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Abstract

This thesis presents a new numerical algorithm for 2D nonisothermal time-stepping

simulations of a nonlinear viscoelastic cast film process. The most significant contribution

of the algorithm is that an updated Lagrangian (UL) description of motion is employed, as

opposed to the more conventional Eulerian (E) description generally used in polymer

processing simulations.  Furthermore, use is made of a constitutive equation unlike those

generally employed for polymers.  The constitutive equation accommodates viscoelasticity,

extensional thinning/thickening, and strain-hardening.  A comparison of the UL and E

algorithms and constitutive equations shows that the UL algorithm in some respects

represents a more natural and intuitive approach, which has the advantage of being “closer”

to the physics of the film casting problem.

This new numerical algorithm can find the steady-state film properties, and it can

predict the onset of instabilit y by observing draw resonance as a response problem.  By

determining the criti cal draw ratio as a response problem, the mathematical complications

of the more common linear stabilit y analysis approach are avoided.  In terms of the stabilit y

of the film, it was observed that stabilit y is decreased by extensional thinning, strain-

hardening, and higher relaxation times and stabilit y is increased by extensional thickening,

higher heat transfer and higher ratios of air-gap length to die width.
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List of Symbols

The symbols used in this thesis are defined on their first usage and they are
summarized in the list that follows, first by chapter and then roughly in their order of
appearance.  An effort has been made to choose symbols based on the usual conventions
adopted in the literature, which in some cases means that a symbol has been assigned
multiple meanings.  If the meaning of a symbol changes from one chapter to another, then
this will be indicated by redefining the symbol under the later chapter’s heading.  Moreover,
the intended meaning of multi -use symbols should be clear from the context in which the
symbol is used.

Chapter 1

Symbol Meaning

x, y, z coordinate axes in the machine, transverse and out-of-plane directions,
respectively
velocities in the machine, transverse and out-of-plane directions, respectively�u, �v, �w

x spatial position
X initial position of a material particle
t time
2 some past time
ût time step
P an arbitrary material particle
P1 P occupies P1 at t = 2
P2 P occupies P2 at t = 2 + ût

Chapter 2

Symbol Meaning

u, v, w incremental displacements in the machine, transverse and out-of-plane
directions, respectively

L air-gap length
Wdie half of the die width
hdie half of the die thickness
Tdie temperature at the die
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velocity in the machine direction at the die�udie
velocity in the machine direction at the roll�uroll

Dr draw ratio (Dr = )�uroll / �udie
L linear differential operator that relates the incremental strains to the

incremental displacements
u incremental displacement vector
û0 incremental strain tensor as a column vector
û0c incremental creep strain tensor as a column vector
û0xx incremental strain in the machine direction
û0yy incremental strain in the transverse direction
û0zz incremental strain in the out-of-plane direction
û�xy incremental shear strain in the x-y plane
1 stress tensor as a column vector
û1 incremental stress tensor as a column vector
1xx Cauchy stress in the machine direction
1yy Cauchy stress in the transverse direction
1xy Cauchy shear stress in the x-y plane
1n traction normal to the film boundaries
qn thermal flux normal to the film boundaries
T temperature, averaged through the film’s thickness
k thermal conductivity
. one-sided heat transfer coeff icient for Newton’s law of cooling
C specific heat capacity
Tair temperature of the air surrounding the film
D elastic membrane constitutive matrix

effective creep strain rate�0
c
q

% creep potential function
q effective stress
J2 second invariant of the deviatoric stress tensor
A constitutive parameter
A0 reference value for the A parameter
T0 reference temperature for A0

m extensional thinning/thickening parameter
n strain hardening/softening parameter
�c creep viscosity
�s shear viscosity
Q activation energy
R gas constant
0e total elastic strain (1D uniaxial extension)

creep strain rate (1D uniaxial extension)�0c

� relaxation time
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E the elastic modulus
E1, E2, E3 three sample values for the elastic modulus E
�1, �2, �3 three sample values for the relaxation time �

Chapter 3

Symbol Meaning

tfinal time at which the time-stepping simulations are stopped
x, y, z nodal coordinate values for the finite element mesh, stored in arrays
u, v, w nodal incremental displacement values, stored in arrays
ûu, ûv, ûw nodal change in incremental displacement values, stored in arrays
1 array of stress tensors at all the integration areas, or a single stress tensor as

a column vector
û1 array of changes in the stress tensors at all the integration areas, or a single

change in stress tensor as a column vector
û1c array of change in creep stress tensors at all the integration areas, or a single

change in creep stress tensor as a column vector
array of total effective creep strain for all of the integration areas0

c
q

array of change in effective creep strain for all of the integration areasû0
c
q

T nodal values for the temperature degree of freedom; the same symbol is used
at the element level and at the system level

ûT change in the nodal values for the temperature degrees of freedom; the same
symbol is used at the element level and at the system level

uCL incremental displacement in the machine direction at the centre-line, or line
of symmetry, for the film

wCL incremental displacement in the out-of-plane direction at the centre-line, or
line of symmetry, for the film

B average shape function gradients matrix for the in-plane mechanical analysis
Dve viscoelastic tangential constitutive matrix
a nodal degree of freedom values for the in-plane incremental displacements

(u and v); the same symbol is used at the element level and at the system level
ûa change in a
R load vector for the finite element analysis
F ût�0c

q 
 û0
c
q

C1 a parameter for the implicit creep algorithm
He a parameter for the implicit creep algorithm
Hc a parameter for the implicit creep algorithm
K � the initial stress matrix
/(û0) virtual strain tensor consistent with the virtual displacements
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p pressure
ûp change in pressure
. a parameter where . Ú � for an incompressible material
/(ûWv) change in virtual volumetric work done
/0xx, /0yy, /0zz virtual strains
Bzz average shape function gradients matrix for the out-of-plane mechanical

analysis
|| # || Euclidean norm of a vector
toler convergence criteria for ceasing the iterations
q effective stress
q0 initial effective stress
û0q change in effective strain

change in effective creep strainû0
c
q

qe effective elastic stress
0q effective strain

second invariant of the deviatoric strainJ
�

2
G shear modulus
s deviatoric stress tensor stored as a column vector
se elastic deviatoric stress tensor stored as a column vector
pe pressure calculated assuming an elastic material
I similar to the identity matrix, but written as a column vector
H heat transfer matrix
C heat capacity matrix
F heat input load vector
NT matrix of shape functions for the interpolation of the temperature
dA the differential in-plane area

the rate of change of the temperature degrees of freedom; depending on theT
.

context, this vector holds the system or element level degrees of freedom
BT matrix of shape function gradients associated with the temperature degrees

of freedom
Tk+1 temperature degrees of freedom at the end of the kth time step
Tk temperature degrees of freedom at the beginning of the kth time step
Vd the volume of the d th integration area
Bd the average shape function gradients for the d th integration area
û0d the strain for the d th integration area
LDLT matrix decomposition into a lower triangular, a diagonal matrix and the

transpose of the lower triangular matrix
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Chapter 4

Symbol Meaning

2ij the extra-stress tensor, using index notation
K a constant used in the E version of the power-law constitutive equation

an invariant proportional to the second invariant of the rate of deformation�II
tensor

� the shear-thinning/thickening parameter for the E version of the power-law
constitutive equation

Dij rate of deformation tensor, using index notation
sij deviatoric stress tensor, using index notation

creep strain rate tensor, using index notation�0
c
ij

strain rate tensor, using index notation�0 ij
1 the total force in a Maxwell element

the rate of straining in the spring in a Maxwell element��s

the rate of straining in the dashpot in a Maxwell element��d

û0ij the change in the strain tensor, using index notation
the rate of change of the extra-stress tensor, using index notation�2 ij

E the elastic modulus
0 the natural strain in a uniaxial extension
L the length of a uniaxial member
L0 the initial length of a uniaxial member

the velocity at the free end of a uniaxial member�u
the rate of change of the stress in a uniaxial member�1 xx
the rate of change of the extra-stress tensor, using the upper convected�2 ij
derivative

D/Dt the material, or substantial, derivative
Lij the velocity gradient tensor, using index notation

the integral of the rate of deformation tensor holding the material particle0
e
ij

constant; this measure is not a tensor
Bij the finger deformation tensor, using index notation

Chapter 5

Symbol Meaning

nel the number of finite elements
the rate of viscous energy dissipated�Wc

ninteg the total number of integration points
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the shear viscosity at a reference temperature�
s
0

hroll the thickness of the film at the roll

Chapter 6

Symbol Meaning

Ar the aspect ratio (Ar = L/Wdie)
nelL the number of elements in the machine direction
nelW the number of elements in the transverse direction
F the force in the machine direction applied to the film at the roll
Wroll the width of the film at the roll

Chapter 7

No new symbols are introduced in this chapter

Chapter 8

Symbol Meaning

D rate of deformation tensor, written as a column vector
n normal vector
+t boundary where the traction is specified
+u boundary where the displacement is specified
+q boundary where the thermal flux is specified
+T boundary where the temperature is specified
t Traction applied to a surface
� the residual load vector
Ki the stiffness matrix for the Eulerian algorithm and the ith iteration
ai the degree of freedom vector for the Eulerian algorithm and the ith iteration
ai+1 the degree of freedom vector for the Eulerian algorithm and the (i+1)th

iteration
ûai the change in the degree of freedom vector
au the degree of freedom values for the in-plane velocities
ah the degree of freedom values for the thickness
aT the degree of freedom values for the temperature
aW the degree of freedom values for the width
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ûau the change in the degree of freedom values for the in-plane velocities
ûah the change in the degree of freedom values for the thickness
ûaT the change in the degree of freedom values for the temperature
ûaW the change in the degree of freedom values for the width
F i the load vector for the Eulerian algorithm and the ith iteration
KT

i the tangential stiffness matrix for the Eulerian algorithm and the ith iteration



1

Chapter 1 Introduction and Background

Two main approaches exist for describing the motion of a body: the material

formulation, where the conservation equations are applied to a specific body, or control

mass; and the spatial formulation, where the conservation equations are written in terms of

a region in space, or control volume.  Although the different formulations should yield

identical results for any smooth motion of a body, for any given type of motion there is often

an obvious choice as to which formulation is preferable.  For instance, fluid mechanics

problems lend themselves nicely to spatial, often termed Eulerian (E), formulations of

motion.  On the other hand, solid and structural mechanics problems are usually best treated

using material, also known as Lagrangian (L) and updated Lagrangian (UL), descriptions of

motion.  Although the choice for description of motion is well established for fluid and solid

mechanics problems, it is not so clear which choice is best when the material in question

exhibits properties of both a fluid and a solid; that is, when the material is viscoelastic.  To

clarify the relative advantages and disadvantages of the spatial versus material approaches,

this thesis considers the behaviour of an important class of viscoelastic material, polymers.

In the literature on polymer processing the usual choice to describe motion is a spatial

formulation, especially when the processing operates continuously.  Therefore, to compare

the spatial and material descriptions, it is first necessary to develop a material description for
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some continuous process.  The process selected for comparison is the film casting process

because it is an industrially significant process, and because the influence of the material

properties and processing conditions on the finished product is not entirely understood.

Therefore, besides comparing spatial and material formulations, this thesis also provides an

opportunity to investigate the underlying physics of the cast film process.

The film casting process is described in Section 1.1 and some common problems

encountered while casting are listed in Section 1.2.  Although numerical simulation is a

useful tool to gain a better understanding of these problems, simulation of the film casting

process has several complications, which are the subject of Section 1.3.  Different

approaches have been employed to address the complications associated with simulating film

casting.  A review of the different approaches available in the literature is provided in

Section 1.4.  Thereafter, an overview of the current study is provided in Section 1.5.  One of

the principal distinctions between the new approach and previous approaches is the

description of motion.  The distinctions between the different descriptions of motion, E, L

and UL, are clarified in Section 1.6.  The final section of this chapter, Section 1.7,

summarizes the purpose and scope of this research.

1.1 Description of the Cast Film Process

Figure 1.1 provides an overview of a typical continuous film casting operation.  The

process starts with solid polymer pellets in a hopper.  These pellets are gravity fed into an

extruder.  The extruder consists of a screw that melts the polymer and provides the pressure
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Figure 1.1 Overview of the cast film process

necessary to force the now molten polymer through a centre-fed “T” or coat-hanger die. 

Information on the design and operation of these dies is provided in TAPPI Press (1992).

After exiting the die, the film is pulled through an air-gap, where it is cooled by convected

cold air or an inert gas before it makes contact with a thermoregulated chill roll .  To ensure

good contact of the film with the chill roll and to aid in freezing, an air-knife is often used

to blow a jet of air at the film.  After freezing, the secondary film is hauled off f or further

treatment, such as heating and biaxial stretching.  Once treated, the finished product goes to

a winder, which produces the rolls of f inished film.

One of the most important of the many stages used to produce cast film is the

stretching of the film through the air-gap.  Studies on film casting, including this one,

typically  focus on how the film behaves in the air-gap because the properties of the finished
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Figure 1.2 Overview of the cast film process in the air gap

product are mainly determined at this stage (Barq et al. 1992).  Although the air-gap only

represents a small fraction of the polymer processing time, the behaviour of the film in the

air-gap is important because the success of downstream operations depends on the quality

of the film supplied from upstream.  A close-up schematic of the air-gap is shown in Figure

1.2.  Further details on the film casting processes can be found in Pearson (1985) and Smith

(1997).

1.2 Problems Encountered with Film Casting

Important goals for film line designers are to maximize the production of a uniform

thickness film and to minimize wasted film.  Three main problems interfere with these goals:
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i) the stretching of the film reduces its width (neck-in);

ii) thick beads form at the edges of the film (edge bead); and

iii) once the speed at the roll relative to that at the die exceeds some critical value, the
width and thickness of the film begin to vary periodically (draw resonance).

At present, these three problems are still not well understood.  Computer simulation of the

process is one technique available for gaining a better understanding of the above problems,

and possibly suggesting ways to mitigate them.

1.3 Difficulties Associated with Numerical Simulation of the Cast Film Process

At present, a trial-and-error approach is generally used to design film lines, as there

are few numerical algorithms available to simulate the process.  Any advances in the

numerical modelling of film lines must take into account, and overcome, the following

complications: 

i) the free surface is initially unknown;

ii) the problem is highly nonlinear;

iii) there is a strong coupling between the velocity and the thickness;

iv) a large number of degrees of freedom are required; and,

v) the stress for most polymers has a complicated dependence on the deformation and
thermal history of the material.

