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Abstract

We review 3 different applications of the same development methodology. We
begin by using a very expressive, appropriate Domain Specific Language (in
this case mathematics as embodied in a Computer Algebra System), to write
down very precise problem definitions, using their most natural formulation.
Once these problems are defined, this forms an implicit definition of a unique
solution. From the problem statement, our model, we use mathematical
transformations to make the problem simpler to solve computationally. We
call this crucial step “model manipulation.” With the model rephrased in
more computational terms, we can also derive various quantities directly
from this model, which greatly simplify traditional numeric solutions, our
eventual goal. From all this data, we then use standard code generation
and code transformation techniques to generate lower-level code to perform
the final numerical steps. This methodology is very flexible, generates faster
code, and generates code which would have been all but impossible for a
human programmer to get correct.



1 Introduction

Collectively, the authors have been developing various scientific applications
for several decades. Over time, we have independently drifted towards the
same development methodology. The basic ingredients involve a (declar-
ative) domain-specific language (DSL) in which to express our model(s)1,
model transformations, code generation and program transformation. The
steps involved are theoretically quite straightforward, as shown in Figure 1.
Through 3 case studies, we show that the methodology is flexible, generates
faster code, and generates code that would have been all but impossible for
a human programmer to get correct.

1. Express the Model - the model is declaratively expressed in an ap-
propriate DSL,

2. Transform the Model - the initial model is transformed into a form
more suitable for computational solutions,

3. Extract Structure - structure and properties are directly extracted
from the model,

4. Optimize the Computation - the structure is used to optimize the
computational “solution” of the model,

5. Generate the Code - low-level code is generated to carry out the
solution.

Figure 1: Typical model manipulation steps

In the case of scientific applications, the most appropriate DSL is well-
known: mathematics. The more difficult aspect involves finding computer-
based tools that can easily deal with the kinds of mathematics involved in
typical scientific applications. Furthermore, not only does this language need
to be “declarative,” it should also be possible to manipulate this language
directly. The only languages that combine the necessary semantic richness
and ease of manipulation are the languages of Computer Algebra Systems. In
our case, because it is the system we are (by far) the most familiar with, we

1Note that where we use “model” here, many mathematicians would use “problem”
instead.
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have used Maple. It is then straightforward to directly phrase the kinds of
models we are most interested in: (solutions of) differential equations, and
(solutions of) continuous optimization equations.

We will show that given explicit representations of equations whose so-
lution we seek, the intentional structure of those equations can be mined
to obtain a wealth of information about the structure of the solution. This,
in turn, allows one to make better choices about (numerical) solution meth-
ods. We call this step “model manipulation.” This is the step where human
creativity and ingenuity is most needed. This is also the step where the
domain expert can bring important insights. We recommend spending rela-
tively more time on model manipulation because an investment of time here
makes subsequent steps much simpler to automate.

With a model rephrased in more computational terms, we can apply
various well-known techniques (like symbolic differentiation, common subex-
pression elimination, finding of differential or recurrence relations, etc.) to
further optimize the computational structure of the model. At this point,
even more classical code generation techniques can be applied to generate C
calls with embedded calls to optimized numerical libraries.

In scientific computation, there are at least two circumstances in which
code generation has proven to be quite effective:

1. when complex program transformations are needed (Rall, 1981; Griewank,
2000),

2. when a program can be expressed very succinctly in a domain-specific
language, but requires lengthy and sometimes very complex code in a
mainstream language. (Deursen et al., 2000; Deursen and Klint, 1998)

The first situation occurs most famously when automatic differentiation (Kah-
rimanian, 1953) is both required and applicable. There is now ample liter-
ature (from Thames (1969) onwards) that shows that smooth optimization
problems are incomparably easier to solve when Jacobians and Hessians are
available; on large problems of real interest. However, the functions to differ-
entiate are usually given by very large programs with a multitude of inputs.
Computing derivatives numerically is well-known to be a futile task, and
computing them by hand (symbolically) is so fraught with error as to be
deemed impossible. On the other hand, differentiation is a simple (symbolic)
program.
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The second situation from the above list is now emerging as rather com-
mon, which has caused the growing popularity of GUI-builders, lexer and
parser generators, Java-from-DTD builders, and so on. This trend is also
present in the scientific computation community, from specific efforts like
Fotinatos et al. (2003), to vast projects like Dongarra and Eijkhout (2003b,a)
and Kennedy et al. (2001).

The (scientific) problems that are particularly well-suited to being at-
tacked via our approach are those which:

1. can be succinctly described using mathematics as the “domain lan-
guage,”

2. require information (such as derivatives) that is easy to obtain from
the model, and

3. requires experimentation and manipulation at the “model” level.

The downsides of using a DSL, as given by Deursen et al. (2000), are not
relevant when using a mathematical programming language (such as Maple)
as a DSL.

It is worth repeating that the most important step is that of “model
manipulation.” Our aim is to automate every other step to ensure that
problem-solving time is spent thinking about the semantics and the structure
of the problem to solve, and not wasted on mundane computational tasks.

We will present 3 applications developed using this methodology: Section
2 outlines the problem of real-time visual tracking of a target on a satellite,
Section 3 shows data fitting in model-based time series obtained from Mag-
netic Resonance applications, and Section 4 describes material behaviour
modelling. To highlight the similarities between the examples, in each case
frequent reference will be made to the model manipulation steps shown in
Figure 1.

2 Visual Tracking

The example in this section for visual tracking is based on Anand et al.
(2004). In visual tracking applications, a series of images captured from
CCD (Charge-Coupled Device) cameras must be processed in real-time to
extract information about spatial positioning. This information can be used

3



for target identification, object measurement, and closed-loop target acqui-
sition. To compensate for harsh, dynamic lighting conditions, we consider
the use of multi-colour, multi-brightness patterns, which provide quantita-
tive information about lighting even for saturated images. The recognition
of simple, explicitly designed patterns can be modeled as a constrained, non-
linear optimization problem. Recognition can be implemented as a solver,
which in addition to estimating model parameters, can assign a likelihood
to the estimates. Advanced model-based controllers make use of the likeli-
hood information to improve the robustness of the controller for random and
systematic noise.

Whatever target we choose, we must be able to reliably recognize its
translations under affine and perspective transformations. Ideally we would
like to be able to robustly identify the transformation between the identified
pattern and a base family member–which would give us partial or complete
information on the relative position of the target. Here we will focus on a
simple family of radially-symmetric, essentially compact targets, which we
will call spots. Transformed spots will have elliptical equiradiant contours.
Given a target image, we are required to estimate parameters for the position,
size, orientation and asymmetry (rotation and pitch).

The intended application of the tracking software is remote, unassisted
satellite acquisition. If one wishes to capture a satellite and perform main-
tenance on it, a camera mounted on a robotic arm must detect and track
a predefined pattern on the satellite. Significant obstacles to the algorithm
include sudden changes of lighting, saturation of a significant part of the
pattern, complete or partial “blindness” of the camera from the sunlight
or shadow. To overcome these obstacles, we use a model-predictive con-
troller that incorporates confidence information derived in parallel with po-
sition estimates, as well as frame-by-frame illumination estimates to be used
to control camera gain. In the constrained environment of space, and the
impossibility of direct human intervention, it should be possible to extract
position information from tens of images per second using significantly less
resources (CPU, memory, power) than on a current desktop computer. For
control stability, image processing must be fast, estimated at 10-30 frames
per second. For the example described here images are streamed from the
camera over a FireWire serial interface at 15 frames per second.

