architectures should be a

possibility. Furthermore, the generator would ideally also implement Parnas’

idea that modularization is not visible in the final code. This means that

the architecture would only be visible inside the generator, and the resulting

implementation would be “spaghetti code”. This result is acceptable because

the code should not be maintained after being generated; an adjustment to the

generator (where the architecture is visible) would be preferable.

4.1.2 Approach

The goal of generating multiple implementations reflecting various software

architectures makes encoding knowledge of all desired architectures into the

generator a necessity. This is best done in the form of an umbrella architecture,

which contains everything the other architectures consist of. A good way to gain

insight into this umbrella architecture is to create a number of implementations

manually. To circumvent certain technical challenges presented by the nature

of specific programming languages, multiple languages can be used for this.

This is especially helpful when the the desired architectures are more easily

implemented using different paradigms. (Meta)OCaml is a multi-paradigm

language containing both imperative and functional paradigms, so many of the

implementations would map to this language without too much trouble. The

implementations and corresponding architectures should be analyzed thoroughly

to identify the minimal requirements for the umbrella architecture.

Once the umbrella architecture appears to be well-understood, effort can

be put into designing and implementing the generator. MetaOCaml’s staging

37

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

facilities have previously been employed to create generators, as noted in

section 3.3. One of the most similar examples is the generator presented in

the Gaussian Elimination (GE) paper by Carette (2006). Some of the base

code should be reused, because it already contains many of the necessary

mechanisms such as continuation-passing style (CPS) code combinators (which

will be explained further below). In a nutshell, CPS makes the control flow

in a program explicit, especially in functional programming languages. Code

combinators (presented in Carette 2006 and Carette and Kiselyov 2011)are

pieces of code that combine one or more smaller code fragments into a larger one.

By combining smaller fragments into larger ones, one eventually ‘assembles’

a complete implementation. Once familiar with the reused base code and

MetaOCaml itself, a very iterative approach should be taken to creating a

program generator. Functions should be tested frequently to keep track of

intermediate progress. OUnit2 appears to be a commonly used unit-testing

framework for OCaml, and its resemblance to Java’s JUnit implies a minor

learning curve.

4.2 Initial Analysis of KWIC

Architectures presented by Garlan and Shaw (1994) do not introduce any new

modules beyond those introduced by Parnas (1972). Pipe-and-filter takes away

the explicit concept of storage, forcing all the data to be passed along between

modules instead of being held in one or more dedicated modules. This could

potentially be worked around by creating a passthrough storage module or

something to that effect. Parnas’ second decomposition contains a shifter

module that presents the sorting module with a interface allowing for access to

38

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

any of the shifts instead of putting them into either the original or a separate

storage module, essentially acting as a more complicated passthrough. While

this would potentially reduce reusability, one can explore ’connector’ modules

(Larjani 2013) and different sets of functor signatures that ensure various valid

combinations in order to mitigate this problem. For these reasons, every one of

Parnas’ modules is considered in this analysis.

4.3 Storage Module(s)

After creating a number of implementations of KWIC in various languages as

well as analyzing their architectures, KWIC (specifically the storage module)

was considered from the perspective of each of its modules. Parnas admitted

that his preferred decomposition was not perfect yet; the goal here was to apply

information hiding more thoroughly.

When considering storage, the elements stored are one of the primary

concerns. Parnas’ smallest unit in KWIC was a character. Characters made up

words, words made up lines and lines filled the data structure the preferred

modularization hides from other modules. Having characters explicitly be the

smallest unit would primarily add complexity and perhaps expose more internals

that are preferably hidden, because the smallest unit that is manipulated by

any module is a word. While a word consisting of characters makes sense when

considering the function of KWIC (creating an index that is easy to search), it

is still a design decision. Also, the way these characters are stored has to be

agreed upon by all modules in the way Parnas envisioned KWIC. There is no

need to expose more than the minimum required regarding lines; they can be

ordered, but the individual characters (if they are indeed that) and the form

39

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

they are stored in are irrelevant to all but the functions that add or output

lines. It appears sufficient to make words the smallest unit exposed to other

modules in the program.

The input module only needs a storage module to provide an add/insert

function, and a storage only needs to hold lines at this point. It is assumed

the order of the words in the lines has meaning, but this is not necessary when

viewed from the perspective of the input module. It is also unnecessary for the

shifter module, which needs to rotate lines. A conventional way to achieve this

is to retrieve one line at a time, and while it typically writes into a new storage

(or creates a table of indices according to Parnas), a single heterogeneous storage

might be considered – the distinction between shifts and original lines that

is visible to the shifter module is all that is ultimately required for the latter

option. Parnas mentions that shifter produces shifts in some order, which is

not strictly necessary, given that the shifts will be reordered by the sorting

module. However, this order could be alphabetical, meaning that not allowing

for a decomposition in which sorter is empty is a design error. Another piece

of information that the shifter requires is the format of a line. One can easily

infer that this could also be abstracted away; possibly even by simply reusing

a storage module. Hypothetically, this could be accomplished by inserting a

storage container into another one, where the former represents a line and the

latter is the container that holds lines.

The order of lines in a storage is only significant to the sorting module,

and if storage containers are reused to hold words of a line, then there as well

due to the need for shifting. Therefore, some (but not necessarily all) storage

modules will need to maintain an ordering. For this, as well as shifting lines,

the concept of indices seems necessary. The distinction between shifts and

40

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

originals may not matter, unless required by output (e.g. when printing the

keyword and then the original line, if so desired). However, this could matter

internally, when using the same storage module for original lines and shifts, in

which case this would ideally be contained in the shifting module.

With only a retrieval and insertion function for a storage module, the sorting

module (and possibly the shifter) would end up performing common tasks such

as swapping. It would be better if this were a function provided by the storage

module, both for abstraction and performance reasons. Bringing the sorting

module ‘closer’ to the storage module is only possible if there is a storage

(e.g. not pipe and filter). The sorter would be the only module to swap lines,

unless the shifter uses this to rotate lines. However, this would be inefficient

similar to how swapping using a retrieval and insertion function would be. A

rotation function could also be provided by the storage module instead. This

would effectively move the design decision specifying the method through which

rotation is performed to the storage module, but it would potentially improve

performance as well as reduce the need for retrieval and insertion functions.

Output intuitively also needs a retrieval function to pretty-print a storage

(though it could print a desired shift according to Parnas, presumably working

with indices from the sorter).

4.3.1 Conclusion: Multiple Options

Ultimately, there could be three storages. The first primarily for input, just

containing lines with only an insertion function for input and a retrieval function

for the shifting module. The second storage would be for the shifting module,

storing shifts. The shifting module still only require this storage to have

41

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

insertion and retrieval functionality. The third storage is for the sorting module,

containing shifts in a certain order. A function that added new lines would

work if all data was available at once and add added lines sequentially, but a

modification function would be necessary if that was not the case. Output needs

the third storage to have a retrieval function as well, but if the pretty-printing

requirement is relaxed it might just request the contents of the entire storage

instead. The first storage could be combined with the second if there was a

way to differentiate shifts from original lines. The second and third could be

combined, but the order is only necessary after sorting; this would also require

a swap function (combining retrieval and modification).

4.4 Sorting Module

Instead of calling it an alphabetizing module, which implies the assumption

that it only sorts words in alphabetical order, it is more appropriate to call

it a sorting module. When considering KWIC and other concordances, these

assumptions made by Parnas (1972) make sense. However, from a software

perspective, what a word exactly happens to be is just another design decision,

and one that is preferably contained in a module rather than spread throughout

the program (as seen in /java-kwic/1 for example). This module should only

contain the algorithm by which the contents of a storage module is sorted.
1Hyperlink to the directory in question. For convenience, all code is available in an archive

at https://www.cas.mcmaster.ca/~schaapal/mthesis/code.tar.gz

42

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/java-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code.tar.gz

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

4.5 Shifting Module

As stated above this module essentially only needs to create rotated lines. But

lines in this context only need to be containers that hold elements in a certain

order. All other details should be hidden from this module to make it as generic

(and therefore reusable) as possible.

4.6 Input and Output Modules

The Input module contains knowledge of the input format and how this should

be encoded in the storage module. Similarly, the output module only needs to

be able to present the contents of the (final) storage module in some form.

4.7 Combining Modules Into KWIC

Based on the work by Carette (2006) and Larjani (2013), KWIC modules should

correspond to parametrized OCaml modules, or functors. These take modules

as parameters as well as be passed as arguments to other modules. For example,

the sorting module takes a storage module as an argument, which in turn takes

as a parameter a module that specifies the type of the values being stored.