Several different approaches, which are summarized in the next section, have been used to

address some of the above difficulties.
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1.4 Literature Review on Cast Film

The cast film lit erature can be categorized according to the assumptions made to

simpli fy the idealized governing equations.  Section 1.4.1 lists and explains some typical

simpli fying assumptions made in the film casting literature.  Besides categorizing the

literature according to the assumptions made, different studies can also be subdivided by

whether or not the model considers draw resonance.  The literature that neglects draw

resonance and focuses on steady-state operations is the subject of Section 1.4.2.  Following

this, the studies that predict draw resonance are summarized in Section 1.4.3.  Besides

differences in the assumptions and in the focus of a study, the literature can also be

distinguished by the numerical algorithms used, which are listed in Section 1.4.4.  All of the

references cited in this section use a spatial description of motion.

1.4.1 The Assumptions Made in Film Casting Research

Ideally, the solution for a film casting problem would accommodate the following:

three-dimensional variation of all the variables; nonisothermal conditions; all external

influences, such as an air-knife or vacuum box; a complete rheological characterization of

the polymer; and the entire deformation and temperature history of the polymer.  Such a

model is not yet, and may never be, available.  The models that have been created are subsets

of this ideal model.  Typical assumptions that distinguish a given model from the ideal model

include the following:

• simpli fy dimensionality: 1D versus 1.5D versus 2D
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• assume isothermal
• assume a constitutive equation
• exclude inertial effects
• exclude the self-weight of the polymer
• neglect the sag of non-vertical films
• exclude die-swell
• use uniform boundary conditions at the die
• neglect surface tension
• neglect air-drag
• neglect the influence of the air-knife and/or vacuum box
• use a single layer of f ilm, as opposed to modelli ng a process where different

polymers are combined to form a multil ayer film

Except for the terminology introduced for the dimensionality assumptions and the

term die-swell , the items in the above list are self-explanatory.  Table 1.1 clarifies the

terminology for the dimensionality by summarizing the kinematic assumptions on the

velocity components ( , , ) for each type of analysis.  The corresponding coordinate�u �v �w

directions (x, y, z) used in the table are the same as those shown in Figure 1.2.  The

dimensionality of the film problem determines whether neck-in and edge bead can be

accommodated.  This information is also shown in  Table 1.1.  As for the term die-swell , it

can be explained by referring to Figure 1.2 and noting the increase in thickness as the film

exits the die.  This increase in thickness is die-swell , and it is explained by the sudden change

from a confined shear flow inside the die to an essentially extensional flow field in the air-

gap.
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Table 1.1 Summary of the Kinematic Assumptions

Dim Direction Neck-in Edge
Bead

Machine (x) Transverse (y) Out-of-Plane (z)

1D No No�u 
 �u(x) �v 
 0 �w 
 �w(x, z)

1.5D Yes No�u 
 �u(x) �v 
 �v(x, y) �w 
 �w(x, z)

2D Yes Yes�u 
 �u(x, y) �v 
 �v(x, y) �w 
 �w(x, y, z)

Published research on film casting consists of various combination of the above

assumptions.  In some studies good results are obtained for a limited class of film casting

problems.  However, the large range of processing conditions and materials encountered in

industry means that no model has been proposed to date that adequately captures all

behaviour.  In the sections that follow, the film casting literature is summarized according

to three key assumptions: the dimensionality assumption; whether the model is for isothermal

conditions; and the constitutive law adopted.  The studies cited in the sections that follow are

for single layer films.  Information on multilayer films can be found in Pis-Lopez and Co

(1996a, 1996b).

1.4.2 Literature on Steady-State Film Casting

Table 1.2 summarizes the film casting literature that solves the steady-state film

casting problem.  The term steady-state is used to indicate that this literature does not

consider transient behaviour or the related phenomenon of draw resonance.  The table
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compares the research according to the three key assumptions mentioned above.  As Table

1.2 shows, most of the steady-state film casting studies are 1D or 1.5D; as a consequence of

this, the influence of the edge-bead on the film has received only limited attention.  The table

also shows that the majority of f ilm casting studies assume a Newtonian fluid.

Table 1.2 Summary of the Assumptions Made in the Steady-State Studies

Reference Dim Constitutive Equation Thermal

Avenas et al.  (1986) 1.5D Newtonian iso

Cotto, Duffo and Haudin (1989) 1.5D Newtonian noniso

d'Halewyu et al.(1990) 2D Newtonian iso

Agassant et al.  (1991) 1.5D Newtonian iso

Alaie and Papanastasiou (1991) 1D BKZ-type integral noniso

Duffo, Monasse and Haudin (1991) 1.5D Newtonian noniso

Barq et al. (1992) 1.5D Newtonian noniso

Iyengar and Co (1993) 1D Modified Giesekus iso

Debbaut et al. (1995) 2D Power-Law, Maxwell -B
and Giesekus

iso

Sakaki et al.  (1996) 3D Newtonian iso

Beaulne and Mitsoulis (1999) 1.5D Upper-Convected Maxwell
and K-BKZ Integral Model

noniso

Rajagopalan (1999) 2D* Giesekus (Giesekus 1982) iso

Smith and Stolle (2000a) 2D Newtonian noniso

Acierno et al. (2000) 1.5D**  Newtonian noniso
* Rajagopalan (1999) is 2D in the sense that the thickness varies in the transverse direction,
but edge-bead and neck-in are not included because the computational domain is restricted
to the central portion of the film.
**  Acierno et al. (2000) is 1D for the temperature predictions
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1.4.3 Draw Resonance Literature

Table 1.3 is the same format as Table 1.2, except that the focus is on the stability

research.  This summary shows that only a small number of papers consider the stability of

2D films.  Furthermore, nonisothermal problems have received only limited attention and the

variety of constitutive equations considered is small.

Table 1.3 Summary of the Key Assumptions in the Draw Resonance Research

Reference Dim Constitutive Equation Thermal

Yeow (1974) 1D Newtonian iso

Aird and Yeow (1983) 1D Power-Law iso

Minoshima and White (1983) 1D Newtonian noniso

Lee (1984) 2D* Power-Law iso

Anturkar and Co (1988) 1D Modified Convected Maxwell iso

Barq et al. (1990) 1D Newtonian iso

Barq et al. (1994) 1D Convected Maxwell iso

Silagy et al.  (1996a) 1.5D Newtonian iso

Silagy et al. (1996b) 1.5D Newtonian iso

Iyengar and Co (1996) 1D Modified Giesekus iso

Sialgy et al. (1998) 2D Newtonian and viscoelastic iso

Silagy et al. (1999) 2D Newtonian iso
* Lee (1984) models the film differently than the other studies, by considering the film as a
parallel composition of numerous fibre filaments spun simultaneously.
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1.4.4 Solution Techniques

Table 1.4 summarizes the solution techniques corresponding to the simulation studies

of Table 1.2.  This summary shows that closed-form solutions are rare and only exist for the

1D and 1.5D cases, and only for the case of viscous fluids.  Of the numerical techniques

used, the finite element method (FEM) is the most popular.  For the finite element

simulations, the algorithm is either step-wise uncoupled or coupled.  When the analysis is

uncoupled, the velocity, width and thickness are each solved in turn, based on the current

values of the other variables.  Since such an approach may be slow or may have convergence

problems, coupled algorithms, which solve all of the variables simultaneously, are preferred.
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Table 1.4 Summary of Techniques used for Solving the Governing Equations

Reference Solution Technique

Avenas et al. (1986) closed-form solution

Cotto, Duffo and Haudin
(1989)

an explicit finite difference method

d'Halewyu, Agassant and
Demay (1990)

step-wise uncoupled solution technique:
i) the  velocity is found using FEM;
ii ) the width is found using the Newton-Raphson

method; and then
iii ) the thickness is found using the finite volume

method.

Agassant et al.  (1991) closed-form solution

Alaie and Papanastasiou
(1991)

fully coupled Newton-Raphson FEM

Duffo, Monasse and Haudin
(1991)

an explicit finite difference method

Barq et al. (1992) Runge-Kutta’s and Adams-Bashforth’s methods
(Conte and De Boor 1980: pp373-376)

Iyengar and Co (1993) 4th order Runge-Kutta with adaptive step size control

Debbaut et al. (1995) fully coupled Newton-Raphson mixed FEM with
upwinding for the mass transport equation

Sakaki et al.  (1996) streamline finite element method

Beaulne and Mitsoulis (1999) fully coupled Newton-Raphson FEM

Rajagopalan (1999) a coupled finite element method based on the elastic-
viscous split stress formulation developed by
Rajagopalan et al. (1990)

Smith and Stolle (2000a) fully coupled Newton-Raphson FEM

Acierno et al. (2000) a shooting method
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With respect to the determination of draw resonance, the most popular approach is

linear stabilit y analysis, which is used for almost all of the studies of Table 1.3.  Another

approach that is sometimes employed is to observe draw resonance as a response problem.

In this case the time-dependent governing equations are solved and resonance is observed

directly as oscill ations in the film’s geometry.  This is the approach employed by Barq et al.

(1990, 1994) and Silagy et al. (1998, 1999).

1.5 An Overview of the New Algorithm

Following the headings used in Tables 1.2 and 1.3, the current study can be classified

as 2D and nonisothermal, with a viscoelastic constitutive equation.  The constitutive equation

accommodates Newtonian fluids, power-law viscosity, elastic effects and strain-hardening.

Of the assumptions listed in Section 1.4.1, the influence of the following are assumed to be

negligible in this thesis: inertia, self-weight, sag, die-swell , surface tension and air-drag.

Furthermore, only uniform boundary conditions are used, the influence of the air-knife is

neglected, and only a single layer of f ilm is modelled.

The algorithm developed in this thesis can be used for both steady-state and draw

resonance studies, as the algorithm uses time stepping to solve the transient governing

equations.  Stabilit y is assumed to exist if the oscill ations of the film geometry die out when

a steady-state solution has been reached.  On the other hand, if the oscill ations do not die out,

then draw resonance is assumed to have developed.
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Probably the most important distinction between the algorithm introduced here and

those used in previous studies, is that the current study uses a material description of motion.

This decision has significant ramifications for the finite element algorithm.  To better

understand these ramifications, the next section describes the differences between spatial and

material descriptions of motion.

1.6 Types of Description of Motion

Let us consider the motion of an arbitrary material particle P corresponding to three

different configurations over time, as shown in Figure 1.3 for a two-dimensional (2D)

coordinate system.  The motion of P can be described by a relation between the spatial

position (x) and the initial coordinates (X) and time (t); that is, x = x(X, t), with the

independent variables being X and t.  This equation expresses a material description of

motion in a Lagrangian (L) formulation.  In a Lagrangian analysis the initial configuration

at X provides a reference configuration to which all future variables are referred back to.

Although the choice of a reference configuration is an arbitrary one, often the initial

configuration of the body is selected for a Lagrangian analysis.  If instead, the reference

configuration is continuously updated, then one has the updated Lagrangian (UL)

formulation, in which x = x(x(2), t) with the independent variables being x(2) and t.  In the

UL approach all variables are expressed relative to the present configuration, at time 2, in

order to find the state of the system in a future configuration, at time 2+ût.  For both the L

and UL formulations one explicitly tracks the motion of the particles.
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x(X, 2)

y

Figure 1.3 Motion of a particle over time

For the spatial, or the so-called Eulerian (E), formulation, time and the current

location in space x are the independent variables.  Since the focus is on a region in space,

denoted by the control volume shown by the dashed line in Figure 1.3, particle P is not

unique to the spatial point located at P1.  Particle P, which is coincident with point P1 at t =

2, is one of many particles that pass through P1.  It is for this reason that the kinematics of

the spatial formulation are best expressed in terms of velocities and velocity gradients rather

than displacements and displacement gradients.

The choice of description of motion strongly influences the numerical algorithm and

the implementation of the finite element method.  Table 1.5 distinguishes four finite element

formulations: Lagrangian, updated Lagrangian, Eulerian and arbitrary Lagrangian Eulerian
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(ALE), and provides some example applications for each.  When interpreting the finite

element literature using the definitions of Table 1.5, caution should be employed since the

terms UL and E are not always applied correctly (Gadala, Oravas and Dokainish 1983).

Table 1.5 Different Finite Element Formulations

Type Mesh Example Applications

L Stationary, corresponds to
material

Solid and structural mechanics, including
large deformation problems

UL Moves with material,
corresponds to material

Large deformation problems in solid and
structural mechanics

E Stationary, corresponds to
space

Fluid mechanics, viscoelastic fluids
(Marchal and Crochet 1987; Lou and
Mitsoulis 1990), soil penetration (Van Den
Berg, De Borst and Huétink 1996)

ALE Motion independent of
material, corresponds to space

Fluid structure interaction, free surface
problems (Liu et al. 1988)

1.7 Purpose and Scope

A new numerical algorithm, based on an updated Lagrangian formulation, is

introduced in this thesis for the simulation of f ilm casting.  The two main purposes for

developing the algorithm are: i) simulations can be performed to gain a better understanding

of the film casting process and how the problems of neck-in, edge-bead and draw resonance

are influenced by the material and the processing conditions; ii) the UL algorithm can be

compared to E algorithms to identify the respective strengths and weaknesses of each

approach. 
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Chapter 2 summarizes the governing partial differential equations and boundary

conditions assumed for this study with Chapter 3 presenting the corresponding numerical

algorithm used to solve the governing equations and associated boundary conditions.  The

proposed algorithm uses a constitutive equation that is more commonly encountered in L and

UL formulations, even though the literature on polymers uses constitutive equations from an

E framework.  To relate the current study to the existing body of knowledge, it is necessary

to relate the UL and E constitutive equations, which is the topic of Chapter 4.  Chapter 5, 6

and 7, respectively, provide simulation results for 1D, 1.5D and 2D versions of the

simulation algorithm.  Each of these chapters includes a parametric study to examine the

influence of various constitutive parameters and processing conditions on steady-state

conditions and on the stability of the film.  Chapter 8 compares the UL algorithm to an E

algorithm and Chapter 9 lists the conclusions and recommendations from this study.
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Chapter 2 Governing Equations

This chapter presents the governing equations and boundary conditions for the 2D

film casting problem following a UL framework.  Equations are provided for equilibrium,

continuity, conservation of thermal energy and the constitutive response.