In the first subsection below we Express the Model for converting the
colour space and for optimal fitting of the spot parameters. After this, we
Transform the Model to the use of Newton’s method for the optimization. We
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then detail the opportunities to improve performance by Extracting Structure
from the model and we describe the final step of Generating Code.

2.1 Model of the Colour Space and Spot Fitting

Simple colour patterns can be used to identify the orientation of the target.
Having three spots of different colours, e.g. red, green and blue, the position
and size of these three spots yield the position and the orientation of the
target. Since differences in hues are orthogonal to brightness, there is no
interference between the spots. Fitting each spot is a non-convex problem;
however, the problem of locating the centre of each spot is convex.

To simplify Expressing the Model, the problem of fitting the spots is de-
composed into two parts: conversion to a colour space in which the different
spot colours are pairwise orthogonal including identification of the different
colour values, followed by the extraction of spot parameters from a real-
valued spot. The next two subsections detail each of these two steps. The
real-valued spot can be either a gray-scale image or a single component of a
multispectral image; we will not make a distinction.

2.1.1 Colour Space

Before processing, the colour values are usually linearly transformed to an-
other colour space and converted to floating point numbers, so the effect of
saturation may not be restriction to a cube in R3 aligned to the coordinate
axes. In the target environment, saturation may be quite common. Sat-
uration occurs when the gain adjustment is too high for the given lighting
conditions. Pixels with component values of 255 may be clipped to that value
from a higher value, since 255 is the maximum value for the images, which
are formatted as arrays of 8-bit unsigned RGB values.

Colour conversion is achieved by taking the “real colours”

A =

 r0 r1 r2

g0 g1 g2

b0 b1 b2

 (1)

and the spot colours as α, β and γ, α
β
γ

 =

 r0 r1 r2

g0 g1 g2

b0 b1 b2

−1 rreal

greal

breal

 , (2)
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where rreal, greal and breal are the colour values of each pixel from the original
image. Now the array of α, β and γ values of each pixel is processed by the
algorithm.

2.1.2 Model for Fitting Spots

Let the two-dimensional array φx,y ∈ R represent the stored image. If the
colour information is introduced, 3D φx,y,c is used, where the components x
and y define a pixel p on the image and c ∈ {r, g, b} defines its colour.

A model of a spot is fitted over a small region of pixels Ω ⊂ Z2,which is
believed to contain a light spot. We use a basic polynomial model of a spot
(Figure 2),

f = k0 + k1s + k2s
2 + k3s

3, (3)

s =

(
x− bx

y − by

)T (
a1 a2

a2 a3

)(
x− bx

y − by

)
(4)

where

k0, k1, k2, k3 - determine the radial profile
a1, a2 and a3 - determine the extent and eccentricity

(shape of the elliptical boundary)
bx and by - x and y coordinates (in pixels) of the

ellipse centre

In addition, we use the following constraints and conventions

s ≤ 1 - spot extent
f |s=1 = 0 - background value for spot exterior
f |s=0 = 1 - ideal brightness value at spot centre

a positive definite - so we get a spot

We use these constraints to eliminate the parameters k0 = 1 and k3 = −(k0+
k1 + k2). Variations of spot and background illumination are represented in
the complete model,

v1f(p) + v0, (5)

by v0 and v1.
Using the least squares method, the best fit of this model to the actual

light intensity function φ of the chosen area can be found.
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2

3

4

Figure 2: Actual image of a gray-scale target,showing the spot’s centre (1), a
level set representative of the shape given by a (2), and, at a cross-section (3),
the profile (4) determined by k. The background illumination is determined
by v0 and the brightness of the centre of the spot is v1.
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min
U

F =
∑
p∈Ω

(φp − (v1f(p) + v0))
2 (6)

where
Ω = {(x, y)|s ≤ 1} . (7)

We minimize F over U , where U ⊆ V = {v0, v1, k1, k2, bx, by, a1, a2, a3}. Equa-
tion 6 shows the first step in the model manipulation process of Expressing the
Model. This equation actually represents a family of models, distinguished
by the particular value of U . The DSL (Maple code) for this problem spec-
ifies the required value of U for a specific solver. The reason for the family
of solvers is that a naive implementation, where we simultaneously optimize
all variables, will fail, except possibly when we are tracking an essentially
stationary spot from frame to frame, uninterrupted by lighting changes. The
reason for this failure is that the target recognition problem is not convex.
However, we empirically determined that the problem for finding the cen-
ter (bx, by) of a single spot is convex, as is the problem of finding the shape
(a1, a2, a3). However, the joint problem is not convex (the Hessian has two
negative eigenvalues with magnitude 1× 105).

Due to lack of convexity when solving for the position of the centre and
the shape of the spot in a single stage, it is necessary to have multiple solver
stages. Assuming that the size of the spot is larger than the whole captured
image, during the first stage the location of spot is found (bx and by). Having
an exact position of the centre of the spot makes the fitting of a1, a2 and a3

a convex problem. So in a second stage, in just a few iterations, the shape
of the spot can be found.

2.1.3 Saturation

Before fitting of the parameters defining the location and the shape of the
spot can be performed, detection of saturation of the captured image must
be carried out. If the image is found to be saturated, saturated pixels are
removed when F is computed. Furthermore, if S is the set of saturated
pixels, set Ω now becomes:

Ωwithout saturation = Ω− {(x, y)|(x, y) ∈ S} . (8)

To perform the computation of F excluding saturated pixels, which con-
tain little useful information about illumination, we must conditionalize the
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processing pixel by pixel. This will increase execution time of the algorithm.
Since saturation of the image will not always occur, for each set of parame-
ters, two versions of the solvers will be produced–one with and one without
saturation control. The likelihood of saturation is calculated each frame
based on the estimate for v, and this information is used to decide which
solver to use for the next frame.

2.2 Transformed Model (Newton’s Method)

The Transformed Model for finding the minimum in Equation 6 consists of
searching for a common zero of all the partial derivatives with respect to all
the parameters of U , using Newton’s method. Let JU be the Jacobian of F
and HU be the Hessian of F with respect to the variables U . un is a solution
for the nth step (vector-column of the U parameters). The Newton iteration
is defined by the recursion:

un+1 = un −HU(un)−1JU(un) (9)

Newton’s method is used for the fitting, which means the initial starting
point is very important. We use heuristics to determine reasonable initial
guesses. From the image we can extract initial guesses for the average radius
of the light spot on the image, the values for v0 and v1, and the position of
the centre.

The profile of every spot should be the same, thus the same values of
k are used for all the spots. v0 describes a background. bx and by can be
chosen as a centre of the image fragment. We have found it sufficient to use
as a first guess for the parameters a1, a2 and a3, which determine the shape
of the spot is a circle, values which ensure that the initial spot covers the
entire image fragment.