This way, modules can be instantiated and combined into a complete KWIC

implementation. Ultimately, this could be done through a simple user-friendly

DSL, but the OCaml module language is already a DSL on its own.

43

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

4.8 Architectures

The idea is that while a number of modules may be architecture-specific, a lot

should be reusable. This would allow mixing and matching to create whatever

software architecture is specified as input to the generator. The signatures

prevent combinations that do not produce a working implementation. The

combinations of modules range from the one generating the implementation

reflecting the most complicated architecture to the one that inlines everything

so that the simplest implementation (that might not reflect any architecture)

is produced. By presenting the user a number of choices in the beginning, they

should be able to easily generate an implementation. By doing so, the generator

should demonstrate that software architecture is not an unchangeable design

decision early in the software development process.

4.9 Incrementality

The stream-like nature of the pipe-and-filter architecture implies the possibility

for incremental input and results. To this end, earlier implementations created

separate groups of shifts and sorted those. However, all lines and shifts in KWIC

must be sorted together. This means that in the pipe-and-filter architecture,

all input must be provided at once.

4.10 Subsequent Analysis

While the initial analysis was a good start, some of the details that became

apparent through iterative implementation changed. The storage module was

developed with sorting in mind, and the use of indices was deemed undesirable.

44

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Parnas used indices because these were the appropriate solution at the time.

However, iterators and traversal functions have made their debut since then.

These hide more of the data structure than indices and therefore became the

preferred approach.

Another way for the shifting module to achieve its goal is to have the storage

module provide a function that returns a shifted version of a line. The shifter

module then calls this function and stores the results in the appropriate storage

module (this could be the same one or a different one). This approach hides

the structure of a line, only taking one line as input and producing one as

output, whereas the original approach required the shifter and storage modules

to agree on some format for lines that included distinguishable tokens in some

order. While this seems logical when expecting to shift lines, the decision of

what this specifically entails is kept within the storage module when using the

latter approach.

4.11 Distinction Between Containers, Elements,

and Their Respective Descriptions

There is a storage module that contains functions to manipulate a container for

elements, whether it be an array or a list, for example. However, there is also a

notion of element descriptors; in the case of an array, this maps to indices. For

a list, this is not as clear; typically, one iterates over a list recursively, so a likely

choice is to make an element descriptor the same as the element itself. One

can access an element from its descriptor; in the case of lists, only the identity

function is needed, but in the case of arrays, one would get the element at the

45

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

provided index. Note that one cannot necessarily use the element descriptor

to access another element; while indices can be incremented, a list element

would have to provide access to the next element. This is justified because

this functionality would imply the elements have an order. The concept of a

container descriptor is slightly different; it describes (a portion of) a container.

Some sorting algorithms recurse on parts of the original data structure. In the

case of lists, it’s simply a list, but for arrays it is a tuple of the array and the

first and last indices of the portion of the array it describes.

46

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Chapter 5

Implementation

This chapter will discuss the efforts made towards creating a program generator

in MetaOCaml which would produce KWIC implementations. Some concepts

and code were reused from the GE paper (Carette 2006), which will be explained

first. Concluding this chapter is a brief overview of the final implementation,

highlighting some noteworthy details, along with difficulties encountered.

This chapter references paths such as /ge-based-kwic/ a number of times;

these are both hyperlinks to the relevant file or directory and paths in the ac-

companying archive file found at https://www.cas.mcmaster.ca/~schaapal/

mthesis/code.tar.gz.

5.1 Concepts

First, a number of concepts carried over from the GE code (Carette 2006) will

be explained. Some familiarity with MetaOCaml and functional programming

in general is necessary at this point; see section 3.2 for a brief overview and

Taha (2004) for more detail. For OCaml itself, many textbooks exist; Minsky,

47

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code.tar.gz
https://www.cas.mcmaster.ca/~schaapal/mthesis/code.tar.gz

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Madhavapeddy, and Hickey (2013) proved helpful to the author on numerous

occasions.

5.1.1 Making the Type of the Generated Code (Frag-

ment) Abstract

As explained in the preliminary section 3.2, MetaOCaml manipulates code

fragments of type ’a code, where the parameter ’a can be anything. The GE

code ‘hides’ the ’a code type behind ’b abstract in the fashion of finally

tagless (Carette, Kiselyov, and Shan 2009). This allows for multiple ‘backends’

to the generator which can produce different output based on the same input.

The interface for such backends is the /ge-based-kwic/coderep.mli interface.

Two backends are implemented. For one, ’b abstract = ’b code, and it

produces code fragments (/ge-based-kwic/code.ml). This is the backend that

makes the program a generator. For the other, ’b abstract = unit -> ’b.

This executes the code that would be generated, simulating lazy evaluation

through ‘thunks’ (fun () -> ...). This does not delay execution in the same

way MetaOCaml’s code fragments do (i.e. until Runcode.run is called); instead

it delays execution until the current ‘fragment’ is combined into another one.

However, the computed values should be the same, and the latter can be

implemented in plain OCaml. Apart from greater separation between the

code being generated and the generation process, this also aids in debugging

when one of these backends produces errors. Most importantly, allowing the

generation of code as well as an immediately executed implementation takes

away the burden of showing that both are equivalent, as would be the case when

manually writing what one wants to generate and then creating a generator for

48

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/coderep.mli
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/code.ml

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

it. Updating both concurrently is a most time-consuming experience due to

the difficulty of achieving exact equivalence. Whereas the former will often be

referred to as code, the latter will be referred to as the ‘direct’ approach. Code

will be the main focus.

5.1.2 Continuation-Passing Style & State

The direct style of programming that everyone knows is ubiquitous enough

for people to not realize it is named as such. However, there is an alternative

called CPS. A function in continuation-passing style always takes one extra

argument, which is its continuation. A continuation is just another function

which takes the result of the function it is passed to as well as a subsequent

continuation function. A CPS function executes its calculation and passes its

result as an argument to the continuation. The simplest continuation is the

identity function, which simply returns whatever is passed in as its argument.

The benefit of CPS is that it makes the control flow explicit. It thereby

allows backtracking to occur in case a certain “path” of continuations ends

up yielding an error. A function higher up in the chain can anticipate this

and subsequently try an alternative continuation. One clear downside is that

readability of the code suffers, especially for novices.

The type of a continuation would be (’v -> ’w) -> ’w, where ’v is the

value passed in and ’w is the answer (Larjani 2013). The second ’w seems

redundant, but its presence can be explained through a simple example: if

we have a function called one that produces the code fragment1 .< 1 >., and

this function is in CPS, then it needs a continuation as (one of) its arguments.

Presuming there are no other arguments to this function, its definition would be:
1See subsection 3.2.4

49

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

let one k = k .< 1 >.. The simplest continuation would be the initial con-

tinuation, which would be the identity function as stated above; fun k0 v = v.

Because of the type of this function, namely ’v -> ’v (where ’w is ’v) one’s

type would be (’v -> ’w) -> ’w, because it would have to call the continua-

tion on its result, returning a value of the return type of that continuation, in

this example k0.

This is sufficient for generating functional programs, because all values are

passed on as function arguments. However, we need a notion of state in order

to generate imperative code.

In order to add state, an additional argument s is added. In this case, state

is a list manipulated by a number of functions that will add or look up an

element. Elements in this case are references to variables in the generated code;

this state represents the state of the generated code. One can extend the state

with a new variable, look it up in order to manipulate it, as well as modify an

existing entry. (This last operation was not available in the GE code, but was

added by Carette.) The state will remain empty when generating functional

programs. Note that this is a global state. To declare variables in a scoped

setting, a different mechanism (the let! and retN code combinators) is used.

The idea of a CPS function with global state is captured in the monad type:

type (’p,’v) monad = ’s -> (’s -> ’v -> ’w) -> ’w

constraint ’p = <state : ’s; answer : ’w; ..>

If something is of type monad, it will take as arguments a state of type ’s and a

continuation of type ’s -> ’v -> ’w and this will lead to a final result of type

’w. This parametrized type takes two parameters; ’p is a constraint on the

50

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

state and/or the result, while ’v is the value type resulting from this function

that is passed into the continuation. Type ’w can be the result of more CPS

functions than just the next one.

Expanding our example above to accommodate for ’s, one’s definition would

look like let one s k = k s .< 1 >.. The initial continuation would be

let k0 _ v = v, with _ being the ignored state. Its type is ’s -> ’v -> ’w.