2.1 Coordinate System and Notation

Figure 2.1 shows the Cartesian coordinate system used for the film casting problem.

The origin is located at the centre of the die, and the coordinates run in the machine direction

x, the transverse direction y, and the out-of-plane direction z.  The dimensions of the film

problem are defined by the air-gap length L, the die width 2Wdie and the die thickness 2hdie.

A factor of 2 is used in labelling the dimensions of the die to facilitate the introduction of the

symmetry constraints.

In this and most of the subsequent chapters, the notation used is similar to that of

Zienkiewicz (1977), in which symmetric 2nd order tensors, such as stress and strain, are

represented as vectors and the constitutive description is written in matrix form.  All symbols

used in this thesis are defined upon their first usage.  In addition, a list of symbols is provided

starting on page xvi and the component expansions of the variables are summarized in

Appendix A.                                                                                  
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Figure 2.1 Coordinate system and dimensions for the 2D film casting problem
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2.2 Equilibrium Equation

At every instant in time the film must satisfy the equilibrium equation.  If inertia, self-

weight, air-drag and surface tension are neglected, then the equilibrium equation can be

written as

where L is the linear differential operator that relates incremental strains û0 to incremental

displacements u, such that û0 = Lu, and 1 is the Cauchy stress tensor for the deformed
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û0zz 
 	(û0xx � û0yy) (2.2)

configuration. Appendix A shows the component expansions for L, 1, û0 and u.  The film

is assumed to behave as a membrane, which reduces the number of components in the

equili brium equation to only those necessary for a plane stress problem; i.e. 1 = [1xx 1yy 1xy]
T.

This reduction is possible because for a membrane the normal to the film’s surface is

approximately in the z-direction, and the magnitude of the out-of-plane shear is negligible

when compared to that of the other components.  This assumptions applies when the film is

thin and the thickness gradient is small .  Strictly speaking the membrane approximation does

not hold at the edges of the film (Pearson 1985: p478).

2.3 Continuity Equation

The equili brium calculation using the membrane approximation only predicts the in-

plane incremental displacements u and v.  To determine the out-of-plane incremental

displacement w, an explicit calculation using continuity, that is, volumetric strain

considerations, must be introduced.  If the melt is assumed incompressible for both the

viscous and the elastic responses, the out-of-plane strain can be related to the two in-plane

components via

which in turn can be used to calculate w.
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 0 (2.3)

û1 
 D (û0 	 û0 c ) (2.4)

2.4 Conservation of Thermal Energy

In the case of nonisothermal film casting, the transient 2D temperature field T(x,y,t)

of the membrane can be calculated using the following governing partial differential

equation:

where /T = [0/0x 0/0y], . is the heat transfer coeff icient from the film’s surface, Tair is the

surrounding air’s temperature, and k, ! and C are material properties for the thermal

conductivity, density and specific heat capacity, respectively.  The source term in the above

equation is actually a boundary condition on the film’s upper surface, where Newton’s law

of cooling is assumed to apply.  The conservation of thermal energy equation assumes that

the temperature varies littl e through the thickness of the film.  The equation also neglects

viscous dissipation, as it is assumed negligible for the film casting process. 

2.5 Constitutive Equation

Adopting a constitutive equation for an elastic material that is creeping and invoking

the additivity postulate, the incremental form of Hooke’s law may be written as

where û1 is the stress increment, D represents the elasticity matrix, and û0 and û0c are the

total strain and creep strain increments, respectively.  The components of D are given in

Appendix A and the derivation of D is shown in Appendix B.
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The creep strain increment may conveniently be expressed using the approach

adopted by Perzyna (1966), which in a modified form can be written as

with ût being the time step,  the effective creep strain rate and % the creep potential�0
c
q

function, which is defined as

The parameter q is the effective stress (Kraus 1980: p29), and J2 represents the second

invariant of the deviatoric stress tensor.

If the creep strain rate is assumed to follow a time hardening creep law, then

where A, m and n are constants and t is the total time.  This law can be transformed into the

strain hardening form, by holding q constant and taking the time derivative of Equation 2.7.

After some manipulations, the strain hardening relationship for the creep strain rate is

obtained by eliminating time t in the rate equation through the use of Equation 2.7; i.e.,

A close examination of the above equation indicates that it is an equation of state, in which

.  A special case of Equation 2.8 occurs when m = n = 1 and A = 1/(2�c).  In this�0
c
q 
 f(0c

q, q)

case the above equation describes a Von Mises material, with a creep viscosity of �c.  The
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viscosity is assumed to depend on temperature via an Arrhenius relation, which is introduced

through the A parameter via

where Q is the activation energy, R is the gas constant (8.314 J mol-1 K-1) and A0 and T0 are

the reference values for the A parameter and for the temperature, respectively.

Figure 2.2 ill ustrates the constitutive response by showing how the stress changes as

the material undergoes an isothermal uniaxial extension.  Plot (a) shows that the function

relating stress 1 and elastic strain 0e is linear, with a slope equal to the elastic modulus E.

The viscous response is shown in Plot (b), which ill ustrates the variation of stress with creep

strain rate .  In the case of a Newtonian fluid the viscosity is constant, but for extensional�0c

thinning and thickening materials, increasing strain rates lead to decreasing and increasing

viscosities, respectively.  The constitutive description adopted in this thesis combines the

responses shown in (a) and (b) to produce a viscoelastic material, which is ill ustrated in Plot

(c).  This plot shows three linear Maxwell elements undergoing the same constant rate of

straining.  The elements are distinguished from one another by their relaxation time �, which

is a measure of how long the material “ remembers” past deformations.  The lower the value

of �, the closer the material’ s response is to a viscous fluid and the higher the value, the

closer the response is to an elastic solid.  The three previously discussed plots (a, b and c)

show a material that is not fundamentally changed by its deformation history, but if the value

of the strain-hardening parameter n is not equal to 1.0, then the material behaviour will be
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Figure 2.2 Examples of constitutive behaviour under isothermal uniaxial extension

affected by its past deformation.  Plot (d) shows strain-hardening and softening materials, for

which the constitutive behaviour depends on the total value of the accumulated creep strain.

The softening behaviour (n > 1) in Plot (d) is unstable; therefore, the materials considered

in this study will require that n  � 1.

2.6 Boundary Conditions

The boundary conditions for the half width of the film casting problem are shown in

Figure 2.3.  As mentioned earlier, the film is assumed to be symmetric about its centre line.

The mechanical boundary conditions specified inside the die and on the roll imply that the
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film will move downstream (in the machine direction) as a rigid body at these locations.  The

ratio of the downstream speed at the roll to the speed at the die provides an important

dimensionless number for characterising the film casting problem, the draw ratio Dr, where

Dr = / .  On the roll the transverse  and out-of-plane  velocities are set to zero to�uroll �udie �v �w

simulate the sudden freezing of the melt when it contacts the chill roll.  At the free surface

and the line of symmetry, the natural boundary conditions of zero normal stress (1n) and zero

shear are assumed to apply.  The thermal boundary conditions for the film consist of

prescribing the temperature inside the die as Tdie and setting the normal thermal flux qn to

zero on all other surfaces.  A zero thermal flux approximation is reasonable given the

thinness of the film and its poor thermal conductivity.

One should note that the boundary conditions are expressed in terms of spatial

locations, but the governing equations are expressed in terms of the material particles.  The

boundary conditions that are applied to a given material particle will change as it moves

downstream.  For a particle with a finite size the spatial location of the transition from one

set of boundary conditions can only be approximated.  This fact causes some difficulties for

the numerical algorithm, which will be discussed in the next chapter.
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Figure 2.3 Boundary conditions for the 2D film casting problem

2.7 Initial Conditions

The transient analyses of this study typically start with the film inside the die with the

temperature set to Tdie.  The initial stresses and accumulated creep strain for the material

inside the die are assumed to be zero.  Strictly speaking, the initial stresses and creep strain

are not likely to be zero, as flowing through the die will deform the material.  However, the

flow in the die is beyond the scope of the present work, so in the absence of upstream

information, the stresses and accumulated strains will be assumed to be zero.  This is the
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same assumption used by Debbaut et al. (1995) for their viscoelastic fluid film casting study.

A consequence of the zero stress condition, along with use of the membrane approximation,

is that the die-swell phenomena cannot be accommodated by the present study.
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Chapter 3 Numerical Algorithm

This chapter describes the UL time-stepping finite element algorithm for numerically

simulating film casting.  Section 3.1 provides an overview of the algorithm and the

definitions for the important variables.  Thereafter, Sections 3.2 to 3.7 provide more specific

details on the algorithm by describing the following steps: data input, initialization of

variables and updating constraints, the nonlinear solution step, the radial return algorithm,

the solution of the nodal temperatures, and updating the mesh.  Section 3.8 develops the

average strain element used by the algorithm with Section 3.9 discussing some issues

regarding efficiency.  In the final section, Section 3.10, the computer implementation of the

numerical algorithm is addressed. 

3.1 Overview of the Time-Stepping Algorithm

Figure 3.1 provides a flowchart for the time-stepping UL finite element algorithm.

To simplify the presentation, the flowchart shows only those variables that are most

important, which include the current time (t), the final time (tfinal), the nodal coordinates (x,

y, z), the displacement degrees of freedom (u, v, w), the stress tensors at the integration points

(1), the total effective creep strain at the integration points ( ) and the temperature degrees0
c
q

of freedom (T).  As usual, the symbol û is used to denote a change in a variable.  In the
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current context the bold face symbols refer to system level variables; that is, they are vectors

that store values for all the nodes, or all the integration points, as appropriate.  Some of these

same symbols will be reused later in this chapter, but to refer to element level variables.  The

multiple meanings of the symbols is intended to simplify the notation, and it should not lead

to any confusion, as the meaning of the variables will be clear from the context in which they

are used.

Each time step of the UL algorithm starts from a known configuration and solves a

materially and geometrically nonlinear finite element problem for the nodal displacements

and temperatures.  At the end of each time step the mesh, stresses, effective creep strains and

temperatures are all updated.  The updated values provide a new reference configuration and

state, which allows one to repeat the prediction process for the following time step.

After many time steps, a given finite element will experience the following sequence

of events: i) exits the die; ii) travels through the air-gap; iii) moves on to the chill roll; iv) is

removed from the roll and is reinserted and reinitialized inside the die to begin the sequence

again.  In principle, the time-stepping process can be continued indefinitely; however, this

is unnecessary for a stable film problem as the transient behaviour will eventually damp out

and a spatially steady-state solution will be reached.
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Figure 3.1 Flowchart for the time-stepping UL finite element
algorithm

3.2 Input Data

The first step in the program is to read in the information that describes the film

casting problem, such as the material properties, the numerical parameters, the element

connectivity and the boundary conditions.  Initial values must also be provided for the time,



Chapter 3 Numerical Algorithm32

y

x

Inside Die Air-Gap On Roll

Free Surface

Line of Symmetry

Figure 3.2 A sample finite element mesh

the nodal coordinates, the stress, the total effective creep strain and the temperatures.  By

default, the initial time, stress and effective creep strain are all zero, the temperatures are all

equal to Tdie and all of the elements are stored inside the die.  However, for some simulations

it is more efficient to use more complex initial values for these variables.  One option is to

use initial values for a new simulation that are the final values of a previous simulation, in

order to start an analysis from a reasonable initial geometry.  Figure 3.2 shows a sample

mesh for the situation when such an option is followed.
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3.3 Initialize Variables and Update Constraints

At the beginning of each time step various variables are initialized, such as the

incremental displacement degrees of freedom (dof), which are set to zero.  Another task that

is performed at the beginning of each step is updating the constraints on the displacement

dof.  To determine the constraints, each node of the finite element mesh is classified

according to its spatial location.  Figure 3.2 shows the five spatial classifications: inside the

die, on the chill roll , in the air-gap, on the line of symmetry, and at the free surface.  In

addition to constraints required by a node’s spatial location, constraints are also required if

the problem is assumed to be either 1D or 1.5D.  The kinematic assumptions that define the

terms 1D and 1.5D are given in Section 1.4.1.  The constraints associated with the node’s

spatial location and the dimensionality of the problem are shown in Table 3.1.

Table 3.1 Displacement Constraints for the Nodal Degrees of Freedom

Location of node Dimension of Problem Prescribed Displacements

Inside die any u = udie, v = 0, w = 0

On roll any u = uroll, v = 0, w = 0

On line of symmetry any v = 0

In air-gap 1D problem u = uCL, v = 0, w = wCL

1.5D problem u = uCL, w = wCL

For a given film casting problem, the values of the velocities at the die and roll are provided,

which allows the calculation of  and .  In Table 3.1, theudie 
 ût # �udie uroll 
 ût # �uroll

subscript CL refers to the centre line incremental displacements, which are handled



Chapter 3 Numerical Algorithm34

y

x

column j

row 2

row 3

row 4

row CL

column j-1 column j+1

uCLj

w2j

v4j

u3j

u2j

u4j

wCLj

w3j

w4j

v3j

v2j

vCLj

Figure 3.3 A sample of several columns and
rows of the finite element mesh

differently than the constraints at the die and roll.  When the CL constraint applies, all of the

appropriate degrees of freedom in a given column, say column j, are constrained to the same

value as that corresponding to the dof at the line of symmetry.  That is, using the node

numbering shown in Figure 3.3, uij = uCLj and wij = wCLj, where i is the row number (2 to 4)

and j is the column number.  This constraint is used for all the columns that are located in

the air-gap.  When the constraint uij = uCLj is active all the columns of nodes will remain

parallel to the die.  If the wij = wCLj constraint is also in effect, then the thickness across a

given column of nodes is constant.
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3.4 Solve for the Nodal Displacements

To find the displacement degrees of freedom, a fully implicit creep algorithm (Stolle

1991) is used.  Owing to the linearization of the equations, an iterative scheme is required

to converge to an equilibrium solution within each time step.  On the first pass, the finite

element equations for equilibrium can be expressed as follows, using the notation of

Zienkiewicz (1977):

with

where , a is the dof vector for the in-plane displacement increments (u and v), RF 
 ût # �0c
q

is the load vector, V is the volume of the domain, B is a matrix such that û0 = Ba, û1c is the

creep stress increment, and Dve is the viscoelastic constitutive matrix, which may correspond

to nonlinear behaviour.  It should be recognized that at this stage of the calculations a

represents a first estimate for the change in displacements.  For subsequent passes within an

equilibrium iteration loop, the finite element equations, which provide a correction for a,

simplify to
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with a � a + ûa, where the right arrow notation represents the assignment of a value to the

variable a (Rojiani 1996: p65).  In Equations 3.1 and 3.5, the so-called initial stress matrix

K� , which is usually included for an updated reference configuration formulation (Stolle and

Schad 1992), is not introduced, as it was found to have littl e influence on the final results for

the class of problems addressed in this thesis.  The book-keeping indices denoting the time

step have been left out of the above equations to simpli fy the notation.  A derivation of the

implicit creep algorithm and an expansion of its terms are provided in Appendices A and C.