2.3 Extracting Structure and Generating Code

To improve the performance of the algorithm, we can Extract Structure from
the transformed model. From the model, we can easily compute the Jacobian
and Hessian matrices. The manipulations that optimize the computation of
these matrices provide examples of the kind of model manipulation that so
often arises in scientific computing. For instance, we know that large arrays
are needed to store the information for the captured images and that calcu-
lation of the sum over elements in arrays is an expensive procedure. This
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jointly optimized separately optimized
Jacobian and Hessian Jacobian and Hessian
+tryhard +tryhard

b 78 112 97 152
a 88 135 117 176

a,b 205 325 220 396
a,b,v 230 394 284 461

Table 1: Number of flops per pixel in generated solvers

implies that efficient use of the cache is required to minimize the execution
time, which will be bounded by memory accesses. The easiest way to ensure
this is to group all accesses to one pixel of data (within a solver iteration)
together. From their definitions we know that Jacobian and Hessian ma-
trices will contain many common subexpressions, therefore optimization on
“the inner sum” is crucial. We also know that since Hessian matrices are
symmetric, we only need to calculate the upper triangular portion of them.
Using this information suggests that the for the Jacobian and the Hessian
we should jointly Generate the Code. Measurements of floating point op-
erations in code generated using these optimization strategies confirms our
expectations (see Table 1).

There is an advantage to the joint optimization of the Jacobian and
the Hessian matrices, which would not be feasible without Generating the
Code. Maple’s codegen[optimize] function eliminates common subexpres-
sions very effectively when these matrices are generated together. If the
optimization of code is performed separately for Jacobian and Hessian ma-
trices and the results are concatenated (which is closer to the code that would
be obtained without using the model manipulation process), both the length
of the solver and the number of flops per pixel are roughly doubled. This
does not reflect the equally important reduction in memory traffic and re-
duction in local variables by jointly calculating the Jacobian and Hessian in
one loop. The improvements in the performance from joint optimization and
calculation of the Jacobian and Hessian corresponds to the fourth step in the
model manipulation process: Optimizing the Computation.

The complexity of the Maple-generated Newton solvers is found to be
directly proportional to the complexity of the model. The length of the typ-
ical Maple-generated Newton solver (for 2 or 3 variables) is approximately
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180 lines of code and 200 flops per pixel. Solvers are generated by execut-
ing codegen[optimize] function with the tryhard option. Without the
tryhard option, generated solvers slightly increase in length and number of
floating point operations per pixel (230 lines of code, 250 flops).

Besides potentially improving the performance of the Newton solvers, the
approach of generating members of a family of Newton solvers (indexed by
the power set of the set of model parameters), allows for the development of a
staged algorithm that would be very difficult to derive another way. To find
a multi-stage non-linear solver with good convergence properties involved
using heuristics and benchmarking. Without the ability to easily generate
the solvers, the experimentation necessary to produce this overall algorithm
would have been very difficult.

The details of the implementation in Maple can be obtained from the
original paper (Anand et al., 2004). As a brief summary, fitting of the spots
at run time is performed as follows. An image is read pixel by pixel into a 2D
array. The Maple-generated functions that calculates Jacobian and Hessian
matrices for given optimized variables are used with the Newton’s method
from LAPACK. Two functions in particular, sgetrf for factoring the H
matrix and sgetrs to solve the Hx = −J system. A better approximation
to the initial guess is calculated and is used in Maple-generated C function
to obtain yet “better” values for the optimized variables and the procedure
is repeated. Depending on the timing requirements of the application, either
the difference between two consecutive approximations of Newton’s method
or the number of iterations can be used as termination criteria for the algo-
rithm. This section has outlined a specific optimization algorithm. The next
section will present a generalization of this algorithm.

3 Parameter Estimation in Model-Based Time

Series

This example of parameter estimation from time-series data is extracted from
Anand et al. (2005). Parameter estimation is important in many problem
domains including determination of rate constants in pharmaceutical drug
transport, decomposing audio signals and voice recognition, and measure-
ment of metabolite levels in Magnetic Resonance Spectroscopy and Relax-
ometry.
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Here we describe a model-based method of decomposing signals. Our
model class will have a high degree of structure, namely:

1. the objective will be a linear superposition of the simple functions,

2. these functions will satisfy a linear recurrence relation over time,

3. these functions will satisfy a (system) of linear ordinary differential
equations in the parameters.

Note that in practice this is actually more general than the currently used
model classes. Bachmann et al. (1994) provides details of how recurrences
form a very general class. In fact, since models are commonly composed
of combinations of closed-form analytic functions, the assumption that they
satisfy a linear ordinary differential equation (ODE) in the parameters is
more natural than restrictive.

There are a multitude of physical processes involving decay equations
that can be efficiently computed using recurrence relations, and some of
them generate quantities of data that pose a computational challenge, even
with modern processors. Among these are Magnetic Resonance Spectroscopy
(MRS) and Magnetic Resonance Relaxometry. The first is used to identify
the chemical composition within living tissue, and can be used both in clinical
diagnosis and biomedical research. Relaxometry measures tissue properties
that depend on changes in pH and temperature, and has been proposed as a
method of diagnosis and treatment monitoring, in particular, non-invasive,
real-time temperature monitoring.

The presentation of the model manipulation for the parameter estimation
problem begins with Expressing the Model, which in this case is a more gen-
eral version of the model presented in the previous section. The Transformed
Model, which is an optimization via Newton’s method, is also similar to the
previous example. After describing the models, the Extract Structure step
is performed. The structure shows recurrence relations, which can be used
to Optimize the Computation in the Generate Code step. The end of this
subsection includes two examples that highlight the advantages of the model
manipulation approach.

3.1 Expressing the Mathematical Model

A common method of parameter estimation for time series data involves
modelling signal sources, f(x1, x2, . . . , xn, t), (where the xi are the model
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parameters and f is in general a vector-valued function) and fitting a super-
position of the various sources to the measured data. Through minimization
of an objective function F an optimal set of parameters may be determined:

min
x1
1,x1

2,...,x1
n,...,xs

n

∑
t

∥∥∥∥∥∥y(t)−
∑

s∈{sources}

asfs(x
s
1, x

s
2, . . . , x

s
n, t)

∥∥∥∥∥∥
2

. (10)

where xs
j denotes the xj’th parameter of peak s. Equation 10 Expresses the

Model for parameter estimation of a time series. The Maple code DSL for this
model should explicitly declare the class of functions f , which parameters to
optimize for, and how many superpositions of the basis function should be
used for fitting.

As our objective functions will all be analytic, we can safely use Newton’s
method to solve the minimization problem; therefore, Newton’s method once
again forms the Transformed Model, as it did for the last example. The
structure of the Newton solver, and the issues that arise, are the same as for
the previous application (see subsection 2.2).

3.1.1 Recurrence Relations

The goal of Extracting Structure from the model shows the frequent occur-
rence of recurrence relations, because in many time-series models, a simple
time evolution exists. This allows the use of recurrence relations instead of
explicit calculations of the model function. This greatly increases the ef-
ficiency of objective function evaluations, as well as the calculation of the
Jacobian and Hessian on each solver iteration. For instance, in the case of an
exponentially damped oscillatory signal, ae−(d+if)t of frequency f , amplitude
a, and damping coefficient d, the sequence a, ae−(d+if), ae−2(d+if), . . . can be
calculated using the recursion

z0 = a, zi+1 = kzi, k = e−(d+if). (11)

This requires two real variables for each constant k, two variables for the
most recent value zi, and one temporary variable to do the multiplication.
If d > 0, the sequence converges to 0 geometrically in norm. In this case,
the numerical errors do not accumulate appreciably, in the absolute sense,
although they will be a relative accumulation of errors. Since errors in the
measurements are commonly assumed to be uniformly and independently
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distributed, we are usually only concerned with absolute errors. When f is
vector-valued, the same ideas usually work component-wise.