Piecing this together, one can surmise that the type of one must indeed be

in the form of the type given above; ’s -> (’s -> int code -> ’w) -> ’w,

alternatively shown by the compiler as:

(<state : ’s; answer : ’w; ..>, int code) monad

Two specialized versions of the monad type have been created during the

generator’s development process for convenience and readability: cmonad and

lm. These will be explained below.

cmonad

For convenience, a more specific form of the monad type was created; it accepts

and returns abstract values. Almost all functions within the generator will

be returning code in some fashion, making this an oft-used type.

type (’pc,’p) cmonad_constraint = unit

constraint

’p = <state : ’s list; answer : ’w abstract>

constraint

’pc = <answer : ’w; state : ’s; ..>

51

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

type (’pc,’v) cmonad = (’p, ’v abstract) monad

constraint _ = (’pc,’p) cmonad_constraint

The two parameters are very similar to those of monad. However, ’pc is related

to ’p by cmonad_constraint. Note that this is only for readability; one could

move the constraints from cmonad_constraint to cmonad to achieve the same

result. The types of state and answer in ’pc become more restricted in ’p,

where they become encapsulated in list and abstract respectively. Ultimately,

the monad type should look like this:

’s list -> ’s list -> ’v abstract -> ’w abstract -> ’w abstract

lm

Another more specific parametric type called lm was created for convenience

when dealing with an array in the state.

type ’x stor_constraint = unit

constraint ’x = _ tarr

type (’pc, ’v) lm = (’pc, ’v) cmonad

constraint _ = ’pc stor_constraint

Similar to the cmonad type, ’pc is restricted to the polymorphic type tarr.

This type is defined as follows:

52

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

type ’a tarr = ’a

constraint ’a = < state : ’b ; .. >

constraint ’b = [> ‘TArr of sstate]

Which leads to (_ tarr, ’v) cmonad, in turn leading to (<state: [‘Tarr of sstate];..>, ’v) cmonad,

resulting in the conclusion below:

[‘TArr of sstate] list -> [‘TArr of sstate] list -> ’v abstract

-> ’w abstract -> ’w abstract↪→

5.1.3 Code Combinators

A code combinator is a function that takes one or more code fragments and

uses those to produce another fragment. A program generator in this case

produces a program by combining code fragments into one large one. From

the point of view of the generator, these functions produce results of type

abstract, as specified by /ge-based-kwic/coderep.mli. The GE code came with

a set of combinators, but a number had to be added to implement the desired

functionality. A simple example would be Idx.add, which is defined as follows:

let add a b = .< .~a + .~b >.

It takes two fragments (which have to be of type int code), and splices them

into a larger fragment that will add them together once executed. An equivalent

set of delayed execution (as described above) combinators exist; its result type

is unit -> int, but these are both seen as int abstract. Code fragments can

53

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/coderep.mli

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

be monadic, which means they are aware of global variables through state s and

the generation of code is sequential because CPS is employed with continuations

k. The seq and seqM combinators illustrates this nicely:

1 let seq a b = .< begin .~a ; .~b end >.

2 let seqM a b =

3 fun s k -> k s .< begin .~(a s k0) ; .~(b s k0) end >.

Below are some brief explanations of the more interesting combinators.

let! This combinator is used as follows:

let! patt = expr1 in expr2

One can choose any name for patt, and expr1 and expr2 are of type

monad. The above is syntactic sugar for:

let! expr1 (fun patt -> expr2)

Our definition of let! is:

let (let!) (m : (’p,’v) monad) (f : ’v -> (’p,’u) monad) :

(’p,’u) monad = fun s k -> m s (fun s’ b -> f b s’ k)↪→

54

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

So given an m of type monad and a function f, another monad will be

produced. This will have the same constraints on state and result, but

the value the continuation takes can be different. It also takes a state s

and a continuation k, and finally applies the monad m to the state s and

the newly created nameless function that takes a state s’ and a value b,

applying f to b, s’ and k. This allows monad m to produce a value b and

optionally modify state s’, which the remainder of the function (after

the ‘in’) embodied in f will then use, along with the modified state and

the continuation passed to let!.

genrecloop The recursive loop combinator. It is defined as follows:

let genrecloop gen start = fun s k ->

k s .<let rec loop j = .~(gen .<loop>. .<j>. s k0) in

loop .~start>.↪→

It takes arguments named gen and rtarg in addition to the usual CPS

ones. It then creates a recursive function called loop, which takes j as

its argument and executes gen with loop and j as its arguments, finally

calling it such that j=rtarg. So a gen function would have to have two

arguments, namely one for loop and one for the actual argument(s). It

can then call the former to recurse in a way that terminates, and possibly

use the latter to determine whether to recurse.

ret Defined as follows:

let ret (a :’v) : (’p,’v) monad = fun s k -> k s a

55

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

This ensures that a value of any type can be used in monadic code by

calling the given continuation on the given state and the value.

retN Defined as follows:

let retN (a : ’v code) :

(<answer: ’w code; ..>, ’v code) monad

= fun s k -> .<let t = .~a in .~(k s .<t>.)>.

This might appear to do the same thing as ret at first glance, but it

only accepts code and generates a let statement, making the argument

explicitly named in the resulting code. This ensures that the code passed

in as the argument is only executed once instead of multiple times, which

his important when dealing with side-effects such as when modifying an

array.

Passing On a Modified State: seqMS

When modifying the state, the resulting new state needs to be visible to

subsequent code. For example, this happens when changing elements in an

immutable data type such as list contained directly in the state instead of

having a mutable data type such as an array or a reference (ref). In the

former case, a new list is created every time something changes, and this list

must replace the previous one in the state. However, in the latter two cases

of array and ref, the state remains unchanged because it is the same array

or ref as before, the difference being the thing that the ref is pointing to or

56

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

the element the array now contains. The initial sequential combinator, seqM,

simply passed both fragments the same state. In fact, it seems like only let!

passes on the potentially modified state. After finding a temporarily satisfactory

workaround in the form of an explicit continuation and numerous unsuccessful

attempts as well as shelving the problem for a while, the feat of creating a true

sequential combinator was finally accomplished. This combinator ultimately

simply leverages let!.

1 let liftM2 f a b =

2 let! v1 = a in

3 let! v2 = b in

4 ret (f v1 v2)

5 let seqMS a b = liftM2 seq a b

5.2 Challenges

A brief overview of some of the greater challenges encountered.

5.2.1 OUnit2 Integration With MetaOCaml and (GNU)

Make

OUnit2 is a framework that aims to make unit testing easier when using OCaml.

Modelled after JUnit, it allows one to write tests that include a comparison to the

expected result, combine these into one or more test suites and ultimately run

any number of these test suites. Its use is not complicated with plain OCaml; one

57

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

simply employs ocamlfind to include the appropriate library. Using a Makefile

with MetaOCaml is also straight-forward. However, combining the three

presented its own technical challenges. An early solution can be found in /ocaml-

kwic/. However, the simpler solution was to use the OCAMLFIND_COMMANDS

environment variable, and set ocamlc to metaocamlc. This allows one to use

ocamlfind with MetaOCaml as one would with regular OCaml. The Makefile

in /ge-based-kwic/ creates test-suite binaries and subsequently executes them.

5.2.2 Debugging

When using type aliases like cmonad, lm, and so on, type mismatch errors often

report a mixture of these; for example, it might expand the actual type out

to the level of StateCPSMonad.monad, but leave the analog in the expected

type as lm. This requires the reader to translate these on the fly, which quickly

becomes a major hurdle as functions grow more complex, especially when taking

monads as arguments. A question posted to the OCaml mailing list (along

with a minimal traversal example) did not yield any effective way of improving

this situation. Fortunately, certain errors occur frequently and become easily

recognizable for those who have worked long enough with the code, but this

remains a poor substitute for more readable error messages.

Another issue frequently is encountered is failing tests without an obvious

reason why. OUnit2 was not designed with MetaOCaml in mind but it is

generic enough to facilitate the printing of the code created for a particular

test when it fails. This makes it as easy as finding bugs if unit tests fail when

using regular OCaml.

58

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ocaml-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ocaml-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

5.3 Implementation Details

5.3.1 Refinement vs. Usage

A module (in the sense of decomposing KWIC) such as the storage module can

have different requirements to satisfy. These can be reflected in the interface

of a module, which is called a signature. For use by the input module, it only

needs to hold lines. However, the sorting module also needs the lines to be

comparable in a way that they can be ordered. Therefore, various OCaml

signatures have been created and subsequently combined into larger ones which

represent what the KWIC modules expect. In this work, two ways are used to

combine signatures: using the include keyword, or using functors that create

signatures inside themselves. The former represents refinement ; adding detail to

an interface. The latter leaves the choice of functor argument until the module

signature is used to specify a module, which embodies usage. The reason for

this is the difference in the moment at which the signatures are combined.