As the equili brium equation is applied to the membrane, ûa does not contain the out-

of-plane component of the incremental displacement ûw.  To find ûw, the continuity

equation (Equation 2.2) is multiplied by the trace of the virtual strain tensor /(û0), which is

consistent with the virtual displacements, and is then integrated over the film’s domain

Equation 3.6 has the advantage that it preserves the units of work done, as the change in the

virtual volumetric work done can be expressed as /(ûWv) = tr(/û0)·ûp and ûp = .·tr(û0),

where ûp is the change in pressure and tr(û0) Ú 0 as . Ú �, for an incompressible material.

Equation 3.6 can be simpli fied by observing that /û0xx = /û0yy = 0, since both ûu and ûv are

specified by ûa, which is known:
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The above equation can be expressed in the usual finite element notation, with the use of Bzz,

which contains the components of the B matrix that are used to calculate û0zz

in which ûw is the nodal values for ûw and (û0xx + û0yy) can be calculated for each

integration volume after a or ûa is determined from the equili brium considerations.

For each time-step, the changes in the dof vectors are calculated repeatedly, until the

convergence criteria satisfies a given tolerance (toler), as follows:

where ||·|| implies the Euclidean norm of the vector in question.

3.5 The Radial Return Algorithm

After solving for the displacement increments the local stresses and strains are

updated using a radial return algorithm similar to that presented in Borja and Lee (1990) and

Stolle et al. (1997).  In the radial return algorithm, the stress invariants p and q, which

correspond to the pressure and the effective stress, respectively, are first updated and then

used to scale the stress tensor 1 and to update the effective creep strain .  Since the creep0
c
q
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s 

q
qe

s e
(3.13)

response of the constitutive equation (Equation 2.8) does not depend on the pressure, p and

q may be updated in an uncoupled manner.

Updated values of q may be expressed as

with q0 as the initial value for q, qe as the elastic prediction for q in the absence of creep, G

as the shear modulus, J2

�

 as the second invariant of the strain deviator, and û0q and û0q
c as

the increments in the effective strain for the total and creep responses, respectively.  The

equations for the invariants are provided in Appendix A.  A closed-form solution for û0q
c can

be found, as shown in Appendix D, by integrating the creep response over the time step ût,

with the assumption that the stress is constant over the time step, yielding

where n is the constitutive parameter that determines the strain-hardening nature of the

material.  If Equations 3.10 and 3.11 are combined, then the following equation results

An iterative Newton-Raphson scheme is adopted to solve for q, as presented in Appendix E.

Once q is determined, the deviatoric stress tensor s may be updated using the

following scaling:
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p 
 	(sxx � syy) (3.14)

1 
 	pI � s (3.15)

û0
c
q 


qe 	 q

3G
(3.16)

with se being the deviatoric stress tensor for the elastic stress that corresponds to the

invariants pe and qe, where pe is the elastic prediction for p in the absence of creep.

To obtain the complete stress tensor, the value for p must also be calculated.  For the

membrane formulation 1zz = szz � p = 0 and tr(s) = 0; therefore, a simple relation exists for

determining p for any stress state; i.e.,

The updated stress is obtained by using Equation 3.13, along with Equation 3.14 to

calculate

where I is defined (see Appendix A) so that p is added only to the normal stresses.

Finally, the change in the effective creep strain may be found by rearranging Equation

3.10 as follows:

With the increment of effective creep strain determined, the total effective creep strain can

be updated as follows: .0
c
q � 0

c
q � û0

c
q

3.6 Solve for the Nodal Temperatures

The finite element equations for temperature are found by multiplying Equation 2.3

by a virtual temperature /T and integrating over the volume of the film.  After application
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HT � CT
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 F (3.17)
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T !C N T dA (3.19)
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 P
A

N T
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T
.



Tk � 1 	 T k

ût
(3.21)

of the divergence theorem, introducing the 2D discretization for temperature, and the zero

flux boundary conditions, the following is obtained:

with

where T is the temperature dof vector,  is its time derivative, A is the area of the film, NTT
.

is a matrix such that T = NTT, BT is a matrix such that /T = BTT, h is the film’s thickness and

the other terms are defined as in Section 2.4.  The finite element matrices for the temperature

analysis are expanded in Appendix A.

To calculate the transient temperature field a finite difference approximation for the

time derivative is introduced as follows:

where the subscripts k and k+1 refer to the current time and the next time step, respectively.

A fully implicit algorithm is obtained if the above divided difference is assumed to represent

the rate of change at the end of the current time step.  If Equation 3.21 is substituted into
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H �
C
ût

ûT k 
 F k 	 HT k (3.22)

Equation 3.17, at the end of the current time step, then, after some manipulations, the

following is obtained:

where Tk+1 = Tk + ûTk.  Equation 3.22 is linear; therefore, unlike the displacement dofs, ûTk

can be solved directly without any need for iteration.

3.7 Update Mesh, Update Temperatures, Output Results and Renumber the Mesh

Once the nonlinear solution has converged and the temperature changes have been

determined, the time, the mesh, the temperature as well as other variables are updated.  The

mesh is not updated during the solution step to improve the stabilit y of the algorithm by

working from a previously converged solution for all of the intermediate calculations.  After

the update, the results for the displacement field, geometry, stresses, strains, total creep strain

and temperatures are output to files.  Following this, the mesh is checked to see if elements

that are on the roll can be removed and reinserted back inside the die.  Elements are removed

from the roll after a column of elements spans the chill roll ’s width because these elements

no longer contribute to the solution in the air-gap, which is the region of interest.  They are

removed by shifting the node numbers and element numbers ahead by one; this effectively

deletes the information in the last elements.  To add new elements inside the die, the first

column of nodes and elements are redefined to take on the new element properties.
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3.8 Average Strain Film Elements

To construct the finite element stiffness matrices an average strain approach is

employed, as presented by Stolle (1992) and Stolle et al. (2000).  The average strain

approach, which is an alternative to Gauss quadrature, has the advantage of defining

gradients for a region, rather than for a point.  This suits the assumption that the film

properties are averaged through its thickness.  Another advantage for the average strain

approach, which is beneficial for the deforming mesh of a UL formulation, is that the

integrations are exact, even for distorted elements.

The finite element used for film casting, which is shown in Figure 3.4, is a special

case of the three-dimensional brick element.  One element is used across the entire half-

thickness of the film because, although each element has a 3D geometry, only the first four

nodes are necessary to fully describe its shape and behaviour.  This is possible when the x

and y coordinates, and the associated u and v displacements, are assumed not to vary across

the thickness. Furthermore, the z-coordinate, and the associated w displacement, are both

assumed to be zero at the mid-plane of the film.
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Figure 3.4 A typical film element
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Figure 3.5 Plan view of a film element and
its sub-elements

Figure 3.4 shows a local film element (the global element uses the global numbering

for the entire system).  The local element must be divided into four sub-elements to prevent

a singular stiffness matrix (Stolle 1992).  Figure 3.5 shows the plan view of the film element

and the four sub-elements in the x-y plane.
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dxdydz 
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The 3D strain tensor û0d is calculated for the d th sub-element using the following

equation:

where Vd is the sub-element’s volume.  Starting from the above equation, the Bd matrix for

the d th sub-element can be derived, as shown in Appendix F.  The entries from Bd can then

be used to construct the B matrices used to calculate the in-plane incremental displacements

and the Bzz matrices used to calculate the out-of-plane incremental displacements.

As Figure 3.2 shows, the nodes of the film elements that are crossing the die or roll

rarely coincide with the start location of these spatial boundary conditions.  Figure 3.6 shows

this more clearly via an exploded view of some typical elements as they cross the roll for the

1D, 1.5D and 2D cases.  To address the problem of differences between the mesh and the

spatial boundary conditions, two special elements are used: a die element and a roll element.

For an element that is crossing the die or roll , the average shape function gradients are

calculated using a redefined geometry.  For these elements the x-coordinates are redefined

to coincide with the x-coordinate of the die or roll .  In the case of the die element, no further

redefinition of the local coordinates is required, whereas for the roll element the y and z

values must be interpolated to their values where the element crosses onto the roll .  The

redefined nodal locations for the 1D and 1.5D cases are shown in Figure 3.6 as trapezoids

that coincide with the location of the roll .  Figure 3.6 does not show redefined nodes for the
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Figure 3.6 Movement of typical film
elements onto the roll

2D case, because the 2D elements cannot be treated in this simple manner.  As the figure

shows, two out of the three example elements for the 2D case have an odd number of nodes

on the roll .  This makes it impossible for a simple redefinition of the nodes to form a “new”

quadrilateral element in the air-gap.  Therefore, in the case of 2D analyses the die and roll

elements are not employed.  For the 2D case no special measures are taken to correct the

elements at the die or roll .

3.9 Improving the Efficiency of the Algorithm

The UL time-stepping algorithm is computationally expensive due to the large

number of time steps required; therefore, some measures were taken to improve the overall

eff iciency. 
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i) The majority of the program’s execution time is spent in the solver step, so an

eff icient LDLT solver is used, similar to that presented in Bathe (1982).  A conjugate

gradient (CG) solver was also implemented, but it proved to be less eff icient than the

LDLT solver.  Although each solution for ûa is faster with the CG solver, more sub-

iterations are necessary, owing to the approximate nature of each solution.  Another

measure for reducing the time associated with matrix decomposition is to reuse a

previous matrix decomposition for subsequent calculations.  Although the stiffness

matrix changes from the first to the second sub-iterations (from Equation 3.1 to

Equation 3.5), after the second pass the stiffness matrix no longer changes, so the

same decomposition can be reused until the dof vector converges.

ii ) Another approach to speed up the solver step is to solve for fewer degrees of

freedom.  Besides using an appropriately numbered and divided mesh, the degrees

of freedom can be reduced by not solving for nodes inside the die, which as Figure

3.2 shows, represents a large number of nodes.  The solution for these nodes is

known a priori so there is no need to include them in the calculations.  A

straightforward method for eliminating these nodes from the calculations is to shift

the constrained displacements inside the die, as shown in Table 3.1, from udie to zero.

As the solver ignores the fixed dofs, the die dofs no longer need to be included in the

calculations.  To ensure that the proper gradients are calculated, the roll constraints

must also be shifted, from uroll to uroll - udie.  The x-direction nodal displacements are
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shifted forward by udie before updating the mesh and writing the displacements to the

output file.

iii) To reduce the number of degrees of freedom further, the middle of the width of a 2D

film may sometimes be treated as a 1.5D problem.  That is, a band of nodes, starting

at the line of symmetry and forming a column parallel to the y-axis, are constrained

to share one value for each of u and w.  Besides reducing the total number of dofs,

this 1.5D constraint also reduces the error that can accumulate in the mesh after many

time steps.  The source of this accumulated error is the boundary condition at the roll.

If the situation occurs where a node at the line of symmetry is in the air-gap, while

the node above it has moved a small distance onto the roll, then a small error exists,

which may be exaggerated significantly over subsequent time steps.

iv) A final step to improving the speed of the program is the addition of another

constraint to Table 3.1.  If a node is in the air-gap and it is on the leading edge of the

film, then it is constrained to have a value that gradually increases from udie to uroll as

it moves from the die to the roll.  This constraint is only active at the beginning of a

simulation, when the mesh has not yet reached the chill roll.  It is intended to reduce

the number of time steps necessary for the film to reach the roll.  Moreover, by

gradually increasing the velocity of the leading edge, the film naturally acquires some

of the characteristics of its eventual solution.
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3.10 The Computer Implementation of the Algorithm

The numerical algorithm described in this chapter was programmed using Borland

Delphi, which is a version of the Pascal language that incorporates object-oriented features

and rapid application development using visual components.  The program was written to

accomplish the following tasks: generate the initial meshes and input files, implement the

time-stepping algorithm and generate the output files.  Post-processing was done using

Matlab to view the time histories and Quattro-Pro and Tecplot to visualize the data at

different instants in time.  The majority of the simulations for this thesis were run on a

Pentium II computer with 128 MBytes of RAM.

The time required to complete the simulations varied depending on two factors: the

assumed dimensionality of the problem and the draw ratio.  In general, when the problem is

assumed 1D, the simulations take less time than for a 1.5D or 2D simulation, because the 1D

problem does not require additional elements in the transverse direction.  The draw ratio is

an important factor in the overall simulation time because, as presented in future chapters,

when all other parameters are held constant the higher the draw ratio the longer the duration

of the transient behaviour.  For a 1D problem at a low draw ratio, the simulation time is

approximately one hour.  At higher draw ratios the simulations may take eight hours or more.

In the case of 1.5D and 2D simulations, the processing time can range from a few days to

over a week for 2D problems operating at high draw ratios.
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Chapter 4 Comparison of UL and E Constitutive Equations

Information on the material properties of many polymers can be found in the

chemical engineering literature, however these properties do not map directly onto the UL

constitutive equation presented in Chapter 2.  For the cases of a viscous fluid and a linear

viscoelastic fluid, it is possible to mathematically relate the common E equations to the

proposed UL equations.  In the case of nonlinear viscoelasticity however, the mapping

between the constitutive equations in the E and UL frameworks is unclear.  As a consequence

of this, caution must be employed when comparing the results of this study to observations

in the film casting literature when nonlinear constitutive equations are involved.