3.1.2 Differential Equations

If the model happens to have a simple dependence on the parameters, then
it is usually the case that the derivatives that appear in the Jacobian and
Hessian of Equation 10 are simply expressible in terms of the model itself.
Here we only illustrate what happens for a first-order dependence, which
can be used to simplify both the Jacobian and the Hessian. If there is a
second-order dependence, then that can be used to simplify the Hessian.

Considering a simple model with first-order dependence on a parameter
b,

f(b) = aebp(x) (12)

then the derivative can be re-expressed in terms of f as follows.

∂f

∂b
= p(x)aebp(x) = p(x)f(b) (13)

The above can be deduced by constructing the ODE that f(b) satisfies,
namely

∂f

∂b
− p(x)f(b) = 0. (14)

If the dependence is algebraic - which can be considered to be a zeroth
order differential equation - this can also be used for simplifications. As such
dependencies are sources of redundant computations in the resulting code, it
is important to factor them out.

3.2 Model Manipulation

Abstractly, what we really want to do is to be able to solve any parameter-
fitting problem, such as Equation 10, by describing our class of functions f ,
which parameters to optimize for, and how many superpositions of the basis
function should be used for fitting. We can then symbolically obtain

1. The recurrence equation satisfied by the model f with respect to the
main variable t.

2. The differential equation(s) satisfied by the model f with respect to
the parameters xi.
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3. The Jacobian of the fitting Equation 10 with respect to all the param-
eters xi.

4. The (upper triangle of the) Hessian of the fitting Equation 10 with
respect to all of the parameters xi.

Furthermore, Extracting the Structure using the recurrence and the differen-
tial equations, we obtain a simplification of the Jacobians and the Hessians
with respect to the structure of the model f and the linearity of Equation 10.

The first step above is obtained via the IsHypergeometricTerm function
from the RationalNormalForms Maple package. This function uses some
advanced symbolic techniques (Abramov et al., 2004) to decide if a given term

f(t) is such that f(t+1)
f(t)

is a rational function of t, and returns this rational
function if this is the case. We can thus handle any model family f that is a
Hypergeometric term in t. This includes functions such as Γ(a∗t+b) (and thus
factorial), the pochhammer symbol (a)t (or rising factorial at ), the falling
factorial at, as well as polynomials, rational functions, and linear exponentials
eat+b, as well as finite products and ratios of any of the aforementioned. Our
method easily generalizes to higher order recurrences, but we are not aware of
a simple way to obtain these recurrences using the current version of Maple.

The second step is obtained via gfun[holexprtodiffeq]. The abbrevi-
ations stand respectively for generating function and holonomic expression
to differential equation. The package gfun is described in Salvy and Zim-
mermann (1994), while the theory of holonomic (or D-finite) functions is
described in Chyzak and Salvy (1998). For the time being, we can only take
advantage of either zero-th and first-order differential dependence on param-
eters. For example, for arbitrary functions f, g and h, we can handle models
that look like g(a)× h(t) + f(b) as well as eh(a)t+g(b) for parameters a, b.

3.3 Code Generation

The Generate Code step involves first turning the mathematics of the previ-
ous sections into (pseudo) code. We are looking to generate something like
the following:

procedure GeneratedCode(y, n)
integer n, t
real f_1, ..., f_k, h_1, ..., h_k, F
real array y, Jacobian, Hessian

15



begin
f_1 := f_1(0);
h_1 := recurrence ratio of f_1;
...
f_k := f_k(0);
h_k := recurrence ratio of f_k;
F := 0;
Jacobian := 0;
Hessian := 0;
for t := 0 to (n-1) begin
F := F + (y[t] - sum(f_i, 1 to k))^2;
Jacobian := Jacobian + Jacobian at t;
Jacobian := Hessian + Hessian at t;
f_1 := h_1 * f_1;
...
f_k := h_k * f_k;

end;
return F, Jacobian, Hessian;
end;

In other words, we need to generate a procedure that computes F , its
Jacobian and Hessian, taking full advantage of the fact that F is a sum, and
that all of its sub-terms satisfy a recurrence. Using this structure allows us
to Optimize the Computation.

The generation algorithm can be explained as

1. get recurrence relation for f on t (via IsHypergeometricTerm),

2. construct the Jacobian and the Hessian for the model function f in
terms of f ,

3. if f is a complex function, split the above into real and imaginary parts,

4. generate code to calculate the initial value of f , the recurrence ratio
h, as well as code to calculate successive terms using h and the last
calculated term; do this for each superposition of f ;

5. generate code to calculate, by summing in a loop, F , Jacobian(F ),
Hessian(F ); use previously computed relations on derivatives of f (from
step (2)), as well as re-using the recurrence for f ;
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6. the above code uses local variables (in the generated code) to store the
Jacobian and Hessian, to enable common-subexpression elimination (as
it cannot be done on Matrix/Vector entries).

7. generate “cleanup” code to assign locally stored Jacob(F ) and Hess(F )
to arrays that are “returned”

8. wrap F , Jacob(F ), Hess(F ) and recurrence code in a loop on t and
apply sub-expression elimination optimization

9. “paste” code together and transform to C code

The user inputs the model function f , the main variable t, the parameters
to optimize α, and the number of superpositions k to fit. In the above f is
represented abstractly in the intermediate steps of generating the code. This
is useful because we know that the information derived from f is correct
generically, and the details of f would actually hinder rather than help these
computations. All parameters of f are indexed by the superposition to which
they belong.

The Jacobian of f with respect to the parameters α is computed symbol-
ically, using the previously computed differential relations. If the differential
equation technique fails for any a ∈ α, that partial derivative is computed by
direct symbolic differentiation. Direct symbolic differentiation is then used
on the Jacobian to get the Hessian. Any occurrence of ∂f

∂a
in the Hessian is

replaced by the appropriate Jacobian entry. Since the Jacobian is given in
terms of f the Hessian will be as well.

If f is a complex (vector) function, f , h (the recurrence multiplier), and
the Jacobian and Hessian of f are separated into real and imaginary parts
at this point. We must eventually convert all our computations to real com-
putations only, and this point in the algorithm is where we gain the most
benefit: previous computations are simpler on the complex function, while
more common sub-expressions can be pulled out from the expanded version.

For each superposition of the model function, code is generated to cal-
culate the initial term of the recurrence of f , the recurrence ratio h, and
successive terms. If f and y are assumed to take values in Rm, αp is a
short-hand for the parameter vector, the (2-norm) error function F and its
Jacobian are given respectively by

n−1∑
t=0

∥∥∥∥∥y(t)−
k∑

p=1

f(t, αp)

∥∥∥∥∥
2

=
n−1∑
t=0

m−1∑
s=0

(
ys(t)−

k∑
p=1

fs(t, αp)

)2

(15)
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Jαi
q

= 2
n−1∑
t=0

m−1∑
s=0

(
k∑

p=1

fs(t, αp)− ys(t)

)
∂fs(t, αq)

∂αi
q

(16)

Formulas for the Hessian can be similarly derived. It is very important
to note that the formulas for the Jacobian above are completely uniform in
the parameter i. This means that instead of computing each component as a
sum over very similar entries, it is more efficient to compute the Jacobian as
a sum of vectors, as this allows significantly more common computations to
be extracted. For every occurrence of ∂f

∂a
in Jacob(F ) and Hess(F ), the corre-

sponding entries of the pre-computed Jacob(f) and Hess(f) are substituted
in.