For refinement, it is done when the generator is being written, and changes

require one to modify the generator itself. Functors on the other hand combine

signatures when the modules are assembled into a KWIC implementation, which

happens when the user generates the desired configuration, or when the modules

are finally ‘used’.

5.3.2 Encapsulating What a Word Is: The Value Module

This is the simplest part of the implementation: hiding the design decision of

what exactly a word consists of. As outlined in the analysis above, this knowl-

edge should be contained within the storage module because it is unnecessary

59

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

for the functionality of the other modules. A word has at least a type. This is

captured in the following signature:

module type Value = sig type value end

Because some storage implementations require their data structure to be

initialized (e.g. arrays), a default value is sometimes needed. A slight variation

on the previous signature captures this:

1 module type ValueWithDefault = sig

2 include Value

3 val default : value abstract

4 end

When one wants to sort a storage, its elements must be comparable in some

way for an order to be determined. Currently, a comparison function can be

part of the definition of what a word is:

1 module type ComparableValue = sig

2 include Value

3 val compare : value abstract -> value abstract -> (_, bool)

cmonad↪→

4 end

This comparison function signature specifies that it has to take two abstract

values, which could be two pieces of code containing something of the value

60

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

type, and produce a cmonad that supplies an abstract Boolean value to the

subsequent computation. It should be noted that a separate comparison module

will likely be necessary later on, in a fashion similar to the quicksort example in

Listing 5. Combining element type and comparison operation is only sufficient

during development for simplicity.

Combining these two additions looks as follows:

1 module type ComparableValueWithDefault = sig

2 include ValueWithDefault

3 include ComparableValue with type value := value

4 end

Note that this is refinement because of the include keyword.

An implementation often used for testing is listed below:

1 module IntV = struct

2 type value = int

3 let default = Idx.zero

4 let compare x y = ret (Idx.less x y)

5 end

This conforms to the ComparableWithDefault. Idx is a module specified by

/ge-based-kwic/coderep.mli that provides some basic integer operations and

constants such as zero and one.

61

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/coderep.mli

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

5.3.3 Implementing a Storage Module

A storage module stores elements, but this implied simplicity is misleading

because it is by far the most complex module within most decompositions

containing one or more storage modules. Parnas stated that adding a storage

module to the KWIC decomposition would encapsulate design decisions related

to the format in which data is stored. Not all architectures described in

section 3.1 have an explicit storage module, but this is interpreted as the

storage module being a passthrough module. This ensures a single interface

will need to be adhered to when accessing data. Unfortunately, it is difficult to

answer the question of what this interface ultimately should contain. Having a

few implementations to generalize over is often helpful and can be faster than

simply reasoning about it.

Interface

As stated before, the concept of interfaces maps to OCaml’s notion of signatures.

Logically, one would create a signature for the storage module, and then create

one or more modules that conform to that signature. However, as previously

noted, the distinction between the notions of refinement and usage can be

reflected in the code. Therefore, instead of creating multiple overlapping

signatures for each of the three cases described in the initial analysis, the end

result was a number of signatures that could be combined as needed.

Basics Starting with the basics, one would intuitively define types for the

container and for its elements. Unfortunately, as discussed in the analysis,

there are also element descriptors; in the case of array, these are indices.

Furthermore, one could conceive the need for description of a partial container,

62

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

such as when using a sorting algorithm that embodies a “divide and conquer”

strategy. Note that the type of the container and the types of the element and

container descriptors are dependent on the data structure the storage module

implements. However, the element type can be parametrized. We therefore

end up with the following:

1 module type EltDesc = sig type eltdesc end

2 module type ValueContainer = sig

3 type ctnr (*actual container*)

4 type ctnrdesc (*description of possibly partial ctnr*)

5 end

The element type will be defined later.

There is also a need for a type that describes the internal state of the

storage module. This is then stored in the resulting implementation’s global

state, which is described in subsection 5.1.2. In the case of a mutable data

structure, this type would be equivalent to the ctnr type. When the state

remains unused, such as when generating an implementation that is functional

rather than imperative, it would be unit. This type is defined in the TArr

signature in Listing 15, along with the lm monad type explaiend in section 5.1.2.

Creating and Populating a Container The first thing that comes to

mind is populating a container. This is indeed necessary for both the input

module and testing purposes. The first signature describing a storage module is

63

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 module type TArr = sig
2 type sstate (* internal state of storage module *)
3 type ’a tarr = ’a
4 constraint ’a = < state : ’b ; .. >
5 constraint ’b = [> ‘TArr of sstate abstract]

6 type ’x stor_constraint = unit
7 constraint ’x = _ tarr
8 type (’pc, ’v) lm = (’pc, ’v) cmonad
9 constraint _ = ’pc stor_constraint

10 end

Listing 15: Definition of the TArr signature

therefore called CreateContainer, shown in Listing 16. This is a functor that

1 module type TArr = sig
2 type sstate (* internal state of storage module *)
3 type ’a tarr = ’a
4 constraint ’a = < state : ’b ; .. >
5 constraint ’b = [> ‘TArr of sstate abstract]

6 type ’x stor_constraint = unit
7 constraint ’x = _ tarr
8 type (’pc, ’v) lm = (’pc, ’v) cmonad
9 constraint _ = ’pc stor_constraint

10 end

Listing 16: CreateContainer signature

takes a module specifying a type, which is then assigned to the element type

elt. Note how the EltDesc module is not included; this signature does not

specify any function that manipulates elements other than add, which has no

need for element descriptors. Storage containers also need to be initialized; this

can be as simple as returning an empty list when the data structure is a list.

However, when using an array, the initialization requires a fixed number of

64

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

elements, at which point the initarg type becomes important. The res type is

another type dependent on whether an imperative or functional implementation

is being generated; if the goal of the module is imperative, it will be unit,

otherwise whatever is provided (typically ctnr). This type can would be unit

for a list, but int when using an array. The fin and desc functions return

the actual container and a description of the (whole) container respectively.

Using a Container In a similar fashion, a signature called UseContainer

is defined in Listing 17. The absence of ValueContainer is possible due to

1 module UseContainer (V : Value) = struct
2 module type Sig = sig
3 include EltDesc
4 include TArr
5 type elt = V.value

6 val access : eltdesc abstract -> (_, elt) lm
7 end
8 end

Listing 17: UseContainer signature

careful definition of the eltdesc type. For a list, this is an element itself;

for an array there is a state from which we can retrieve the element that the

eltdesc describes. It is quite conceivable that a container must be provided

in some cases in order to access elements. This is indeed the case in the

RotatableContainer signature in Listing 18.

Specific Use: Rotation/Shifting This signature also defines the rotate

function one would expect it to. This function is (implicitly) expected to

produce a ‘rotated’ copy of a container by moving the first element it contains

65

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 dule RotatableContainer (V : Value) = struct
2 module type Sig = sig
3 include CreateContainer(V).Sig
4 include EltDesc

5 val access : ctnr res abstract -> eltdesc abstract -> (_, elt)
lm↪→

6 val rotate : ctnr res abstract -> (_, ctnr res) lm
7 end
8 d

Listing 18: RotatableContainer signature

to the end of the container.

Two pairs of rotation functions have been written; both for arrays and for

lists, one using only minimal built-in functions and the other using them much

more to implement rotation in as few lines as possible. From this, the procedure

common to all four can be deduced2.

1. Take the first element

2. Shift all other elements forward

3. Append the element from the first step

These steps are turned into three functions. For the list-based approach, the

second step is the identity function because the first element is removed from

the list, whereas the array needs to move all other elements. The result of this

can be seen in /ge-based-kwic/separate/rotates-ml. This work did not require

much adaptation; the final type became quite similar to what it already was.

1 val rotate : ctnr res abstract -> (_, ctnr res) lm

2The design language from Curutan 2013

66

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/separate/rotates-ml

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

It takes a container, a state and a continuation (which takes a rotated container),

which then produces a result.

Specific Uses of Containers: Comparing Values The OrderableContainer

signature in Listing 19 differs from the previous ones by expecting a ComparableValue.

The implication is that the compareVals function uses the compare func-

tion that is specified by ComparableValue, as well as the access function of

UseContainer.

1 module OrderableContainer (V : ComparableValue) = struct
2 module type Sig = sig
3 include UseContainer(V).Sig

4 val compareVals : elt abstract -> elt abstract -> (_, bool)
lm↪→

5 end
6 end

Listing 19: OrderableContainer signature

Assisting Bubble Sort: Tagging Note that this notion of tag is separate

from that in the context of finally tagless Carette, Kiselyov, and Shan 2009.