Section 4.1 relates the UL constitutive parameters to the power-law fluid often used

in the polymer processing literature.  Section 4.2 presents the Maxwell element and how it

is typically generalized in the UL and E frameworks.  In the case of a linear Maxwell

element, the parameters of the UL and E versions can be related, as shown in Section 4.3.

The simple mapping however does not apply for the nonlinear constitutive equations, as

demonstrated in Section 4.4, where the nonlinear responses are compared for the case of a

constant rate of uniaxial extension.  Throughout this chapter the index notation is used to

represent vectors and tensors and the Einstein summation convention is assumed to apply.

This notation differs from that in the other chapters, where bold face symbols and tensors
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2ij 
 2K �II
� �

1
Dij , �II 
 2Dij Dij (4.1)

m 

1
�

(4.2)

written as column vectors are employed.  The change in notation is made to simplify the

presentation and to highlight the fact that the discussion in this chapter is more general, in

that it refers to stress and strain measures for any problem, not just the film casting problem.

4.1 Power-Law Viscous Fluids

In the E framework most often used in fluid mechanics, the power-law constitutive

equation can be written as

where 2ij is termed the extra-stress tensor, Dij is the rate of deformation tensor, K and � are

constants, and  is proportional to the second invariant of the rate of deformation tensor.�II

Appendix H shows how Equation 4.1 can be related to the UL constitutive equation

presented in Section 2.5 by taking the following into account:

i) the extra-stress tensor has the same definition as the deviatoric stress tensor (2ij = sij);

ii) for viscous materials (low relaxation times) the elastic strain rate is small, so that �0ij

is approximately equal to ;�0
c
ij

iii) for small displacement gradient components,  is approximately equal to Dij�0ij
(Malvern 1969: p162); and,

 
iv) the material is assumed to have no strain-hardening (n = 1.0).

The UL constitutive parameters in terms of the power-law parameters are as follows:

and
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A special case of the power-law fluid is the Newtonian fluid, which is obtained when

� = 1.  In this case Equations 4.2 and 4.3 simplify to m = 1 and A = 1/(3K).  To further

highlight the Newtonian fluid, two symbols are introduced: �s and �c, which are termed the

shear and creep viscosities, respectively.  These viscosities are related to K and A, and to

each other via

4.2 UL and E Generalizations of a Maxwell Element

A linear Maxwell element consists of a spring and dashpot in series, as shown in

Figure 4.1.  The corresponding constitutive equation for the Maxwell element is (Joseph

1990: p2)

where 1 is the force in the element, which is the same force in the spring and in the dashpot,

and  is the sum of the rate of straining in the spring and dashpot ( ).�� �� 
 �� s
� �� d
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Figure 4.1 A Maxwell element

Both the UL and E forms of the Maxwell fluid are based on generalizations of the

linear Maxwell element shown above.  The generalizations have to address two points: i)

how to extend the one-dimensional element to multiple dimensions; and, ii) how to

accommodate large deformations.  Table 4.1 shows how these points are typically addressed

in each framework.

Table 4.1 UL and E Generalizations of the 1D Maxwell Element

Framework New 1 New Large Deformations��

UL sij follow the materialû0ij

ût
��0ij

E sij Dij convected derivative for the stress

As Table 4.1 shows, both the UL and E frameworks generalize the force as a

deviatoric stress tensor.  The constitutive response is written in terms of the deviatoric stress

because the material is assumed to be incompressible.  Large deformations in the UL

approach are accommodated by following the material.  The E formulation, on the other
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hand, does not directly follow the material; it focuses attention on a point in space.

Therefore, the E formulation employs convected derivatives for the rate of change of stress.

Convected derivatives are derived so that the constitutive equation is objective; that is, a

stress rate is chosen that is frame-indifferent (Malvern 1969: p402).  Convected derivatives

account for the mass movement of the material, its rotation, and in some cases its

deformation.  An in-depth discussion of the convected derivatives can be found in Oldroyd

(1950), Lodge (1974) and Bird (1987).  A unique definition for convected derivatives does

not exist, although one popular form is the upper convected derivative, which is presented

in Section 4.4.

From the above discussion it appears that the UL formulation provides a more direct

analog of the original Maxwell element.  The E formulation is more complicated, and has

two inconsistencies that are worth noting: the rate of strain tensor is not equivalent to the rate

of deformation tensor, except in the case of small displacement gradients (Malvern 1969:

p162), and, although the convected derivative for stress and the rate of deformation tensor

are both objective, there is an inconsistency in that they may not always be chosen so as to

be conjugate to one another in the energy sense.  Given the differences between the UL and

E formulations of the Maxwell element, it seems unlikely that the formulations describe the

same constitutive response, except possibly in the linear case, which is discussed in the next

section.
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Figure 4.2 Uniaxial
extension

4.3 The Linear Maxwell Fluid

In this section the discussion is limited to small displacements (say less than 5%), so

that the nonlinearities associated with convected derivatives need not be considered and a

linear constitutive equations can be assumed.  In the chemical engineering literature a linear

small strain Maxwell fluid is often written as (Joseph 1990: p6)

As Appendix H shows, the UL constitutive equation may be written in an equivalent form,

by using assumptions i),  iii) and iv) from Section 4.1, and by setting m = n = 1

Appendix H also shows several equivalent definitions for the relaxation time

4.4 UL and Nonlinear E Constitutive Response for a Constant Rate of Extension

In the previous section small strains were assumed,

but in this section larger strains are allowed; therefore, the

constitutive response becomes nonlinear.  To simplify the

comparison of the constitutive response in the E and UL

formulations, this section focuses on the case of a constant

rate of uniaxial extension, for which the equations are 1D and rotation is not a factor.  Figure

4.2 shows the boundary conditions for the uniaxial extension problem.  The initial length of



Chapter 4 Comparison of Constitutive Equations 55

0 
 ln(
L
L0

) 
 �0t , j L 
 L0e
�� t

(4.9)

�u 

dL
dt


 �0L0e
�� t

(4.10)

�1xx 
 E(�0 	
1xx

2�c
) (4.11)

1xx 
 2�c(1 	 e
� t

�

) (4.12)

��2ij � 2ij 
 2�sDij (4.13)

the specimen is L0.  For a constant rate of natural strain ( ) the natural strain (0) can be�0

determined by integration, and the length (L) as a function of time can be determined as

follows:

Equation 4.9 can be used to determine the variation of the velocity at the free end ( )�u

required to keep the extension rate constant

In the UL framework the constitutive equation (Equation 4.7) for a constant uniaxial

extension simplifies to

This linear differential equation can be solved using the initial condition 1xx = 0 to yield

As mentioned previously, a popular nonlinear version of the Maxwell fluid in an E

formulation is the upper convected Maxwell (UCM) fluid, which can be written as

with the upper convected derivative defined as
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where Lij is the velocity gradient tensor and D/Dt is the material derivative.  In the case of

a constant rate of uniaxial extension, the stress in a UCM fluid as a function of the natural

strain rate  is found in Appendix I to be�0

4.4.1 A Comparison of the UL and UCM Solutions

To see how the two solutions compare the same problem was solved in both

frameworks for strain rates of 0.2, 1.0 and 2.5 s-1.  The material properties for the UL and

UCM constitutive equations are shown in the UCM and UL columns of Table 4.2.

Table 4.2 Comparison Between the UL and E Constitutive Parameters

Material Parameter UCM UL Best Fit UL

� 0.255 s 0.255 s 0.02066 s

�s 1000 Pa#s 1000 Pa#s -

A - 1/(3�s) = 3.333 × 10-4 0.003227

m - 1 0.6659

n - 1 0.8608
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�  = 2.5 s-1.

�  = 0.2 s-1.

�  = 1.0 s-1.

Figure 4.3 Stress versus natural strain for a constant rate of uniaxial extension with
the UL (�) and the UCM (� ) versions of Maxwell ’s equation

Figure 4.3 shows that the UL and UCM solutions are considerably different, most notably

at higher strains and for the higher strain rate.

To further highlight the differences in the constitutive response between the UL and

UCM versions of the Maxwell equation, the UL equation was fit to the UCM results using

a Hooke and Jeeves algorithm, which is explained in Appendix J.  Figure 4.4 shows that the

agreement has been much improved.  To accomplish this improvement however the material

properties for the UL version had to be greatly modified, as shown in Table 4.2.  The

relaxation time has been reduced, the linear viscosity has been replaced with extensional

thickening and the material has become strain-hardening.  It is worth noting that the best fit

parameters are not unique, since other combinations of the parameters will also significantly

reduce the differences between the UL and UCM solutions.
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�  = 0.2 s-1.

�  = 1.0 s-1.

�  = 2.5 s-1.

Figure 4.4 Stress versus natural strain for a constant uniaxial extension with the UL
(�) parameters fit to the UCM (� ) equation

Although the fit has been greatly improved for the uniaxial extension, such good

agreement does not necessarily exist for other loading configurations when using the

optimum parameters.  For instance, if the UCM and best fit UL parameters are used to

predict the stresses for an equibiaxial extension, different results are obtained, as shown in

Figure 4.5.  The equation for stress versus strain for the UCM fluid under equibiaxial

extension is derived in Appendix I.  This simple example demonstrates the fact that model

calibration using one material test does not guarantee good agreement for other loading

cases.



Chapter 4 Comparison of Constitutive Equations 59

1xx 
 2�c
�0 
 3�s

�0 (4.16)

�  = 0.2 s-1.

�  = 1.0 s-1.

�  = 2.5 s-1.

Figure 4.5 Stress versus natural strain for a constant biaxial extension using the UL
(�) parameters fit to the uniaxial UCM (� ) equation

4.4.2 A Comparison of The Special Cases: The Viscous and Elastic Responses

To better highlight the differences between the UL and E versions of the Maxwell

equation, the behaviour corresponding to the viscous and elastic limits of the viscoelastic

equations presented in Section 4.4 are considered.  The viscous solution is found by taking

the limits of Equations 4.12 and 4.15 as G approaches infinity so that the relaxation time

approaches zero.  The stress in the x-direction is found to be identical for both formulations,

with
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To find the elastic solution, the limits of Equations 4.12 and 4.15 are taken as �s approaches

infinity so that � approaches infinity.  In this case the stresses for the two cases are different.

For the UL framework

where 0 is the natural strain.  The elastic limit for Equation 4.15 requires the application of

L’Hospital’s rule to the fractions at the beginning of each term to yield the nonlinear equation

This observation suggests that the nonlinearity of the elastic response of the UCM fluid can

account for the increasing difference between the two formulations with increasing strain

rate, as ill ustrated in Figure 4.3.  Since the UL formulation is linear in the elastic response,

a nonlinear creep response is required to take into account the nonlinear behaviour of the

UCM formulation, as shown by the fitted parameters in Table 4.2.

Although the viscous response is the same in the two frameworks, the elastic

response is different.  Specifically, the strain measure used is different between the two

formulations.  The 1D elastic response discussed above generalizes to approximate the

following in the UL framework:

In Equation 4.19, the strain measure is the natural strain , which corresponds to integrating0
e
ij

the rate of deformation tensor over time while holding the material constant.  It is worth

emphasizing that it is the material particle that is held constant, not the location in space.  As
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1ij 
 	p/ij � G(Bij 	 /ij) (4.20)

pointed out by Malvern (1969: p151) the integration of the natural strain increments has no

physical meaning unless the material particle is being followed.  Malvern also observes that

although the natural strain increments are tensors, the integral of the natural strains while

holding the material particle constant is not a tensor.

For the E framework the multi-dimensional elastic response for a UCM fluid with an

infinite relaxation time is given by

where Bij is the Finger, or left Cauchy Green, deformation tensor.  This equation is derived

in Appendix K.

From the above discussion it is clear that the UL and UCM equations are not

equivalent.  Moreover, it is apparent that the definition of the relaxation time in the UL

formulation is different than that in the nonlinear E approach.  Therefore, the viscoelastic

simulations presented in the next chapters cannot be directly related to the cast film literature.

Although the UL constitutive behaviour assumed in this thesis differs from the usual

behaviour assumed using an E approach, this does not in itself indicate a shortcoming of the

current approach.  In fact, the UL framework has an intuitive appeal because constitutive

laws are generally interpreted using a material point perspective, even for Eulerian equations.

Therefore, one cannot clearly state that the E interpretation is more correct than the UL, and

vice-versa.
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Chapter 5 One-Dimensional Film Casting

In 1D film casting simulations the complications of neck-in and edge-bead are not

included, which simplifies the numerical algorithm and reduces the number of degrees of

freedom required.  Furthermore, the problems inherent with spatial boundary conditions and

a material mesh are mitigated by the ability to redefine the element coordinates to coincide

with the die and roll locations, as discussed in Section 3.8.  Consideration of the 1D problem

is not only motivated by the simplifications and improvements to the algorithm, the 1D

problem has several other advantages, which include the following: i) the 1D assumption is

a good approximation of many film lines, where the die width is much greater than the air-

gap length; ii) the 1D simulations provide a simpler framework for examining the influence

of the constitutive and thermal responses; and iii) the 1D problem can be solved in closed-

form for some simple fluids, thus it provides a means to validate the numerical algorithm.

The main division of this chapter is between the stable and unstable simulations,

which are discussed in Sections 5.1 and 5.2, respectively.  In both sections the simulation

results are first validated against the available closed-form solutions.  Following this,

parametric studies are performed to investigate the influence of the constitutive parameters

(m, n, �) and nonisothermal conditions.  Smith and Stolle (2000b) presents material similar
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to that in this chapter, but with a constitutive equation that allows for some compressibility

in the elastic strains.

5.1 Stable Simulations

The simulation results presented in this section correspond to stable simulations; that

is, the simulations were carried out until all of the transient behaviour damped out.  Details

on the transient behaviour and determination of stable versus unstable conditions are the

subject of Section 5.2.

Section 5.1.1 validates the 1D algorithm for the film casting of a power-law fluid.

Sections 5.1.2, 5.1.3 and 5.1.4 consist of parametric studies to look at the influence of strain-

hardening, the relaxation time and nonisothermal conditions, respectively.