The code to calculate F , J and H is combined with the code to calculate
successive terms of f . This then makes up the body of a loop on the main
variable t. Common sub-expression elimination is used on the loop body
via codegen[optimize] with the tryhard option, and the optimized code
is wrapped in a loop on t from 0 to n− 1, where n (number of data points)
is an argument of the generated function. The loop is then spliced with the
previous code, transformed into a C function with the following signature:

(double *y, int n, double *gama, double *J, double *H)

and the return value F.
Using model manipulation we have measured a 120-fold reduction in exe-

cution time for real valued exponential models when compared to a “vanilla”
implementation, and a 540-fold reduction for complex valued exponential
models. Although we would not expect this to be the case for all applica-
tions, we certainly expect significant gains for many applications.

3.4 Applications

We give two examples from Magnetic Resonance. The first example provided
the impetus for this work, and in addition to developing the model functions,
we sketch the arguments for using a series of subspace searches to try to find
the global minimum for a highly non-convex function. The second example
shows another use of real exponentials.
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Figure 3: Soya bean oil phantom 1H-MR spectrum (maroon) and component
estimates.

3.4.1 Magnetic Resonance Spectroscopy (MRS)

The signal in conventional MRS is attained from hydrogen atoms bound
to the molecules of interest. The different bonding patterns found in these
molecules slightly alter the base resonance frequency of the hydrogens and
lead to an effect referred to as chemical shift. Other factors such as bulk
magnetic susceptibility and tissue orientation (with respect to the magnetic
field) also contribute to chemical shift, but generally to a lesser extent. Dif-
ferent chemicals can therefore be identified by their frequency shift relative to
some reference (usually water). To quantify the amounts of chemical present,
we model the signal generation and find the maximum likelihood estimate
for the model parameters. Figure 3 shows the resulting decomposition of a
measured spectrum.

Unfortunately this objective function is not convex. By approximat-
ing the problem by one which is convex, and then successively introducing
greater complexity in successive approximations, and switching between the
frequency and time domains, we are able to stay within the basin of con-
vergence of Newton’s method. We can ignore the signal phase while still
fitting the peak positions in the frequency domain, and then switch to the
time domain, increasing the accuracy of the determined model parameters.
Using prior knowledge of fixed peak resonance frequency relationships of the
compounds we expect to find in the samples, we both increase the accuracy
of our estimates, and reduce the complexity and memory footprint of the
solver. We find that this method fits spectra very quickly and provides good
results.

The time-domain signal that is measured is the free induction decay
(FID), which is the superposition of signals from several different tissues,
each having the form

ae−(d+if)t (17)
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where a ∈ C is the signal strength and phase, d is the damping and f is
the frequency (peak position). The Fourier Transform of one signal is a
Lorentzian:

1

d + i(f − x)
=

d

d2 + (f − x)2
+ i

x− f

d2 + (f − x)2
.

A delay in sampling will create a complex phase ramp eikt where k is related
to the delay. Since spectroscopy pulse sequences are complicated, including
water suppression, the phases of the different resonances are unlikely to be
exactly the same.

The squared norm of the spectrum is not affected by delays in sampling,
nor by the overall phase of the signal. If peaks are well-separated, or have
similar phase, the spectrum is not affected by the phase differences between
different peaks either. Under these assumptions, we can fit the peaks without
worrying about phase. This reduces the dimensionality of the problem and
eliminates a large source of non-convexity caused by the ambiguity in phase
angles.

Fitting a single peak is equivalent to minimizing the convex objective:

min
a,d,f

∑
x

(
Fy(x)− aā

d2 + (f − x)2

)2

.

Once we add a series of peaks, we must take the norm of the sum of the real
and imaginary parts, and not the sum of the norms. This makes the model
function more complicated, and again breaks the convexity of the objective
function.

To do unattended peak fitting we approximate the problem with a (sim-
plified) convex problem; its solution can then be used as a good starting point
for Newton’s method to converge to the global minimum of the non-convex
objective function. This is achieved by smoothing out the peaks until the
spectrum itself becomes convex. We add in a damping factor k and multiply
the time-domain data by e−kt, and then try to fit it with a sum of Lorentzians
with d replaced by kd. As the Newton method converges, the damping is
iteratively decreased until the original problem is recovered.

Time-domain fitting,

min
a0,d0,f0,...,dk,fk

∑
t

∥∥∥∥∥∥y(t)−
∑

s∈{sources}

ape
−(dp+ifp)t

∥∥∥∥∥∥
2

, (18)
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(where y(t) is the complex sample at time t), has the advantage that there is
no Gibbs ringing, it is easier to fit asymmetric echos, and the model functions
can be calculated using only additions and multiplications via the recurrence
relations given in Equation (11).

In the frequency domain, the magnitude of the peaks is the easiest and
most intuitive to fit. In the model we use for our specific application, there are
theoretically 12 distinct signals that compose the FID. Some of these peaks
will always have fixed frequency offsets from one another, and generally all
12 peaks should appear in more or less fixed locations. This allows us to
greatly simplify the process of finding an initial guess by first fitting the
location of the set of fixed peaks. In a second step, we can individually fit
the frequencies in the time domain. Fitting the complex data in the time
domain is most useful for determining the peak area, as the complex area
values carry the signal phase information with them. This becomes a linear
problem with a quadratic objective function, yielding a best fit solution in
only one iteration of the solver. Performing this operation in the frequency
domain would require guessing the phase angles. In addition to fitting the
area, attaining accurate values for damping is also simplified in the time
domain. In our method, the complex data is iteratively fit for area, phase
and damping, until the change in residual area after each iteration is very
small.

3.4.2 Magnetic Resonance Relaxometry

A real-valued example problem can be drawn from MR Relaxometry, where
the purpose of the experiment is not to acquire an image or FID spectrum
as in MRI or MRS, but to determine the time constants of the signal decay,
which vary due to chemical environment, including pH levels and temper-
ature, making relaxometry a useful non-invasive tool for determination of
these quantities in-vivo in real time. Changes in time constants are also use-
ful as indicators of disease not apparent when examining MR images, such
as susceptibility for seizure (Kanner, 2004).

The time constants arise from the Bloch equations (Bloch, 1946), which
govern the response of a proton in a magnetic field. The decay constant
T1 relates to the longitudinal relaxation (spin-lattice interactions) of the
protons, and manifests itself in the re-growth of the proton magnetization
in the direction of the main field. The decay constant T2, or transverse
relaxation is a measure of the rate of signal de-phasing. Depending on the
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set-up of the MR Relaxometry experiment, one can measure either constant.
The typical MR Relaxometry experiment involves exciting the sample,

waiting, and then measuring the magnitude of the MR signal. This is re-
peated with a small number (typically 6-10) of different measurement delays,
which have the form of a real-valued, damped exponential. When informa-
tion is required about the decay constants of multiple species present in one
sample, the problem becomes very similar to that of spectroscopy, where the
objective function has the form:

min
a0,d0,...,ak,dk

∑
t

∥∥∥∥∥∥y(t)−
∑

s∈{sources}

ape
−dpt

∥∥∥∥∥∥
2

. (19)

3.5 Results

Performance testing of the generated code for calculation of the Hessian and
Jacobian was performed for both a real and a complex model function (Equa-
tions (19) and (18)) with 12 signal sources. The execution time was measured
as the average of 1000 iterations of the solver on a 1.33 GHz PowerPC G4
processor, over 1024 pseudo-random sample data points. All C code was
compiled with GCC 3.3, with full optimizations (-O3) enabled.