Whereas those were a construct necessary to embed a DSL in a host language,

these tags are not even necessarily tags; there is information about the data

returned attached to it. Concretely, whether elements in a container have

moved since the last sorting iteration in the case of bubble sort.

The TaggableContainer signature more interesting in that it includes

another signature that is parametrized over the ‘backend’ being used (either

code or direct).

67

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 module TaggableContainer (V : Value)(T : Tag) = struct
2 module type Sig = sig
3 include CreateContainer(V).Sig
4 include Tags.TaggingA(T)(CODE).Tagged
5 end
6 end

Listing 20: TaggableContainer

The reason this is parametrized extensively is the possibility for different

implementations; in OCaml, one can communicate this information by using

the option type, pairing the desired information with a Boolean value into a

tuple, and through many other ways. Both ways explicitly mentioned above

have been implemented and tested; see /ge-based-kwic/tags.ml, as well as

/ge-based-kwic/code.ml and /ge-based-kwic/direct.ml.

Specific Use: Traversal Under the assumption that it operates on one stor-

age, the sorting module needs a storage that provides a traversal function which

retrieves and sets elements. The elements must also be comparable to put them

in some order, which is made possible by including the OrderableContainer

signature. In order to compare them, elements need to be retrieved, as speci-

fied by the UseContainer signature that is included in OrderableContainer.

These three operations are all part of different signatures, which separate func-

tions into logical groups. There is a TraversableContainer signature (shown

in Listing 22), which presents traversal functions (as well as a function that

keeps traversing until no further changes are made). This signature includes

the signature which specifies a comparison function, which in turn includes a

signature containing a function to retrieve elements. This is reflected in the

BubbleSortContainer signature in Listing 23, which is only a wrapper around

68

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/tags.ml
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/code.ml
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/direct.ml

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 module TaggingA (TAG : Tag)(T : Abstract.T) = struct
2 module type Tagged = sig
3 type ’a tag = ’a TAG.tag
4 val tag : ’a T.abstract -> bool T.abstract -> ’a tag

T.abstract↪→

5 val get_tag : ’a tag T.abstract -> bool T.abstract
6 val process : ’a tag T.abstract ->
7 ((bool T.abstract -> (’b -> (’x -> ’y -> ’y) -> unit

T.abstract)) option) ->↪→

8 (’a T.abstract -> (’b -> (’c -> ’d -> ’d) -> ’e
T.abstract)) ->↪→

9 (unit -> (’b -> (’f -> ’g -> ’g) -> ’e
T.abstract)) ->↪→

10 (’b -> (’b -> ’e T.abstract -> ’h) ->
’h)↪→

11 end
12 end

Listing 21: TaggingA signature

the TraversableContainer.

After unsatisfactory attempts at adding traversal to the existing code directly,

a separate implementation was created. This was focused only on unifying the

paradigms, foregoing other concerns such as abstracting the container away.

The result of this can be found in /ge-based-kwic/separate/traverseExercise.ml.

Traversal in this case wraps a loop (whether it be recursive or iterative) around

the body of that loop, which is provided as an argument. There is the possibility

for data persistent across loop iterations; passing it on as an argument in the

recursive case (functional) or storing it in a variable in a while-loop (imperative).

The condition for either loop is fixed to ensure all elements are processed. The

loop body takes the current element, the loop-persistent data and produces a

new value. The traverse function assigns this new value to the current element

and passes on the possibly modified loop-persistent data. This work was

69

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/separate/traverseExercise.ml

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 module TraversableContainer (V : ComparableValue) (L : ValueWrapper) (T : Tag) = struct
2 module type Sig = sig
3 include OrderableContainer(V).Sig
4 include TaggableContainer(V)(T).Sig
5 with type elt := elt
6 with type sstate := sstate
7 with type ’a tarr := ’a tarr
8 with type ’x stor_constraint := ’x stor_constraint
9 with type (’pc, ’v) lm := (’pc, ’v) lm

10 type loopdata = elt L.wrap
11 type ’a mres (* monadic result *)
12 val traverse :
13 ctnrdesc abstract ->
14 (eltdesc abstract ->
15 loopdata abstract ->
16 (<answer: ctnrdesc mres; state: [> ‘TArr of sstate abstract] as ’a;..>, elt *

loopdata) cmonad) ->↪→
17 loopdata abstract ->
18 (<state: ’a;..>, ctnrdesc) cmonad
19 val traverseTwo :
20 ctnrdesc abstract ->
21 (eltdesc abstract ->
22 loopdata abstract ->
23 (<answer: ctnrdesc mres; state: [> ‘TArr of sstate abstract] as ’a;..>, elt) cmonad)

option ->↪→
24 (eltdesc abstract ->
25 eltdesc abstract ->
26 loopdata abstract ->
27 (<answer: ctnrdesc mres; state: ’a;..>, (elt * elt) * loopdata) cmonad) ->
28 loopdata abstract ->
29 (<state: ’a;..>, ctnrdesc tag) cmonad
30 val iterativeconverge :
31 (ctnrdesc abstract ->
32 (<answer: ctnrdesc mres; state: ’a;..>, ctnrdesc tag) cmonad) ->
33 ctnrdesc abstract ->
34 (<state: ’a;..>, ctnrdesc) cmonad
35 end
36 end

Listing 22: TraversableContainer signature

subsequently integrated with the existing code, which maintains the information-

hiding concerns. The type of the traverse function ultimately became what

is shown in Listing 24. It essentially takes a container description, a function

that modifies elements, initial loop-persistent data, and the resulting cmonad

(specifying a state and a continuation are also arguments to this function). The

function that will become the loop body also returns a cmonad. Interestingly,

the constraints on both of these must be identical. This is most likely because

the state is modified in the imperative implementation, and therefore requires

70

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 module BubbleSortContainer (V : ComparableValue) (L :
ValueWrapper) (T : Tag) = struct↪→

2 module type Sig = sig
3 include TraversableContainer(V)(L)(T).Sig
4 end
5 end

Listing 23: BubbleSortContainer signature

1 val traverse :
2 ctnrdesc abstract ->
3 (eltdesc abstract ->
4 loopdata abstract ->
5 (<answer: ctnrdesc mres; state: [> ‘TArr of sstate abstract]

as ’a;..>, value * loopdata) cmonad) ->↪→

6 loopdata abstract ->
7 (<state: ’a;..>, ctnrdesc) cmonad

Listing 24: Function signature of traverse

it to be consistent across the traverse function.

Unfortunately, the above is not well-suited towards sorting, which often

requires comparisons between two elements and may subsequently change both

elements’ values, as is the case with bubblesort. For this reason, a modified

traversal function called traverseTwo was created. The chief difference is that

it examines two elements at a time, and moves this ‘window’ by one element for

every iteration. However, this adds more complexity; the original function only

had to consider the case where the container was empty and the case where

there was an element. This function will have to consider the cases where the

list is empty, there are two elements, and there is only one element (last in

the container). As shown in Listing 25, traverseTwo is similar to the original

traverse function, but with two functions as arguments. Note that the first

71

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

1 val traverseTwo :
2 ctnrdesc abstract ->
3 (eltdesc abstract ->
4 loopdata abstract ->
5 (<answer: ctnrdesc mres; state: [> ‘TArr of sstate abstract]

as ’a;..>, value) cmonad) option ->↪→

6 (eltdesc abstract ->
7 eltdesc abstract ->
8 loopdata abstract ->
9 (<answer: ctnrdesc mres; state: ’a;..>, (value * value) *

loopdata) cmonad) ->↪→

10 loopdata abstract ->
11 (<state: ’a;..>, ctnrdesc tag) cmonad

Listing 25: Function signature of traverseTwo

function is an optional argument; one can opt to give a single element the same

treatment as an empty container, namely the identity function. This is useful

because the single-element case comes after that element has been considered

in a two-element case along with the preceding element. It might already have

been set at that time, because the two-element case loop body function returns

two new values, both of which are assigned.

Another integration issue is the loopdata type. One might assume this can

simply be defined in the storage module in a fashion similar to eltdesc and

ctnrdesc. However, sorting algorithms have different uses for this data, so

the type should depend on the sorting module. Currently, the storage module

functors take a module as a parameter that contains a parametrized type

that is used to define the loopdata type. Through this mechanism, sorting

modules specify this type in the storage module. Storage modules provide the

type of their elements elt to this parametrized type, due to sorting typically

having to do with elements. While this seems sufficient for now, more sorting

72

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

algorithm implementations would provide more insight for creating a more

robust interface. Note that this parametrized type could be a record, with

the parameter only being one of the fields (or even ignored completely). This

allows sorting modules to have full control over the loopdata type, while also

having option of having it contain elements of the storage they are operating

on without having to know their type.