5.1.1 Comparison to the Closed-Form Solutions for Steady-State Film Casting

To validate the 1D algorithm, the numerical solution was compared to the closed-

form solution, which is derived in Appendix G, for a power-law fluid.  The simulation

parameters are provided in Table 5.1, where nel stands for the total number of elements,

which includes those inside the die and on the chill roll.
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Table 5.1 Film Casting Parameters for the 1D Simulations

Geometry Boundary
Conditions

Material Parameters Numerical
Parameters

L = 0.1 m m/s m = 1.0 nel = 200�udie 
 0.01

hdie = 0.001 m n = 1.0 ût = 10-3 s�uroll 
 �udie Dr

Dr = 10 � = 0.002 s toler = 10-2

�s = 2000 Pa#s

A = 1/(3�s) = 1.6667×10-4 (Pa#s)-1

E = 1/(�A) = 3.0×106 Pa

Figure 5.1 shows the numerical solutions for the dimensionless thickness and velocity

distributions in the air gap for a viscous fluid (m = 1), an extensional thickening fluid (m =

0.75) and an extensional thinning fluid (m = 1.25).  The solutions for velocity, thickness and

stress agree very well with the closed-form solutions, which are not shown on the figure

because they are essentially coincident with the plotted curves.  A convenient measure of

error, which encapsulates the error in all of these variables, is the relative error in the rate of

energy dissipation , which is defined as�W c

where the subscript i refers to the values for the ith integration volume and ninteg is the total

number of integration volumes for the film.  In the case of 1D and 1.5D film casting, the

calculation of  uses the die and roll elements discussed in Section 3.8.  For the�W c

simulations where m is varied, the relative errors are 4.7 %, 0.56 % and 0.52 % for m = 0.75,
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Figure 5.1 Dimensionless thickness and velocity distributions in the air-gap with m =
1.25 (��� ), 1.0 (à) and 0.75 (---)

1.0 and 1.25, respectively.  The error can be decreased further by increasing the number of

elements in the air-gap.  This topic is discussed in detail in Section 8.2.

5.1.2 Influence of Strain-Hardening on Stable Film Casting

The influence of the m parameter of Equation 2.8 was presented in the previous

section.  This section considers the influence of the strain-hardening parameter n.  To

observe the influence of n, simulations were conducted using the simulation parameters of

Table 5.1, with altered values of m and n.  Figure 5.2 show the simulation results for velocity

and thickness in the air-gap.  Strain-hardening is seen to increase the thickness gradient at

the die, which seems reasonable as the material will become more difficult to deform as it
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x/L

Figure 5.2 Dimensionless thickness and velocity distributions in the air-gap with m =
1.0, n = 0.5 (��� ); m = 0.75, n = 0.5 (- - -) and m = 1.0, n = 1.0 (à)

moves downstream and accumulates creep strain.  The thickness gradient at the die is even

further increased for a strain-hardening fluid with extensional thickening (m = 0.75).  Again

this behaviour is to be expected, given that extensional thickening is seen to follow the same

trend, even in the absence of strain hardening (Figure 5.1).

5.1.3 Influence of the Relaxation Time on Stable Film Casting

To investigate the influence of the relaxation time, the simulation parameters of Table

5.1 were used again, but in this case the relaxation time was varied from 0.002 s to 0.5 s.

Figure 5.3 shows how this change influences the velocity and thickness profiles.  An increase

in the relaxation time causes the thickness profile to approach a straight line, and the velocity
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Figure 5.3 Dimensionless thickness and velocity distributions in the air-gap with � =
0.5 s (��� ), and � = 0.002 s (à)

profile to change accordingly, to ensure that the continuity requirement is satisfied.  This

behaviour is qualitatively different from that observed in some published studies of film

casting, where the velocity is seen to approach a linear profile (Alaie and Papanastasiou

1991).  However, as explained in Chapter 4, the meaning of the relaxation time for the

constitutive equation used in this thesis does not have the same meaning as that generally

adopted in the film casting literature.

5.1.4 Influence of Nonisothermal Conditions on Stable Film Casting

The previous simulations were for isothermal film casting.  To investigate the

influence of heat transfer, on an approximately viscous fluid, the simulation parameters of
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Table 5.1 were used together with the additional parameters provided in Table 5.2, and heat

transfer coefficients . of 0, 20, and 40 W/(m2 K).  The parameters selected for Table 5.2 are

typical parameters for polypropylene (PP).

Table 5.2 Typical Nonisothermal Film Casting Parameters for PP

Boundary Conditions Material Parameters

Tdie = 215 (C ! = 910 kg/m3 (Rauwendall 1986: p218)

Tair = 30 (C k = 0.15 W/(m K) (Rauwendall 1986: p218)

. = 20 W/(m2 K) C = 2100 J/(kg K) (Rauwendall 1986: p218)

Q/R = 5100 K (Tanner 1985: p353)

T0 = 190 (C (Tanner 1985: p353)

 = 1/(3A0) = 3200 Pa#s (Tanner 1985: p353)�
s
0

Figure 5.4 shows how increasing heat transfer coefficients influences the velocity and

thickness profiles.  As the heat transfer coefficient increases, the thickness gradient at the die

also increases.  This behaviour is reasonable if one considers that as the film moves further

downstream its temperature decreases and thus its viscosity increases.  The lower upstream

viscosity, when compared with that downstream, should force the film to deform more near

the die, where there is less resistance to a higher rate of deformation.  The same trends in the

velocity and thickness profiles for viscous fluids with increasing heat transfer are observed

in the E analysis of Smith (1997).
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Figure 5.4 Dimensionless thickness and velocity distributions in the air-gap with . =
0 (à), 10 (- - -) and 20 (��� ) W/(m2 K)

5.2 Instability in 1D Film Casting

In the previous sections, the transient behaviour of the film was not shown.  As

indicated previously, for each of the above simulations, the time-stepping was continued

until the rate of change of all the variables, holding the spatial location constant, was

negligible.  However, for some materials and processing conditions, the spatial rate of change

of the geometry does not approach zero, instead it continues to oscillate; this corresponds to

instability or draw resonance.  This fact places a limit on the parametric study results

previously shown, since for a given draw ratio the film is only stable within a certain range
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of the constitutive parameters.  It is the purpose of this section to identify the stable ranges

and to investigate further the phenomenon of draw resonance in 1D film casting.

Section 5.2.1 presents the approach for identifying instabilit y as a response problem.

This approach is used in Section 5.2.2 to 5.2.4 to examine the influence of the constitutive

parameters (m, n and �) and nonisothermal conditions on the criti cal draw ratio.

5.2.1 Identification of Draw Resonance as a Response Problem

The criti cal draw ratio was identified by monitoring the thickness at the roll over time

for successive integer values of the draw ratio.  Only integer values are considered due to the

uncertainty inherent in this approach.  By definition, an upper bound for stabilit y corresponds

to the situation where large oscill ations in a film’s thickness do not damp out over time.  This

definition of stabilit y does not require a constant thickness history, only one that stays

reasonably bounded.  An alternative approach is to define the processing conditions as stable

if the time rate of change of approaches zero as time progresses.  The advantage of this�W c

definition is that the rate of energy dissipated is a scalar measure that depends on the

changing configuration of the entire body, not just the thickness at the chill roll .

Figure 5.5 shows the thickness at the roll and the  histories, using the simulation�W c

parameters of Table 5.1, but with Dr increased from 10 to 20.  The thickness is normalized

with the thickness expected by the continuity requirement (hroll = hdie/Dr).  An examination

of this figure shows that after an initial increase in thickness the oscill ations decrease.

According to the proposed definition, this implies that the process is stable with Dr = 20.
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Figure 5.5 Normalized thickness at the chill roll and rate of energy dissipation
histories for Dr = 20

It is noteworthy that this plot shows two frequencies.  The higher frequency is likely

associated with the imperfect satisfaction of the boundary conditions over each time step.

Although this higher frequency makes for a noisy plot, it approximates the actual physics of

the process where the boundary conditions likely migrate slightly over time.  This conclusion

is supported by the experimental data for film casting presented in Barq et al. (1990), who

show noise, even for stable operations.
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Figure 5.6 Normalized thickness at the chill roll and rate of energy dissipation
histories for Dr = 21

The time histories corresponding to a draw ratio of 21 are shown in Figure 5.6.

Unlike at Dr = 20, the amplitude of the oscillations in the final thickness and  do not�W c

decrease over time.  Therefore, the film is considered to be unstable for Dr = 21.  This allows

one to conclude that the critical draw ratio lies between 20 and 21, which agrees well with

the theoretical prediction for a viscous fluid of Drcr � 20.2 (Yeow 1974).  
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5.2.2 Influence of m and n on Stability

The approach described in the previous section for an approximately viscous fluid

is repeated here, using different constitutive parameters.  All of the simulations of this

section use the processing conditions and numerical parameters of Table 5.1, but the

constitutive parameters are changed as indicated.

Figure 5.7 shows the dependence of the critical draw ratio on the extensional

thinning/thickening parameter for fluids with and without strain-hardening.  This figure also

plots the closed-form solution for the critical draw ratio of a fluid without strain-hardening,

as derived by Aird and Yeow (1983).  The curve in Figure 5.7 for n = 1.0 agrees very well

with theoretical expectations, although as the extensional thickening nature increases (m <

1.0), Figure 5.7 underpredicts the theoretically determined critical draw ratio.  This is most

likely a consequence of the numerical algorithm, which does not perform as well at the

higher draw ratios required for these cases, because the downstream elements are

considerably elongated.  To partially compensate for the effect of the elongation of the

downstream elements at higher draw ratios, the simulations used to produce the m � 1 points

of Figure 5.7 employed 1600 elements, instead of the usual 200.

When strain-hardening is added, the shape of the curve is similar, but it is shifted to

lower draw ratios.  The mechanism that leads to this decrease in stability is unclear at this

time. 
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Extensional Thinning/Thickening Parameter m

Figure 5.7 Dependence of Drcr on the extensional thinning/thickening
parameter, with and without strain-hardening for the
closed-form (—) and numerical solutions () and *)

5.2.3 Influence of Relaxation Time on Stability

The criti cal draw ratio for higher relaxation times is identified using the procedure

described in Section 5.2.1.  It should be noted that a different time step size than that shown

in Table 5.1 was found to change the criti cal draw ratios for the simulations of this section,
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although the change was small and the qualitative trends were unchanged.  Figure 5.8 plots

the highest stable draw ratio for the different relaxation times.  This figure shows that a

higher relaxation time decreases the stability of the system.  The decrease in Drcr could be

related to the increase in the elastic strain energy, which is available to do work when it is

released.  The trend shown in Figure 5.8 differs from that predicted by linear stability

analysis of viscoelastic fluids, which suggests that increasing relaxation time has a stabilizing

effect (Anturkar and Co 1988; Silagy et al. 1996).  However, as previously mentioned, the

constitutive equation used in this study fundamentally differs from those used in previous

stability studies.
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Figure 5.8 Dependence of the criti cal draw ratio Drcr on the relaxation
time � (s)

5.2.4 Influence of Nonisothermal Conditions on Stability

To investigate the influence on a viscous fluid of increasing heat transfer from the

film’s surface, the parameters of Tables 5.1 and 5.2 were used for a range of draw ratios,

until  instabilit y was observed.  The results of the analysis are summarized in Figure 5.9.  As

the figure shows, increasing heat transfer has a significant benefit for the stabilit y of the film.

The same stabili zing influence is observed in fibre spinning (Shah and Pearson 1972), which
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Figure 5.9 Dependence of the criti cal draw ratio Drcr on the heat
transfer coeff icient .

has essentially the same governing equations as 1D film casting.  An increase in the criti cal

draw ratio with increasing heat transfer from the film’s surface provides an explanation with

regard to why industrial film lines operate at much higher draw ratios than should be possible

according to the isothermal theory.
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Chapter 6 One and a Half Dimensional Simulations

The previous chapter considered film that was either infinite in width or constrained

in the transverse direction.  Although this assumption provides useful information, it is not

realistic because real films tend to neck-in.  This chapter presents what is termed a 1.5D

model, which allows for neck-in, while still maintaining the simplifying assumption of

uniform thickness across the width.  One reason for considering the 1.5D model, besides the

fact that it provides a convenient framework for investigating neck-in, is that a somewhat

modified form of the model is popular in the literature on film casting (see Tables 1.2 and

1.3.)  Furthermore, the 1.5D assumption has the advantage of allowing for die and roll

elements that can be redefined to coincide with the spatial boundaries, as discussed in

Section 3.8.  Although there are advantages to the 1.5D formulation, there are also some

drawbacks, which are also discussed in this chapter.  Given the shortcomings of the 1.5D

assumption, only a limited number of simulation results are presented here.  Those results

that are presented focus on an approximately viscous fluid and the influence of the aspect

ratio Ar, which is defined as the ratio of the air-gap length to the die width; that is, Ar =

L/Wdie.

Section 6.1 considers two sets of steady-state simulations: one that compares the

current work to an available closed-form solution; and the other that investigates the
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influence of the aspect ratio on the film’s steady-state geometry.  The influence of the aspect

ratio is also considered in Section 6.2, but this time with respect to its influence on the

critical draw ratio.  The final section, Section 6.3, discusses the problems and drawbacks

associated with the 1.5D kinematic assumption.

6.1 Steady-State Simulations

The approach for detecting the steady-state conditions is the same as that used for the

1D simulations, except that now the width at the chill roll , as well as the thickness and the

rate of energy dissipation, are monitored until the oscill ations cease.  All of the simulations

in this section were continued until their steady-state was reached.  The transient results are

discussed in Section 6.2.

6.1.1 Comparison with a Closed-Form Solution

Sergent (1977) developed a mathematical solution for the film casting problem using

the same kinematic assumptions as the 1.5D numerical algorithm developed for this study,

although the two approaches are not identical in terms of the boundary conditions.  Whereas

Sergent (1977) sets the die width as a prescribed boundary condition, the current approach

does not prescribe the width.  However, the same objective is accomplished in the numerical

algorithm by setting the transverse velocity at the die to zero.  The solution developed by

Sergent (1977) is summarized in Appendix L.
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Avenas et al. (1986) present the answers for several film casting problems using the

closed-form solution of Sergent (1977).  The description of one of these problems is

summarized in Table 6.1, along with the numerical parameters used to perform the

simulation of this study.  The parameters nelL and nelW stand for the number of divisions

in the finite element mesh in the machine and transverse directions, respectively.