The benchmarks were run with different combinations of Maple-based
optimizations enabled: no Maple-level optimizations, incorporation of the
recurrence relation (R), incorporation of the symbolic differential equations
(D), and both (R + D). In addition, different common sub-expression elimi-
nation routines in Maple were tested, as detailed in the tables.

Tables 2 and 3 present the data for the complex-valued objective, but with
derivatives that are taken with respect to the real di terms in the exponential.
The data represents the run time and relative speed improvements (with
respect to a non-optimized version) of the generated code. Very similar
results are obtained in the other scenarios.

In all cases, a large benefit is to be gained by exploiting the problem
structure. Not surprisingly, Maple’s common sub-expression elimination by
itself yields a large improvement in execution time, as the ‘base’ code con-
tains sums of constant exponential terms (as well as sines and cosines in
the complex case). While the recurrence relation and differential equation
optimizations alone lend a small speed increase, the maximum speedup is
gained when both are put to work. This jump in performance is because,
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when working together, all exponential and trigonometric function calls are
eliminated from the loop over the data points, leaving only addition and
multiplication operations.

Table 2: Time for computation complex model function (18)

Time per iteration (seconds).
Base Base + R Base + D Base + R + D

No optim. 1.1237 0.4037 0.5712 0.0037
[optimize] 0.0231 0.0196 0.0198 0.0021
’tryhard’ 0.0227 0.0197 0.0191 0.0021

Table 3: Average speedup for complex model function (18)

Relative speedup due to optimizations.
Base Base + R Base + D Base + R + D

No optim. 1 3 2 301
[optimize] 49 57 57 541
’tryhard’ 50 57 59 546

4 Material Behaviour Modelling

Modelling the response of different materials under various loading histories
is of critical importance to scientists and engineers. For example, a geotech-
nical engineer needs to model the loading characteristics of soil to accurately
predict the settlement of a building. Without an accurate model of the soil,
serious damage could occur and in extreme cases the building may even col-
lapse. As another example, designers of automobiles need to model material
behaviour so that they can predict how much mechanical energy a vehicle
frame can absorb during a collision. In this case an accurate material model is
vital for passenger safety. These are just two examples where understanding
the response of materials under loading is vital.
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Figure 4: A typical boundary valued problem with prescribed displacements
and an applied surface traction

In continuum and computational mechanics the goal is often to solve for
the changes of deformation and stress within a given body Ω, as depicted in
Cartesian (x-y-z) space in Figure 4. To solve for the histories of deformation
and stress it is necessary to satisfy the governing partial differential equation
for equilibrium, subject to initial conditions and boundary conditions. The
initial conditions could involve setting initial stress or strain fields, while
the boundary conditions could involve specifying the surface traction T̄ or
the prescribed displacements ū. The equilibrium equation alone does not
provide enough information (equations) to solve for all of the unknowns, so
the constitutive equation is added. The constitutive equation postulates a
dependence of the stress on the history of deformation, which allows for a
solution to the overall problem.

Constitutive equations can potentially be complex. The relationship be-
tween stress and deformation can rely on multiple non-linear equations, which
can conceivably involve the entire history of deformation. A wide range of
constitutive equations are used in engineering applications. For instance,
materials may be modelled as elastic, viscous, viscoelastic, plastic or vis-
coplastic, or they may be modelled as a combination of these behaviours.
New constitutive equations are currently being developed to better describe
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existing engineering materials, like soil, concrete and steel, and to describe
newly developed materials, such as new plastics and composite materials. Al-
though the behaviour of these different types of materials can exhibit great
variation, the mathematics used to describe them is often very similar. Us-
ing the correct abstraction it is possible to consider a wide range of material
behaviours within one family of material models. Using the model manipu-
lation techniques described below it is possible to quickly generate code for
a specific member of this family.

We first Express the Model by presenting the equations shared by all of
the family members and by giving a sample of the DSL used to describe a
specific material model. After this, we show how to Transform the Model into
a finite element algorithm. This transformed model is written in a generic
form so that it applies to all members of the family of material models.
The next step described is how to Extract the Structure (generic parts) from
the algorithm so that they may be replaced by a specific material described
via the DSL. Finally, details are given for the Generate Code step, which
uses the DSL to fix the generic parts in the algorithm. The notation used
in the sections below is similar to the notation often used in finite element
analysis (Zienkiewicz et al., 2005). That is, symmetric second order tensors,
such as stress and strain, are represented as vectors and the equilibrium and
constitutive equations are written in matrix form.

4.1 The Mathematical Model Relating Stress and De-
formation

The goal in modelling material behaviour is to determine the internal stress
within a material particle given the deformation history of that particle. The
state of stress σ at a point is given by components of force per unit area acting
on the faces of an infinitesimal cube centred at the point, as shown in Figure 5.
To maintain equilibrium of the cube, several of the stress components are
equal, with the result that there are six independent components of the stress
tensor, which can be summarized using vector notation (Zienkiewicz et al.,
2005):

σ =
[

σxx σyy σzz σxy σyz σxz

]T
(20)

where the subscripts (x, y, and z) refer to the coordinate axes. The first three
stress components act normal to the faces of the cube, while the remaining
three components are shearing stresses that act across the faces of the cube.

25



y

x

z

σxx

σxy

σxz

σyy

σyx
σyz

σzz

σzx

σzy

Figure 5: Stress tensor for a point within a body

As stated previously, the stress within a particle depends on the defor-
mation history of that particle. Although there are many measures of defor-
mation, the one that will be adopted here is the rate of natural strain tensor
ε̇, which, like the stress tensor, can be summarized by six corresponding
independent components:

ε̇ =
[

ε̇xx ε̇yy ε̇zz γ̇xy γ̇yz γ̇xz

]T
(21)

When simulating material behaviour several input values must be pro-
vided at run-time, including the initial stress (σ0 : R6), the time at which
the simulation starts (tbeg : R) and the time at which the simulation ends
(tend : R). The deformation history must also be provided by giving the rate
of natural strain as a function of time (ε̇(t) : {t : R|tbeg ≤ t ≤ tend} → R6).
The final run time values that must be specified for a simulation are the
material properties, which for the family of models under consideration will
always include the elastic modulus (E : {x : R|x ≥ 0}) and Poisson’s ratio
(ν : {x : R|0 < x ≤ 0.5}). Additional material properties will depend on the
specific material. Each of these properties will be named, and to each name
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will correspond a value (∈ R); these values will be assembled in a property
vector.