The containers for lines and for words may be the same, but do not need to

be as illustrated below.

Separate from the BubbleSortContainer signature, a LineContainer has

also been specified. A line is both a container and an element, because it

contains words, but also is a member of a storage container. Lines are expected

to be able to shift (or rotate), hence the inclusion of RotatableContainer.

The storage container must allow for sorting, so ComparableValue is being

included.

Types Used to Produce Both Functional and Imperative Code

As already briefly mentioned, a module which generates purely functional

code should leave the state unused because the data is passed around through

function arguments. Conversely, if a module generates imperative code, the

state will be used and very little data will be passed around. For this reason, a

few parametric types are introduced by the interface. For example, the ’a res

type described above; this is the type of what is passed around by functions

such as the init or add functions. For functional implementations, this should

be ’a, but for imperative implementations, it should be unit. Similarly, there is

a type mres. This type is introduced by the TraversableContainer signature,

and is used to describe the answer part of the monad constraint. (As stated

73

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

above, this is the ultimate result of the computation.) This is used in traversal

functions when one of the arguments is a function that produces a monad. The

monad produced by the traversal function provides the rest of the computation

a value of a certain type; this is the answer of the monad that is the result of

the function specifying the body of the loop that runs on each element. Like

the res type, this type is either unit or ’a. For functional implementations, it

is ’a because the returned value is used in the subsequent computation; in the

imperative case it should be unit because the state is used instead.

Tuples vs. Records

Throughout development, tuples were used; however, the code they generate

proved to be suboptimal. Every time a part of a tuple had to be used (often

only containing two elements), the fst or snd functions had to be called, the

result of which would have to be enclosed in parentheses before being processed

further. This was mitigated partly by generating let statements using retN,

but ultimately records seemed like the preferred alternative. Generated code

accessing a record field would be easier to read because it would simply consist

of the record name along with the field name. Unfortunately, this decision has

not yet propagated throughout the entire generator code.

Implementations of the BubbleSortContainer Signature

As described above, OCaml supports both the imperative and functional

paradigms, and the StateCPSMonad ensures they can both be used when gen-

erating code. Apart from confirming Parnas’ idea that the format in which the

data is stored is contained within the module, these implementations also show

that a unified API between functional and imperative implementations exists.

74

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

(Even if it is not always easy to arrive at, often requiring multiple implementa-

tions and sometimes starting fresh before integrating with the existing code.)

Implementations are always functors that take other modules. This allows

for more generic implementations; for example, similar to the signatures, all

implementations take a module specifying the type of the element they will

contain. They also take a module that specifies the type of the data persistent

across loop iterations as discussed above. Furthermore, two modules for the

tags denoting whether a container has changed or not; one for the type of the

tag, the other for the functions for creating and reading a tag. All implementa-

tions are contained in /ge-based-kwic/bubblesort.ml. Unfortunately, they span

multiple pages and are therefore not included as listings in this chapter.

ListStorageG2 A functional list-based approach to creating a storage module.

Initialization in this context means creating an empty list. This implementation

allows for traversal and rotation of the data it contains. The list containing

the actual data is passed around between functions as an argument. Most

function implementations do not raise questions; the traversal and rotation

implementations are longer and look more complicated (requiring a lot more

debugging to get right), but they are logical consequences of the signatures

described above.

ArrayStorageG An imperative array-based implementation of the storage

interface. Initialization means creating an empty array of a given length. The

elements will have to contain some value, so this storage module expects a

module that not only specifies the element type, but also the default value

for these elements. This implementation contains traverse functions, but no

75

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/bubblesort.ml

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

rotation function.

Implementation of the LineContainer Signature

ArrayLineG A simplified version of the ArrayStorageG implementation that

allows for rotation. This module was a foray into the creation of the shifting

module. From the perspective of the sorting module, a storage with compa-

rable elements is sufficient. Whether these are simple elements or containers

themselves is irrelevant. However, a shifting module sees lines in a storage,

which means there must be some container within a storage to hold the words

for individual lines. It has a different function signature for retrieving elements

because it is not intended to be stored in the state; instead it is to be stored

in an array that is in the state. This implies it has to be passed around as a

function argument, which required changes to the element retrieval function.

Other than that, it adheres to the RotatableContainer and ComparableValue

signatures.

ListStorageG2 While not fully adherent to the LineContainer signature,

this module contains comparison and rotation functions. The primary issue at

this point is the signature of the access function, which currently differs be-

tween RotatableContainer and UseContainer due to the technical limitations

encountered during the implementation of ArrayLineG.

5.3.4 Sorting Module

As already mentioned above, the algorithm of choice is bubble sort. The

primary motivation for this is its simplicity when implementing it. Because

of the traverseTwo function, the sorting implementation in Listing 26 is very

76

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

straightforward. It’s only a call to traverseTwo with only a loop body for

1 module BubbleSortG3 (V:ComparableValue) (T:Tag)(Storage :
BubbleSortContainer(V)(ValOpt)(T).Sig) = struct↪→

2 let bsiter arr =
3 let loopbody2 eltdesc nextdesc _ =
4 let! curr = Storage.access eltdesc in
5 let! next = Storage.access nextdesc in
6 let! unordered = Storage.compareVals curr next in
7 ret (Tuple.tup2 (ifL unordered (Tuple.tup2 next curr)

(Tuple.tup2 curr next)) Maybe.none) in↪→

8 Storage.traverseTwo arr None loopbody2 Maybe.none

9 let bubblesort ctnr = Storage.iterativeconverge bsiter ctnr
10 end

Listing 26: BubbleSortG3 implementation

the two element case, and the the traversal is repeated until no elements are

swapped anymore. (Also see /ge-based-kwic/bubblesort.ml).

5.3.5 Summary

This chapter has shown that a significant portion of the generator has been

implemented when considering the six modules Parnas (1972) specified. New

architectures did not specify any new ones, as mentioned in chapter 4. Signatures

and implementations have been created for the storage and sorting modules.

Progress has been made towards a shifting module. Input and output modules

as well as the master control module are trivial in comparison. Furthermore, a

lot of functionality has been moved to the storage module. Sorting makes use

of a traversal function that is part of the storage module, as would the shifting

module through a function to rotate lines. To combine modules into a KWIC

implementation, the modules can be specified using OCaml’s module language.

77

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic/bubblesort.ml

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

it would be similar to calling a function, only calling a functor that will result

in a module when it is provided with other modules as arguments.S

Numerous design decisions have been encapsulated. For example, storage

element type has been moved into a separate module, and everything else

is parametrized to deal with any type this module provides. The storage

module not only hides the container as Parnas (1972) proposed, but also hides

how a line is rotated and how traversal takes place. Traversal is used instead

of retrieval and insertion functions because it hides more about the storage

module’s internal data structure; for example, the notion of indices does not

leak out to other modules. While hiding retrieval and insertion functions behind

traversal and iteration functions as well as moving the line rotation function

to the storage module might seem like countering information hiding, these

decisions hide more of the data structure encapsulated in the storage module.

78

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Chapter 6

Conclusions & Future Work

This work challenges some commonly held perceptions on software engineering.

It is a first step towards showing that high-level design decisions such as

software architecture can be parametrized through generative programming.

While software architecture is often perceived to be a design decision that

requires developers to start from scratch if changed, this work shows that it

is not as unchangeable as typically assumed. It also shows that functional

and imperative paradigms are not as detached from each other as is often

thought. While they map to each other in theory, this work shows that a single

generator can produce implementations in both paradigms. This is done by

demonstrating a unified API within the generator, which then can generate

code using either paradigm. The above has been illustrated using the KWIC

program, which has been analyzed further. This work shows various ways in

which Parnas’ KWIC example decomposition can be improved to hide more and

more design decisions. An umbrella architecture for KWIC has been explored

to reflect this. Furthermore, techniques that were not available at the time

Parnas 1972 was published such as traversal of containers are shown to hide

79

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

information better.

6.1 Future Work

The generator presented in this work should be completed to better show the

variability in software architecture MSP enables. Another interesting avenue

to explore is VanHilst and Notkin 1996, which goes into how module internals

should be designed; this would be slightly different from Parnas’ high-level

decomposition. It would be exceedingly useful if the error messages produced

by the OCaml compiler was more aware of type aliasing, and consequently

provided more consistent error messages in that regard. A long-term objective

would be to expand the collection of paradigms a single generator can produce

code in. The current limitation is the number of paradigms OCaml supports.