Table 6.1 Film Casting Parameters for Comparison to the Closed-Form Solution

Geometry Boundary
Conditions

Material Parameters Numerical
Parameters

L = Wdie·Ar  m/s m = 1.0 nelL = 150�udie 
 0.01

hdie = 0.00055 m n = 1.0 nelW = 30�uroll 
 �udie Dr

Wdie = 0.1 m Dr = 9 � = 0.002 s ût = 10-3 s

Ar = 4.3 A = 1.1111×10-5 (Pa#s)-1 toler = 10-2

E = 1/(�A) = 4.5×107 Pa

Figure 6.1 compares the film’s free surface for the closed-form versus the numerical

solution, using the simulation parameters of Table 6.1.  Good agreement is shown between

the two solutions, especially considering the scale of the y-axis used in the figure.  However,

there is a significant difference in terms of the behaviour at the die and roll , where the

numerical solution shows curvature, and the closed-form solution maintains a linear trend.

This variation is due to the difference in boundary conditions between the two approaches

and the requirement of zero mass flux across the film’s free surface.  In order for the zero

mass flux condition to hold, the velocity vector at the edge of the film and the free surface
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Figure 6.1 Free surface for the closed-form solution (---) and for the numerical
solution (� )

must be tangent to one another.  At the die and roll = 0; thus, the free surface can only be�v

tangent to the velocity if it li es in the same direction as .  The boundary conditions used by�u

the numerical algorithm are apparently in better agreement with actual film casting process,

as a curved shape is in better qualitative agreement with experimental evidence (d’Halewyu

et al. 1990; Barq et al. 1992.)

The simulated film thickness was also compared to the closed-form solution.  A

maximum relative difference of -5% was found between the closed-form and numerical

solutions.  The relative difference is negative because of the continuity requirement and

because, as Figure 6.1 shows, the numerical solution has a greater width than the closed-form
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F 
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Wroll
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h1xxdy (6.1)

solution. In order to have the same mass flux in both cases, the thickness must decrease to

compensate.

The previous results are for a draw ratio of 9; Avenas et al. (1986) also show results

for different draw ratios.  Figure 6.2 shows how the force F, width and thickness of the

numerical and closed-form solutions vary with the draw ratio.  For the numerical solution,

the force was calculated by numerically integrating the following equation:

where Wroll is the film’s half width at the roll .  Figure 6.2 shows that the two solutions are in

good agreement with respect to their force predictions.  The numerically predicted thickness

and width also follow the same trend as the closed-form solution, with the error decreasing

as the draw ratio increases.  As mentioned previously, the numerically simulated width is

greater than the closed-form solution; therefore, in order to satisfy continuity the simulated

thickness must be less than the closed-form thickness, as demonstrated in Figure 6.2.
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Figure 6.2 Force (�), width (�) and thickness (4) versus draw ratio for the numerical
solutions and the corresponding closed-form solutions (---, —, and ·�·�,
respectively)

6.1.2 Influence of the Aspect Ratio

The parameters provided in Table 6.2 were used to conduct the simulations presented

in this section, but with different values of the aspect ratio Ar = L/Wdie.  An approximately

viscous fluid is used to avoid the complications of extensional thinning/thickening, strain-

hardening or effects of material elasticity.
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Table 6.2 Film Casting Parameters for the 1.5D Simulations

Geometry Boundary
Conditions

Material Parameters Numerical
Parameters

L = Wdie·Ar  m/s m = 1.0 nelL = 150�udie 
 0.01

hdie = 0.001 m n = 1.0 nelW = 30�uroll 
 �udie Dr

Wdie = 0.5 m Dr = 10 � = 0.002 s ût = 10-3 s

Ar = 0.2 A = 1.6667×10-4 (Pa#s)-1 toler = 10-2

E = 1/(�A) = 3.0×106 Pa

Figure 6.3 shows the thickness contours for various values of the aspect ratio Ar, with

Ar = 0.0 corresponding to Wdie Ú � and thus to 1D conditions.  All of the contours are

parallel because the 1.5D assumption does not allow the thickness to vary in the transverse

direction.  This means that each cross-section of the film must be rectangular.  Figure 6.3

shows that as the aspect ratio increases the neck-in also increases.  This result is to be

expected, as a longer air-gap provides a greater opportunity for the film to neck-in.  A

consequence of the increased neck-in is that the thickness of the film at the roll i ncreases as

the aspect ratio increases, owing to continuity.  For the same mass flux to cross onto the roll

with a decreased width, there must be a corresponding increase in the thickness.
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Figure 6.3 Normalized thickness contours (h/hdie) for varying aspect ratios (Ar)

6.2 Influence of the Aspect Ratio on the Critical Draw Ratio

The approach to identifying instability for the 1.5D problems is the same as that used

for the 1D simulations discussed in the previous chapter.  The findings are summarized in

Figure 6.4, which shows how the critical draw ratio varies with the aspect ratio.  One of the

points (Ar = 0.4) in the figure deviates from the trend exhibited by the other points.  The

deviation is likely a consequence of the lack of precision associated with limiting the analysis

to only integer values.  To illustrate this point, the figure includes a dashed line for the trend

that would occur if the critical draw ratio for the point in question were increased by one

integer value.  The first point in Figure 6.4 corresponds to the critical draw ratio for 1D film

casting.  As the aspect ratio increases, a stabilizing influence is observed, although the

benefits seem to level off at Ar �1.0.  A stabilizing influence from an increasing aspect ratio

is also shown in the studies of Silagy et al. (1996a, 1996b) and Chambon et al. (1996).
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Figure 6.4 Critical draw ratio Drcr versus the aspect ratio Ar

6.3 Problems with the 1.5D Kinematic Assumption

As discussed in Section 6.1, the formulation used by Sergent (1977) and others

predicts a linear shape for the free-surface, which is unlike the curved shape observed in

practice.  Although the numerical algorithm used in this thesis does not have this

shortcoming, there is another problem, which both the closed-form and 1.5D numerical

algorithm share.  In the real film casting process, edge beads are observed and edge beads
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cannot be accommodated within the 1.5D assumption.  Not being able to predict edge-bead

may not seem like a major problem, as the edge-bead only represents a small fraction of the

overall  width and it is typically trimmed from the film, however the edge-bead has a strong

influence on the overall film geometry.  The edge-bead provides a restraining influence on

the film, with the result that the middle of the film is essentially in a state of plane strain.

When a state of plane strain is combined with the membrane approximation, the 1D model

discussed in the previous chapter is obtained.  Therefore, the 1D model seems more

consistent with the behaviour across the majority of f ilm’s width, than does the 1.5D model.

The idea that the middle of the film is in a state of plane strain, and that the edge is

in a state of uniaxial extension, was first proposed by Dobroth and Erwin (1986).  This

theory is supported by the results of others, including Smith and Stolle (2000a), where the

restraining influence of the edge-bead is ill ustrated for nonisothermal film casting, film

falli ng under its own weight, and for the case when the edge-bead is partially removed by

employing a nonuniform thickness across the die.  However, the assumption of 1D behaviour

in the middle of the film does not seem to hold for larger aspect ratios.  For instance, the

simulation results of Debbaut et al. (1995) at Ar = 1.0 do not show a zone of 1D behaviour.

Therefore, when higher aspect ratios are used, or when there is interest in the behaviour of

the edge-bead, it is necessary to adopt a fully 2D formulation.  The next chapter presents

steady-state and stabilit y results for a 2D formulation.
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Chapter 7 Two-Dimensional Simulations

Although useful information can be gained from 1D and 1.5D simulations, the film

casting process is more accurately approximated as 2D.  A 2D formulation is necessary to

accommodate the presence and influence of an edge-bead.  Furthermore, experimental

measurements show that velocity in the machine direction ( ) is a function of both in-plane�u

coordinate directions (Chambon et al. 1996).  The necessity of a 2D formulation becomes

more apparent as the aspect ratio increases, because the size of the region of approximately

1D behaviour decreases as the aspect ratio increases.

Unfortunately the more realistic 2D description does not come without a price; the

2D formulation has challenges that are not encountered in either the 1D or 1.5D

formulations.  Two complications for the 2D formulation are: 

i) the elements can now rotate, which can introduce error; and, 

ii) the nodal coordinates cannot be redefined at the roll so as to agree with the spatial
boundary conditions.

A consequence of these complications is that the stiffness matrix may become ill-conditioned

at higher draw ratios because of the mesh distortion through element stretching and rotation.

Another complication for the 2D description is that more elements are required than for the

1D and 1.5D algorithms because the 2D formulation has to accommodate additional

gradients in the transverse direction.  The need for more elements means an increase in the
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computer time required to execute the simulations.  To avoid the impact of mesh distortions

and long simulation times, the simulations of this chapter are conducted at relatively low

draw ratios.  As the instabilit y of the film is apparent at higher draw ratios, the approach used

for the 1D and 1.5D analyses to determine the criti cal draw ratio is not used for the 2D

analyses; that is, instabilit y is not determined by finding the operating conditions that cause

undamped oscill ations in the film geometry and in the rate of energy dissipated.  This does

not mean however that instabilit y cannot be considered for the 2D simulations, since a

comparison of the transient behaviour of different simulations at the same draw ratio provide

insight into how different materials and operating conditions influence stabilit y.  Besides

providing information on stabilit y, the transient response at low draw ratios is also valuable

because it provides a picture of how the film’s width and thickness interact.

Steady-state results are presented in Section 7.1 to ill ustrate the influence of the

constitutive parameters (m, n and �) and nonisothermal conditions on the film’s thickness

and velocity profiles.  Following this, Section 7.2 compares the results for the current

formulation against previously published viscous fluid film casting simulations.  The final

section, Section 7.3, focusses on the time-dependent behaviour of the 2D film.

7.1 Steady-State Parametric Study

All  of the simulations that were conducted for the parametric study were based on the

parameters from Table 7.1, and they were continued until  converged to an approximately�W c

constant steady-state value.  As shown in Table 7.1, an aspect ratio of Ar = L/Wdie = 1.4 was
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chosen.  Although most film li nes operate at lower aspect ratios, this value was chosen for

two reasons.  Firstly, the 2D nature of the film is more apparent at higher aspect ratios and

secondly, the higher aspect ratio simulations ampli fy the influence of changes in the

constitutive parameters or operating conditions, because the larger air-gap allows more time

for an adjustment in the flow characteristics.  The second reason for using a large aspect ratio

is important because, as the simulations of this section show, in many respects the film is

relatively insensitive to changes in the material properties or operating conditions.

Table 7.1 Film Casting Parameters for the 2D Simulations

Geometry Boundary
Conditions

Material Parameters Numerical
Params

hdie = 0.001 m �udie 
 0.01
m/s

m = 1.0 nelL = 200

Wdie = 0.5 m n = 1.0 nelW = 40�uroll 
 �udie Dr

Ar = 1.4 Dr = 10 � = 0.002 s ût = 10-3 s

L=Wdie·Ar =0.7 m �s = 2000 Pa#s toler = 10-2

A = 1/(3�s) = 1.6667×10-4 (Pa#s)-1

E = 1/(�A) = 3.0×106 Pa

All  of the simulations of this section have steady-state finite element meshes similar

to that shown in Figure 7.1, which corresponds to the simulations parameters of Table 7.1.

Although the mesh is a “snap-shot” at one instant of time, the distortion of the elements

provides a clear picture of the deformation history for the material, as one can easily identify

the distortions that develop as the material is stretched through the air-gap.  Figure 7.1
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ill ustrates that the material experiences large accumulated strains.  Along the centre line of

the film the accumulated strain is mostly extensional, whereas nearer the edge, the material

experiences significant shear strain.   The shape of the finite element mesh also highlights

the fact that the elements near the edge have a longer path and residence time within the air-

gap.  An examination of Figure 7.1 reinforces the practise of using low aspect ratios for film

lines because the high aspect ratio allows the undesirable result of the high neck-in shown

in the figure.  Moreover, the pronounced differences between the shapes of the finite

elements at the chill roll suggests that the desired uniformity of the film properties across the

film’s width will not be achieved, because the deformation histories of the different material

particles are so dissimilar.  From a practical point of view, the shape of the mesh and its

elements provides useful information on the behaviour of the film.
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Figure 7.1 Finite element mesh for the film casting of a Newtonian fluid

7.1.1 Influence of Extensional Thinning/Thickening

To investigate the influence of extensional thickening/thinning, the parameters of

Table 7.1 were used, with m values of 1.0 (Newtonian fluid), 0.75 (thickening fluid) and 1.5

(thinning fluid).  Figure 7.2 illustrates how the normalized thickness contours are effected

by the power-law nature of the viscosity.  The extensional thickening fluid shows a higher

thickness gradient at the die, in the machine direction.  This behaviour was also observed for

the 1D simulations presented in Section 5.1.1.  Just as the thickness at the die changes more
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rapidly for the extensional thickening fluid, the free surface necks-in more rapidly for the

extensional thickening fluid.  However, the final width of the film is almost identical for all

three fluids under consideration.  In fact, the differences in geometry between the different

fluids is fairly small .  This finding is in keeping with the results presented by Debbaut et al.