In an actual simulation the rate of natural strain (ε̇(t)) will rarely be
specified explicitly, rather it will be implicitly specified through the equilib-
rium equation and the given boundary conditions and initial conditions on
the material body. At every instant in time the body must satisfy the equi-
librium equation. If inertia, self-weight and other body forces are neglected,
then the equilibrium equation can be written as

LT σ = 0 (22)

where LT is the following differential operator:

LT =

 ∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x

 (23)

The equilibrium condition (Equation 22) alone is not enough to solve for
the stress as a function of time (σ(t) : {t : R|tbeg ≤ t ≤ tend} → R6, ,
where tbeg and tend delimit the duration of the simulation.) A constitutive
equation relating stress to the history of deformation must also be added.
A wide range of material behaviours can be represented by the following
constitutive equation written in rate form:

σ̇ = D

(
ε̇− γ < φ(F (σ, κ)) >

∂Q(σ)

∂σ

)
and σ(tbeg) = σ0 (24)

where

< φ(F ) >=

{
φ(F ) if F > 0
0 if F ≤ 0

(25)

The above equation is based on the viscoplastic constitutive equation
presented by Perzyna (1966). The governing differential equation depends
on the elastic constitutive matrix (D : R6×6), the fluidity parameter (γ : R),
the function φ ( φ : R → R), the yield function (F (σ, κ) : R6 ×R → R), the
plastic potential function (Q(σ) : R6 → R), the stress tensor (σ : R6), the
strain rate tensor (ε̇ : R6) and the hardening parameter (κ : R6 → R), which
measures the accumulated strain. In the constitutive equation the condition
F = 0 defines a surface in 6 dimensional stress space, which can be visualized
by considering the sketch shown in Figure 6. Inside the surface (F < 0) the
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Figure 6: Yield Function, Hardening and the Plastic Potential in Stress Space

material response will be purely elastic, outside the surface the response is
viscoplastic. When the material has yielded, which occurs when the stress
path reaches the yield surface, as shown in Figure 6, the yield surface may
change shape. This change in shape is caused by the strain hardening (or
softening) of the material. The new yield surface is shown in Figure 6 as
a dashed line. This behaviour is mathematically represented in the yield
function by its dependence on the instantaneous values of the hardening
parameter κ. The parameter κ depends on the accumulated viscoplastic
strain (κ = κ(εvp)). The plastic potential Q (Figure 6) gives the direction of
the viscoplastic strain increment. Details on material behaviour modelling
can be found in Malvern (1969); Mase (1970) and Zienkiewicz and Taylor
(2005).

The above equations, input requirements and output specification con-
stitute the first step in the model manipulation process of Expressing the
Model. An examination of the model shows that much of it will be common
between different problems involving the determination of deformation and
stress for a material body under loading. For instance, the equilibrium equa-
tion (Equation 22) will always apply. Moreover, the form of the constitutive
equation (Equation 24) will remain unchanged. However, before solving a
specific problem the material model must be specified; that is, the following
six variabilities need to be fixed: F , Q, φ, κ, γ and the property vector.

28



These variabilities can be explicitly declared in a DSL that describes (declar-
atively) a specific model from the family of material behaviour models. An
expression is specified for each function and a value is given for the constant
γ. The property vector is implicitly built through writing the expressions
for the other variabilities. A portion of the DSL, which is a small subset
of Maple, is listed below for the expression for F . The listing is in Backus-
Naur form (BNF), extended with some regular expression operations. The
extended BNF syntax includes [...] to denote optional portions of expressions
and + to denote one or more repetitions. Bold font is used to represent the
terminal tokens.

〈expression〉→〈number〉|
(〈expression〉)|
〈expression〉ˆ〈expression〉|
〈expression〉∗〈expression〉|
〈expression〉/〈expression〉|
〈expression〉+〈expression〉|
〈expression〉−〈expression〉|
−〈expression〉|
sin(〈expression〉)|arcsin(〈expression〉)|cos(〈expression〉)|arccos(〈expression〉)|
ln(〈expression〉)|log(〈expression〉)|
〈simulation-variable-F〉|〈user-defined-constants〉
〈number〉→[〈sign〉]〈digit〉+[〈decimal-point〉〈digit〉+]
〈sign〉→+|-
〈decimal-point〉→.
〈string〉→〈character〉+
〈character〉→a...z|A...Z
〈digit〉→0|1|2|3|4|5|6|7|8|9
〈simulation-variable-F〉→Kappa|〈simulation-variable-stress〉|〈simulation-
variable-stress-macros〉
〈simulation-variable-stress〉→SigmaXX|SigmaYY|SigmaZZ|SigmaXY|
SigmaYZ|SigmaXZ
〈simulation-variable-stress-macros〉→Sxx|Syy|Szz|Sxy|Syz|Sxz|Sm|J2|J3|q
〈user-defined-constants〉→〈string〉

The expression for F = F (σ, κ) is a function that can only depend on
the 6 components of the stress tensor σ (SigmaXX, SigmaYY, etc.), the
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hardening parameter (Kappa (κ)), stress macros (Sxx, Syy, etc.) and
user defined constants. The stress macros are functions that often arise in
continuum mechanics, such as the stress invariants and the deviatoric stress
invariants. These macros only reference the allowed stress components. As
an example, Sm = SigmaXX + SigmaYY + SigmaZZ. The user defined
constants correspond to the material properties (property vector) needed by
the material model.

4.2 Transformed Model (Finite Element Algorithm)

This section, which presents a numerical algorithm to solve for the stress
and deformation within a body, constitutes the second step in the model
manipulation process of Transforming the Model. The common parts from
the previous section are transformed into their finite element method equiv-
alents. At this point the variabilities are left as unspecified; therefore, the
algorithm will remain generic and thus be applicable to any material in this
family of materials. The transformed model uses the finite element (FE)
method (Zienkiewicz et al., 2005) to find the deformation of a material body.
As shown below the FE algorithm involves vector and matrix operations and
the calculation of the gradients of F and Q with respect to σ.

In the case where the body follows a Perzyna constitutive equation an
implicit time-stepping algorithm, similar to that presented by Stolle (1991),
can be derived. To estimate the displacements for the (i + 1)th time step the
residual for that time step (Ψi+1) should be approximately zero:

Ψi+1 =

∫
V

BT σi+1dV −Ri = 0 (26)

where Ri is the load vector, V is the volume of the body, B is the kinematic
matrix such that ∆ε = Bai+1, where ∆ε = ∆tε̇. This equation is the
weighted integral equivalent of the equilibrium equation (Equation 22). The
stress change over the time step may be written as

σi+1 = σi + ∆σi (27)

The value of ∆σi can be found using ∆t (the time step size) times Equa-
tion 24, which shows that the change in stress depends on the rate of vis-
coplastic straining. Since the numerical algorithm is intended to be stable,
the value used for the viscoplastic strain rate is the value at the end of the
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time step. This makes the algorithm fully implicit and thus improves the
stability. In the fully implicit version the increment of viscoplastic strain
∆εvp

i becomes

∆εvp
i = ∆tε̇vp

i+1 = ∆tλi+1
∂Q

∂σ
(28)

where λi+1 is the magnitude of the viscoplastic strain rate at the end of the
time step. Using a truncated Taylor’s expansion of λi+1 and mathematical
manipulation (Smith, 2001), it is possible to derive the following system of
equations that can be solved to find the finite element’s degrees of freedom
(a):

Ka = F (29)

where K is known as the stiffness matrix and F as the load vector. Neither of
these quantities depends on a, which makes this a linear system of equations.
For the first iteration of the algorithm, the values of K and F are as follows:

K =

∫
V

BTDvpBdV ;F = Ri −
∫

V

BT σidV +

∫
V

BT ∆σvpdV (30)

with

Dvp = D

[
I−∆tC1λ

′∂Q

∂σ

(
∂F

∂σ

)T

D

]
, λ′ =

dλ

dF
(31)

∆σvp = ∆tC1λD
∂Q

∂σ
(32)

C1 = [1 + λ′∆t(He + Hp)]
−1 (33)

He =

(
∂F

∂σ

)T

D(
∂Q

∂σ
) (34)

Hp = −∂F

∂κ

(
∂κ

∂εvp

)T
∂Q

∂σ
(35)

where I is the identity matrix.
For subsequent passes within an equilibrium iteration loop, the finite

element equations, which provide a correction ∆ai for ai, simplify to

K =

∫
V

BTDBdV ;F = Ri −
∫

V

BT σidV (36)
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The equilibrium iteration loops ceases when the convergence criteria satisfies
a given tolerance (toler) as follows:

||∆a||
||a||

≤ toler (37)

where ||a|| represents the Euclidean norm of the vector a. After solving
for the displacements for a given time step the local stresses and strains are
updated using a return map algorithm (Zienkiewicz and Taylor, 2005), which
is described in McCutchan (2007).