Applying this work to a real-world example would demonstrate the practicality

of this work. Formal verification and proving the correctness of the generated

code would also be an interesting avenue to pursue.

80

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Appendices

81

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Appendix A

Implementing Specific

Architectures

A short overview of preliminary work consisting of implementing KWIC in various

languages using various software architectures, progressively encapsulating more

design decisions.

Like chapter 5, paths such as /java-kwic/ will be referred to at times;

these are directories or files provided in the accompanying archive file found

at https://www.cas.mcmaster.ca/~schaapal/mthesis/code.tar.gz. The

paths are also valid hyperlinks which will open the specific file or directory in a

browser.

A.1 First Steps

One of the first things done after reading Parnas 1972 was creating implemen-

tations of the two KWIC software architectures described. Having created

implementations would strengthen understanding of the architectures and pro-

82

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/java-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code.tar.gz

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

vide a starting point in terms of having architectures to generate. This was

done in Haskell because this was judged to be a good language for achieving

the ultimate goal of writing a generator that generates multiple architectures.

Implementing architectures gives a concrete goal to work towards when creating

a generator, since it provides a working instance of the program to be generated.

Properly implementing the architecture ensured it was a learning experience

on the programming side as well.

2 -- First version of KWIC as seen in Parnas’ "On the Criteria To
Be Used in Decomposing Systems into Modules"↪→

3 -- helper function
4 rotate (x:xs) = xs ++ [x]

5 -- use in GHCi
6 kwic xxs = [Data.List.sort $ take (length xs) $ iterate rotate

xs | xs <- xxs]↪→

Listing 27: KWIC, the Haskell way (a pipe-and-filter software architecture)

While it is easy enough to get something working, it is considerably more

difficult to create code that does the expected task exactly as Parnas specified.

The intuitive step is to divide the program into functions (since this is a

functional programming language after all), and to take advantage of built-in

constructs and libraries. This resulted in the code seen in Listing 27. Note

that this is not exactly what Parnas specified; its result will be a list of sorted

lists, one sub-list for each line and all its rotated permutations. However, this

deviance allows for incrementally provided input; the way Parnas described

KWIC implicitly assumes all input is provided once, since sorting takes all

lines and rotations into account. This is especially unfortunate in the case of

83

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

a pipe-and-filter architecture because the output would wait on the sorting

call, which depends on all input being processed, negating one of the greater

benefits of this architecture.

5 import Data.List

6 -- helper functions
7 rotate :: [a] -> [a]
8 rotate [] = []
9 rotate (x:xs) = xs ++ [x]

10 merge :: [[a]] -> [a]
11 merge [] = []
12 merge ([]:xxs) = merge xxs
13 merge ((x:xs):xxs) = x:(merge ((xs):xxs))

14 -- use in GHCi
15 kwic :: Ord a => [[a]] -> [[a]]
16 kwic xxs = sort $ merge [take (length xs) $ iterate rotate xs |

xs <- xxs]↪→

Listing 28: KWIC (as specified by Parnas), the Haskell way (a pipe-and-filter
software architecture)

As seen in Listing 28, adding a merge function to combine all the sub-lists

of lines with their respective rotated versions into one before sorting provides

the expected result.

However, Parnas assumes mutable state. This is understandable given

the publication date, but it is not as easy to achieve in Haskell as it is in

other (presumably more imperative) languages. Haskell strives to be a pure

functional language, encapsulating everything that produces side-effects in

monads. Therefore, one of the first challenges was becoming familiar with and

using a mutable data structure called MArray. With it, many other challenges

arose; understanding monads, kinds, and more.

84

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

A.2 Dataflow-style KWIC

In order to write a version of KWIC that is closer to Parnas’ flowchart-derived

(less desirable) modularization, every module became its own file, manipulating

a mutable data structure (an MArray in this case). Unlike above, input needs to

be handled appropriately instead of supposedly being passed into the program

by external means (such as the programmer supplying it as arguments when

calling the main function). The result can be viewed in /dataflow-kwic/.

A.3 A First Attempt at Information-Hiding-style

KWIC

Using typeclasses, functions are specified in a very general way. This can be

seen as analogous to interfaces in Java for example. These functions can then

be implemented in many ways, at which point design decisions are made. For

example, from the typeclasses it is not immediately apparent that an MArray

is or could be used. When making an instance of one of these typeclasses, one

may decide to use an MArray as shown in /hiding-kwic/, or one may choose to

use another data structure that fits the type signature. Some modules show

implementations using a simple list instead. Also note the Line typeclass and

corresponding instance, signifying that this too has become something that

can change – another design choice. The use of four-letter words as the testing

input is purely historical; the implementation handles words of arbitrary length.

85

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/dataflow-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/hiding-kwic/

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

A.4 Foray Into Phantom Types

Phantom types allow the type system to hold more information, and appeared

to be useful to hold the state of the line storage, such as ’Ready’, ’Shifted’, and

’Sorted’. However, while this was achievable when using a simple list as the

container for lines and words, it became apparent that combining this with

typeclasses and the MArray or MVar mutable (and therefore monadic) data

types posed significant type system challenges. It is for this reason that a

temporary switch to Java was made. The results of this attempt can be found

in /phantom-kwic/.

A.5 Information Hiding KWIC in Java

A more careful decomposition of KWIC has been implemented in Java. Haskell’s

typeclasses map to Java’s interfaces and abstract classes for this purpose. Mul-

tiple interchangeable implementations for various modules have been created.

This can be seen in /java-kwic/ and /java-ii-kwic/.

A.6 Return to Haskell

The progress in Java was ported to Haskell. However, mutability proved to

be a stumbling block once again. The partial results of this effort can be

found in /haskell-from-java-kwic/. Due to the complexity of mutability in

Haskell, MetaOCaml became the new language of choice for the generator.

A first attempt is listed in /ocaml-kwic/. The final result can be found in

/ge-based-kwic.

86

https://www.cas.mcmaster.ca/~schaapal/mthesis/code/phantom-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/java-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/java-ii-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/haskell-from-java-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ocaml-kwic/
https://www.cas.mcmaster.ca/~schaapal/mthesis/code/ge-based-kwic

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Bibliography

Carette, Jacques (2006). “Gaussian Elimination: A case study in efficient

genericity with MetaOCaml”. In: Science of Computer Programming. Spe-

cial Issue on the First MetaOCaml Workshop 2004 62.1, pp. 3–24. issn:

0167-6423. url: http://www.sciencedirect.com/science/article/

pii/S0167642306000712 (visited on 11/09/2015) (cit. on pp. 4, 34, 38, 43,

47).

Carette, Jacques, Mustafa Elsheikh, and Spencer Smith (2011). “A Generative

Geometric Kernel”. In: Proceedings of the 20th ACM SIGPLAN Workshop

on Partial Evaluation and Program Manipulation. PEPM ’11. New York,

NY, USA: ACM, pp. 53–62. isbn: 978-1-4503-0485-6. url: http://

doi.acm.org/10.1145/1929501.1929510 (visited on 09/13/2016) (cit. on

p. 33).

Carette, Jacques and Oleg Kiselyov (2011). “Multi-stage programming with

functors and monads: Eliminating abstraction overhead from generic code”.

In: Science of Computer Programming. Special Issue on Generative Program-

ming and Component Engineering (Selected Papers from GPCE 2004/2005)

76.5, pp. 349–375. issn: 0167-6423. url: http://www.sciencedirect.

com/science/article/pii/S016764230800110X (visited on 09/07/2016)

(cit. on pp. 4, 34, 38).

87

http://www.sciencedirect.com/science/article/pii/S0167642306000712
http://www.sciencedirect.com/science/article/pii/S0167642306000712
http://doi.acm.org/10.1145/1929501.1929510
http://doi.acm.org/10.1145/1929501.1929510
http://www.sciencedirect.com/science/article/pii/S016764230800110X
http://www.sciencedirect.com/science/article/pii/S016764230800110X

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Carette, Jacques, Oleg Kiselyov, and Chung-Chieh Shan (2009). “Finally tagless,

partially evaluated: Tagless staged interpreters for simpler typed languages”.

In: Journal of Functional Programming 19.5, pp. 509–543. issn: 1469-7653.

url: http://journals.cambridge.org/article_S0956796809007205

(visited on 09/02/2016) (cit. on pp. 4, 34, 48, 67).

Curutan, Bianca (2013). “CPCG: A Cross-Paradigm Code Generator”. MA

thesis. McMaster University (cit. on pp. 3, 4, 34, 35, 66).

Czarnecki, Krzysztof and Ulrich W. Eisenecker (2000). Generative Programming

(cit. on p. 9).

Elsheikh, Mustafa (2010). “A Generative Approach to Meshing Geometry”.

MA thesis. McMaster University. 116 pp. url: http://macsphere.

mcmaster.ca/handle/11375/9913 (visited on 06/09/2016) (cit. on pp. 33,

34).

Fabri, Andreas et al. (2000). “On the design of CGAL a computational

geometry algorithms library”. In: Softw. Pract. Exper. 30.11, pp. 1167–

1202. issn: 0038-0644 (cit. on p. 33).

Garlan, David and Mary Shaw (1994). An Introduction to Software Architecture.

Pittsburgh, PA, USA: Carnegie Mellon University (cit. on pp. 1, 12–14,

17–24, 38).

Kiselyov, Oleg (2015). BER MetaOCaml. Version N102. url: http://okmij.

org/ftp/ML/MetaOCaml.html (visited on 08/06/2016) (cit. on p. 28).

Kiselyov, Oleg, Kedar N. Swadi, and Walid Taha (2004). “A methodology for

generating verified combinatorial circuits”. In: EMSOFT ’04: Proceedings

of the 4th ACM international conference on Embedded software. Pisa, Italy:

ACM, pp. 249–258. isbn: 1-58113-860-1 (cit. on p. 35).

88

http://journals.cambridge.org/article_S0956796809007205
http://macsphere.mcmaster.ca/handle/11375/9913
http://macsphere.mcmaster.ca/handle/11375/9913
http://okmij.org/ftp/ML/MetaOCaml.html
http://okmij.org/ftp/ML/MetaOCaml.html

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Larjani, Pouya (2013). “Software Specialization as Applied to Computational

Algebra”. PhD thesis. McMaster University. url: http://macsphere.

mcmaster.ca/handle/11375/13006 (visited on 01/24/2016) (cit. on pp. 29,

34, 39, 43, 49).

Mehlhorn, Kurt and Stefan Näher (1999). LEDA: a platform for combinatorial

and geometric computing. New York, NY, USA: Cambridge University

Press. isbn: 0-521-56329-1 (cit. on p. 33).

Minsky, Yaron, Anil Madhavapeddy, and Jason Hickey (2013). Real World

OCaml: Functional Programming for the Masses. Google-Books-ID: nab-

tAQAAQBAJ. "O’Reilly Media, Inc." 509 pp. isbn: 978-1-4493-2476-6

(cit. on p. 47).

Parnas, David Lorge (1972). “On the Criteria to Be Used in Decomposing

Systems into Modules”. In: Commun. ACM 15.12, pp. 1053–1058. issn:

0001-0782. url: http://doi.acm.org/10.1145/361598.361623 (visited

on 07/20/2015) (cit. on pp. 1, 2, 4, 7, 9, 12, 21, 22, 38, 42, 77–79, 82).

— (1976). “On the Design and Development of Program Families”. In: IEEE

Transactions on Software Engineering SE-2.1, pp. 1–9. issn: 0098-5589.

url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1702332 (cit. on p. 9).

Schorn, Peter (1991). “Implementing the XYZ GeoBench: A Programming

Environment for Geometric Algorithms”. In: CG ’91: Proceedings of the

International Workshop on Computational Geometry =- Methods, Algo-

rithms and Applications. London, UK: Springer-Verlag, pp. 187–202. isbn:

3-540-54891-2 (cit. on p. 34).

89

http://macsphere.mcmaster.ca/handle/11375/13006
http://macsphere.mcmaster.ca/handle/11375/13006
http://doi.acm.org/10.1145/361598.361623
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1702332
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1702332

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

Simpson, R. Bruce (1999). “Isolating Geometry in Mesh Programming”. In:

Proc. of the 8th Int’l Meshing Roundtable. South Lake Tahoe, California,

pp. 45–54 (cit. on p. 34).

Swadi, Kedar N. et al. (2006). “A monadic approach for avoiding code

duplication when staging memoized functions”. In: PEPM. Ed. by John

Hatcliff and Frank Tip. ACM, pp. 160–169. isbn: 1-59593-196-1 (cit. on

p. 35).

Szymczak, Daniel (2014). “Generating Learning Algorithms: Hidden Markov

Models as a Case Study”. MA thesis. McMaster University. url: http:

//macsphere.mcmaster.ca/handle/11375/14101 (visited on 06/09/2016)

(cit. on p. 34).

Taha, Walid (2004). “A Gentle Introduction to Multi-stage Programming”.

In: Domain-Specific Program Generation. Ed. by Christian Lengauer et al.

Lecture Notes in Computer Science 3016. DOI: 10.1007/978-3-540-25935-

0_3. Springer Berlin Heidelberg, pp. 30–50. isbn: 978-3-540-22119-7 978-3-

540-25935-0. url: http://link.springer.com/chapter/10.1007/978-

3-540-25935-0_3 (visited on 01/29/2016) (cit. on pp. xi, 28, 30, 31, 47).

VanHilst, Michael and David Notkin (1996). “Decoupling Change from Design”.

In: Proceedings of the 4th ACM SIGSOFT Symposium on Foundations of

Software Engineering. SIGSOFT ’96. New York, NY, USA: ACM, pp. 58–

69. isbn: 978-0-89791-797-1. url: http://doi.acm.org/10.1145/

239098.239109 (visited on 07/20/2015) (cit. on p. 80).

Veldhuizen, Todd L. (1998). “Arrays in Blitz++”. In: ISCOPE ’98: Proceedings

of the Second International Symposium on Computing in Object-Oriented

Parallel Environments. London, UK: Springer-Verlag, pp. 223–230. isbn:

3-540-65387-2 (cit. on p. 33).

90

http://macsphere.mcmaster.ca/handle/11375/14101
http://macsphere.mcmaster.ca/handle/11375/14101
http://link.springer.com/chapter/10.1007/978-3-540-25935-0_3
http://link.springer.com/chapter/10.1007/978-3-540-25935-0_3
http://doi.acm.org/10.1145/239098.239109
http://doi.acm.org/10.1145/239098.239109

M.A.Sc. Thesis – Alexander Schaap McMaster University – Computing and Software

van Vliet, Hans (2000). Software Engineering: Principles and Practice. Second

Edition. Wiley (cit. on pp. 1, 8, 19–24).

Whaley, R. Clint, Antoine Petitet, and Jack J. Dongarra (2001). “Automated

Empirical Optimization of Software and the ATLAS Project”. In: Parallel

Computing 27.1–2, pp. 3–35 (cit. on p. 33).

91

	Descriptive Note
	Abstract
	Acknowledgements
	Declaration of Academic Achievement
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Goals
	Approach
	Contribution
	Outline

	Background
	On the Criteria to Be Used in Decomposing Systems into Modules
	KeyWord In Context (KWIC)

	Software Architectures
	Code Generation as Applied to Product Families
	Finally Tagless, Partially Evaluated

	Preliminaries & Related Work
	KWIC Software Design Architectures
	Parnas' Modularizations
	Parnas' Comparison
	Additional KWIC Software Design Architectures by garlanintroduction1994
	Four-way KWIC Software Design Architecture Comparison

	Metaprogramming
	String Munging
	Macro Systems
	Template Metaprogramming
	Multi-Stage Programming

	Related Work

	Analysis and Design
	Goals & Approach
	Goals
	Approach

	Initial Analysis of KWIC
	Storage Module(s)
	Conclusion: Multiple Options

	Sorting Module
	Shifting Module
	Input and Output Modules
	Combining Modules Into KWIC
	Architectures
	Incrementality
	Subsequent Analysis
	Distinction Between Containers, Elements, and Their Respective Descriptions

	Implementation
	Concepts
	Making the Type of the Generated Code (Fragment) Abstract
	Continuation-Passing Style & State
	Code Combinators

	Challenges
	OUnit2 Integration With MetaOCaml and (GNU) Make
	Debugging

	Implementation Details
	Refinement vs. Usage
	Encapsulating What a Word Is: The Value Module
	Implementing a Storage Module
	Sorting Module
	Summary

	Conclusions & Future Work
	Future Work

	Appendices
	Implementing Specific Architectures
	First Steps
	Dataflow-style KWIC
	A First Attempt at Information-Hiding-style KWIC
	Foray Into Phantom Types
	Information Hiding KWIC in Java
	Return to Haskell