4.3 Extracting Structure and Code Generation

The equations given in the previous section are generic for any Perzyna type
material because F , Q, κ, φ, γ and the property vector are all used in a
generic way. At this point a material modelling expert would normally work
out the various gradients by hand and then proceed to the implementation.
These derivations are potentially time consuming and error prone and they
require a solid understanding of tensors, invariants and vector calculus. The
goal of the current work is to be able to automatically go from the equations
to the implementation. This is done by Extracting the Structure from the
Transformed Model and then Generating Code using a DSL specification to
replace the generic parts with material specific code.

Extracting the Structure from the finite element equations shows that
the following terms use the material model dependent variabilities: F , Q,
κ, φ, γ, ∆εvp , ∆σvp , D, and Dvp . A program called MatGen (McCutchan,
2007) was developed to automatically generate source code for these terms,
given a specific material model. The material model is defined using the
previously presented DSL. The code generator MatGen needs to express the
extracted expressions in terms of the variables that will be known by the finite
element algorithm, namely the stress and accumulated viscoplastic strain
components. This involves the calculation of several partial derivatives, such
as ∂F

∂σ
. A compiler is needed that can compute the needed derivatives and

output source code. As for the other examples in this paper, the Maple
computer algebra system provided such a compiler. Maple performs the
necessary calculations, in particular the necessary symbolic differentiation,
and then converts from the mathematical expressions into C expressions using
the “CodeGeneration” function. These C expressions are inlined into the
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C++ class defining the material model. This C++ class can then be used
by a program that implements the finite element algorithm presented in the
previous section.

The interface provided by the generated code, which matches the ex-
tracted structure listed above, is intended to match the needs of the numer-
ical algorithm. The goal was automatic generation of the code necessary
to computationally solve the problem. At this point in time, the fourth
step in the model manipulation process (Optimize the Computation) was not
emphasized. Instead the goal was to automatically generate code for new
constitutive equations in a manner that is considerably less time consuming
and error prone than using hand calculations. Moreover, the automatic code
generation facilitates non-experts in computational mechanics easily experi-
menting with new and different materials.

We illustrate the simplicity and effectiveness of MatGen by considering
the calculation of one example term, He (Equation 34), and how MatGen
reduces the potential for error and the time needed for the calculation. Com-
paring the symbolic output from Maple to hand derived versions of He for a
viscoelastic fluid shows the same result that He = 3G, where G is the shear
modulus (McCutchan, 2007). However, the hand derived version was com-
plex, took a nontrivial amount of time, and required expert knowledge. In
particular, the by hand derivation takes 5 pages of equations and explana-
tion in (McCutchan, 2007, pages 77–81). The derivation uses the chain rule
of calculus, several stress invariants, the Einstein index notation (Einsten,
1916), vector calculus, and knowledge from continuum mechanics, such as
the fact that the trace of the deviatoric stress tensor is zero. The MatGen
version on the other hand only required using the DSL to specify the model
for a viscous fluid, as follows:

F = Q = q; φ = F ; κ = 0; γ = 1/2η (38)

where q is the effective stress, which is provided by a macro in MatGen,
and η is the viscosity, which is the one necessary material property. The
calculation of other terms in the finite element algorithm are at least as
complex, time consuming and error prone, as the calculation of He. In these
other cases MatGen was just as simple and effective, although Maple was
unable to simplify these other expressions to be identical to the hand derived
versions. In these cases though the expressions were found to be equivalent
by verifying their numerical agreement.
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5 Conclusion

We have presented three examples of the model manipulation process in
scientific computing. Each of the examples began with the same step of Ex-
pressing the Model, where each model was expressed in an appropriate DSL.
The models were initially expressed in declarative form using the mathemat-
ics of the problem domain. At this stage the model can be understood by
anyone with knowledge of the problem domain, without the need for expertise
in computation. In the first two examples the model consisted of a minimiza-
tion problem and in the third example an ordinary differential equation. In
each case, a DSL could be used to specify the variabilities between models,
where the variabilities include the following: the class of functions, which
parameters to optimize for, the number of superpositions of basis functions,
the yield function, material properties, etc.

The proposed second step was Transforming the Model, where the initial
model is transformed into a form more suitable for computational solutions.
The first two examples transformed the model to use Newton’s method and
the third example used a transformation to a finite element algorithm. In
each case the transformed model remains generic with respect to the variabil-
ities identified in the first step; therefore, the transformed models represent
families of algorithms.

At this point in the process we Extract Structure from the model. For
instance, we recognized that the Jacobian and the Hessian share many com-
mon subexpressions, the Hessian is upper triangular, recurrence relations
frequently occur in time-series models, the derivatives in the Jacobian and
the Hessian can be expressed in terms of the model itself, and in the material
modelling algorithm only a small set of terms use the material model depen-
dent variabilities. In the first two examples the extracted structure is used
to Optimize the Computation of the “solution” of the model. For instance,
improved performance is possible by joint optimization of the Jacobian and
Hessian, sub-expression elimination, recurrence relation and differential equa-
tion optimizations. In each case Maple was used to Generate the Code that
was actually used to carry out the solution. The code generation transforms
the generic algorithm from the second step into a specific algorithm by using
the values of the variabilities specified using the DSL.

We have demonstrated that the approach where model manipulation is
used as a first step before generating code in a numerical setting has several
advantages for different modelling activities.

34



1. The conventional approach, for example where the various gradients
are worked out by hand in advance of implementation, is difficult and
error prone. Replacing this step by symbolic processing reduces the
workload, allows non-experts to deal with new problems, and increases
reliability.

2. Although the generated code is for a particular numerical algorithm,
given the existing framework it is straightforward to generate new pro-
grams that meet the needs of other algorithms.

3. Any additional information available at the symbolic processing stage
can be used to improve performance. Whether it be because of a known
differential or recurrence relation in the model, or it is known that the
model is planar or has a natural symmetry, all of this can be used for
optimizing the resulting code.

4. In certain situations, the performance gains from taking advantage of
the problem structure can be impressive.

We believe that we are discovering a new development methodology for
high-level scientific applications that can really leverage Domain Specific Lan-
guages, model transformations and program transformation to yield a pro-
cess which is friendlier to the domain expert, yields further insights into the
original problem, and produces faster and more reliable code.
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