(1995), who show steady-state simulation results for the 2D film casting of an extensional

thinning fluid.  For small degrees of extensional thinning (m = 1.25), Debbaut et al. show

only a small change from the thickness predictions for a Newtonian fluid.  However, for

larger degrees of extensional thinning (m = 2 and m = 3), they show a dramatic change in the

thickness distribution.  These high values of m could not be reproduced with the UL

algorithm because the stiffness matrix became ill -conditioned, li kely because of the increased

physical instabilit y for higher values of m.  As demonstrated in Section 5.2.2 for the 1D

formulation, higher m values lead to a dramatic decrease in the criti cal draw ratio.  The

algorithm presented by Debbaut et al. does not account for instabilit y, so the possibilit y

exists that the high extensional thinning value simulations they present actually represent

“ impossible” results.  The influence of extensional thinning on the stabilit y of 2D film

casting is discussed further in Section 7.3.
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h/hdie = 1.0

0.5

m = 1.0

0.5 0.5

1.0 1.0

m = 0.75 m = 1.5

Figure 7.2 Thickness contours for various values of the extensional
thinning/thickening parameter m

7.1.2 Influence of Strain-hardening

The influence of the n parameter is demonstrated by three simulations, for which the

normalized thickness contours are shown in Figure 7.3, using the parameters of Table 7.1,

with n = 1.0, 0.5 and 0.25.  As for the 1D simulations discussed in Section 5.1.2, strain-

hardening leads to a higher thickness gradient at the die.  In fact, the initial decrease in

thickness is so rapid for n = 0.25 that the h/hdie = 0.9 contour is close enough to the die that

the first two contours in Figure 7.3 are almost coincident.  The jump in thickness reduction

at the die may be partly due to the imprecise satisfaction of the boundary conditions at the

die.  However, the high gradients at the die also point to a potential problem area in the

physical process that an engineer should be aware of.  Strain-hardening also has an influence

on the shape of the free surface.  For every film casting simulation the free surface must be

normal to the die and to the roll to ensure that the free surface is tangent to the velocity
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n = 1.0 n = 0.5 n = 0.25

h/hdie = 1.0

0.5 0.5 0.5

1.0 1.0

n = 1.0 n = 0.5

h/hdie = 1.0

0.5 0.5

1.0 1.0

Figure 7.3 Thickness contours for various values of the strain-hardening parameter n

vector.  At these locations the boundary conditions specify that the only non-zero velocity

component is in the machine direction; however, as the film moves away from the die the

free surface adjusts so that it is no longer perpendicular to the die.  In the case of a strain-

hardening fluid this adjustment in the free surface occurs more rapidly than for a Newtonian

fluid.  Another influence of strain-hardening is a wider final film width.  A likely explanation

for this is the longer particle path along the free surface.  The longer path provides more time

for the creep strain to accumulate and this results in a stiffer material.  The stiffer material

at the edges provides a restraining influence, which leads to a slightly larger final film width.

As a final point, the 0.5 contour for all three materials is in approximately the same location,

so the change in the constitutive behaviour has not had an overly dramatic influence on the

overall film geometry.
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�
 = 0.002 s

�
 = 2 s
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h/hdie = 1.0

0.5 0.5

1.0 1.0

Figure 7.4 Thickness contours for various values of the relaxation time � (s)

7.1.3 Influence of Relaxation Time

Once again using the parameters of Table 7.1, simulations were completed with

relaxation times of 0.002, 2 and 7s.  Figure 7.4 illustrates the influence of the relaxation time

on the normalized thickness contours.  Although the influence is not dramatic, the higher

relaxation times lead to a more sharply defined edge-bead and a larger final film width.  A

similar result is observed by Debbaut et al. (1995) with increasing relaxation time, but

Debbaut et al. show much more significant changes.  Furthermore, Debbaut et al. show a

higher thickness gradient at the die with increasing relaxation time.  The differences between

the current study and Debbaut et al. are not surprising though, given that their Maxwell

equation is not equivalent to the Maxwell equation used by the current formulation, for the

reasons discussed in Chapter 4.



Chapter 7 Two-Dimensional Simulations98

�  = 40�  = 0 �  = 20
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Figure 7.5 Thickness contours for various values of the heat transfer coeff icient .
(W/(m2·K))

7.1.4 Influence of Nonisothermal Conditions

The normalized thickness contours shown in Figure 7.5 were found by using the

parameters of Tables 7.1 and 5.2, with a heat transfer coeff icient . of 0, 20 and 40 W/(m2·K).

For the material properties and processing conditions chosen, the nonisothermal conditions

are seen to increase the thickness gradient at the die, as was also observed for the 1D

simulations in Section 5.1.4 and for the 2D simulations of Smith and Stolle (2000a).

Another observation from Smith and Stolle (2000a) that is reproduced by the simulations

under consideration is a decrease in the neck-in with increasing heat transfer.  Smith and

Stolle suggest that the decrease in neck-in is a consequence of the longer particle path at the

edge of the film, as this leads to increased cooling and a greater restraining influence of the

edge, because of the increase in the temperature-dependent viscosity.  
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7.2 Compar ison to Other Steady-State, Viscous Fluid Studies

Although the viscoelastic constitutive equation for the UL formulation cannot be

compared to viscoelastic film casting E studies, the approximately viscous UL formulation

has a similar constitutive response as that used in the E formulations for the film casting of

a viscous fluid.  In this section, the steady-state simulation results using the current algorithm

are compared to the simulation results for the steady-state viscous film casting studies

presented by d’Halewyu et al. (1990), Sakaki et al. (1996), Smith and Stolle (2000a) and

Debbaut et al. (1995).

7.2.1 Compar ison to d’Halewyu et al. (1990)

To reproduce the simulation presented by d’Halewyu et al. (1990), the parameters of

Table 7.1 were used, but with the aspect ratio modified to Ar = 0.4.  Figure 7.6 shows the

thickness profile at the chill roll as predicted by several authors for this same film casting

problem.  The simulations of Sakaki et al. (1996) and Smith and Stolle (2000a) are seen to

agree quite well , but the results of d’Halewyu et al. (1990) and the current study provide two

different answers.  In the centre of the film, where the film behaviour is essentially 1D, all

of the simulations agree, but nearer the edge the results differ.  With the exception of the

current study, all of the papers cited in Figure 7.6 use an Eulerian algorithm.  Smith and

Stolle (2000a) compare the results of the three Eulerian simulations shown in the figure and

suggest that the results of d’Halewyu et al. differ because of their use of an uncoupled

numerical algorithm.  It appears that the nonlinear nature of the film problem leads to
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Figure 7.6 Thickness profile at the chill roll for d’Halewyu et al. (1990) (�##�),
Sakaki et al. (1996) (à), Smith and Stolle (2000a) (---), and the current
study (—)

numerical solutions that are not necessarily unique.  The UL algorithm is significantly

different from the E approaches and this might explain the observed differences.  This issue

is looked at more closely in the next chapter.

7.2.2 Comparison to Debbaut et al. (1995)

Another 2D study of viscous film casting is presented by Debbaut et al. (1995).  To

simulate the film casting problems discussed by them, the simulation parameters of Table

7.1 were modified to Ar = 1.0 and Dr = 9 or Dr = 20.  The thickness profile at the chill roll

is shown in Figure 7.7, as predicted by Debbaut et al. (1995), the E algorithm of Smith
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Dr = 9

Dr = 20

Figure 7.7 Thickness profile at the chill roll for Debbaut et al. (1995) (���), using
the E algorithm of Smith (1997) (à), and the current study (� )

(1997) and by the current UL formulation.  As in the previous section, the different

algorithms lead to different predictions.  The differences are even more pronounced here,

since these simulation use a higher aspect ratio, Ar = 1.0 versus the previous value Ar = 0.4.

The higher value of Ar allows the flow to readjust so that there is no zone of approximately

1D behaviour at the centre of the film.  The most pronounced difference in Figure 7.7 is for

the UL simulation versus the two E algorithms at a draw ratio of 20.  The differences in this

case may be due to the differences in the numerical algorithms, or possibly the differences

in how the downstream boundary condition is implemented.  These possibilities are

investigated in the next chapter.
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Figure 7.8 Normalized width and thickness histories at the
chill roll for film casting of a Newtonian fluid with
Ar = 0.2 and Dr = 15

7.3 Transient Behaviour in 2D Film Casting

In the 2D simulations, the thickness distribution and the width of the film interact.

This interaction is shown in Figure 7.8, for the width at the chill roll and for the thickness

at the line of symmetry.  The simulation parameters are the same as those in Table 7.1, but

with Ar = 0.2 and Dr = 15.  As this figure shows, the oscillations in the thickness and width

are out of phase with one another.  This is to be expected owing to the continuity

requirement.  When the thickness increases, the width has to decrease to compensate and

vice-versa.  Silagy et al. (1998, 1999) show this same phase difference in their simulation

results for the 2D film casting of a viscous fluid.
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As mentioned in the introduction to this chapter, it is not possible to reliably

investigate instability for the 2D simulations in the same way as was done for the 1D and

1.5D simulations, because of the distortion of the mesh at higher draw ratios.  The approach

for considering instability in 2D is to look at the number of oscillations in the indicator

variables at low draw ratios.  If a change in operating conditions leads to more oscillations,

then this is a likely indication that the change in question has a destabilizing influence.

Using this idea, the following conclusion can be reached from considering the time histories

associated with the simulations of this chapter:

� the trends in instabilit y for the 2D simulations with changing constitutive parameters and

nonisothermal conditions are the same as for the 1D simulations:

• increased extensional thinning has a destabili zing influence

• higher relaxation times have a destabili zing influence

• increased extensional thickening has a stabili zing influence

• increased heat transfer has a stabili zing influence

� higher aspect ratios have a stabili zing effect, li ke that observed for the 1.5D simulations.

All  of the time histories used to make the above conclusions are not reproduced here, but an

example is provided to ill ustrate the approach.  The example time histories, which are shown

in Figure 7.9, are for the three different m value simulations discussed in Section 7.1.1.  The

number of oscill ations in the  history, before steady-state, increases with increasing�W c

values of m, as shown in Figure 7.9.  Furthermore, with Ar = 1.4, m = 1.5 is stable, but for

the 1D simulations, where Ar = 0, m = 1.5 is not stable, as shown in Figure 5.6.  Therefore,

in this case, a higher aspect ratio appears to have a stabili zing influence on the 2D

simulation.  The same approach was followed to examine the stabilit y of the other
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Figure 7.9 Rate of energy dissipation history for the three different m value
simulations discussed in Section 7.1.1

constitutive parameters and for the nonisothermal conditions, in order to make the

conclusions listed above.
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Chapter 8 A Comparison Between the Updated Lagrangian and
Eulerian Algorithms

As mentioned in Chapter 1, the UL approach is rarely, if ever, used for the simulation

of continuous polymer processing operations.  The purpose of this chapter is to determine

if this lack of attention is deserved, or if the UL formulation has potential to compete with

the E approach.  To make this determination, the two formulations are compared for a

specific continuous process, that of isothermal film casting of a viscous fluid.  The UL

algorithm for film casting has been described in the previous chapters and the E algorithm,

which is developed in Smith (1997), is summarized in Section 8.1.  Sections 8.2 and 8.3

compare the E and UL algorithms with respect to their accuracy for the 1D case, and the

simulation results for the 2D case, respectively.  A comparison of the relative complexity and

efficiency of the two algorithms is the subject of Section 8.4.  The section that follows

discusses the advantages of the UL approach over the E approach.  Thereafter,  the discussion

turns to the principal disadvantage of the UL algorithm: the application of spatial boundary

conditions to a material mesh.

8.1 An Overview of the Eulerian Algorithm

An Eulerian algorithm for film casting is developed in Smith (1997), and summarized

in Smith and Stolle (2000a).  In this section a simplified version of the E algorithm is
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presented that is essentially equivalent to the UL algorithm previously presented, for an

approximately viscous fluid under nonisothermal conditions.  Both algorithms employ the

following assumptions: the film can be treated as a 2D membrane; the constitutive equation

is for a linear viscous fluid; and inertia, self-weight, air-drag, surface tension, die-swell and

film sag are ignored.  The only difference between the two formulations, besides the fact that

a different description of motion is being employed, is that the E algorithm is time

independent; it determines the steady-state solution directly and neglects the transient

behaviour.

8.1.1 Governing Equations and Boundary Conditions

For the coordinate system defined in Figure 8.1 the equations for the conservation of

momentum, mass and thermal energy, the constitutive equation and the equation describing

the free-surface are as follows:
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dW
dx

�u 	 �v 
 0 (8.5)

where h is the half thickness of the film, W is the width, �s is the viscosity,  = [  ]T is theu
.

�u �v

velocity vector and 1 and Dv are the tensors for plane stress and the rate of deformation,

respectively.  As for the UL governing equations, the tensors use the column vector notation

of Zienkiewicz (1977) and the vector components are summarized in Appendix A.

Equations 8.1 to 8.4 have analogous equations in the UL formulation, whereas Equation 8.5,

which explicitly determines the free surface, is unique to the E formulation.  In the UL

formulation the free surface is determined as a natural consequence of updating the

geometry.
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Figure 8.1 Coordinate system, dimensions, boundary conditions and mesh for the
Eulerian algorithm

As for the UL formulation, the viscosity is considered to be related to the temperature

via an Arrhenius relation
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1 n 
 t on +t , u 
 u0 on +u ; q n 
 q0 on +q , T 
 T0 on +T (8.7)

in which  and T0 are reference values of viscosity and temperature, Q is the activation�
s
0

energy, and R is the gas constant (8.314 J mol-1 K-1).

In general, the natural and kinematic boundary conditions for a thermomechanical

problem are given by

in which +t , +u, +q, and +T are subsets of the problem boundary where the following may be

specified, depending on conditions: traction t, velocity , thermal flux q0 and temperatureu
.
0

T0.  The subscript n is used to represent the fact that the values are directed outward and

normal to the bounding surface.  Figure 8.1 summarizes the specific boundary conditions for

the film casting problem, where, as for the UL formulation, only half of the film’s width is

required due to symmetry.  The boundary conditions are equivalent to those for the UL

algorithm, except that velocities instead of displacements are considered in the E approach,

and it is necessary to explicitl y prescribe the width at the die.

8.1.2 Numerical Algorithm

Figure 8.2 shows a flowchart of the E algorithm used for solving the governing

equations to predict the width, velocity, thickness and temperature for a given cast film

problem.  Since the equations are nonlinear, it is necessary to gradually increase the draw

ratio in steps of ûDr.  Following the common finite element notation, the finite element
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equivalent of Equations 8.1 to 8.5, along with the appropriate boundary conditions and

temperature dependent viscosity, may be written in compact form as

where �i is the residual load vector, Ki is the stiffness matrix and Fi is the load vector.  Both

Ki and Fi are functions of the degree of freedom vector ai, where the superscript i refers to

the iteration step.  For the formulation summarized here, 3-noded triangular elements are

used, which are arranged as shown in Figure 8.1.  All the elements have degrees of freedom

for the velocities, the thickness, and the temperature, and the elements at the free-edge have

an additional unknown, the width.  As shown in Zienkiewicz (1977: pp452-454), Equation

8.8 can be expressed in terms of a truncated Taylor’s expansion, to provide the following

Newton-Raphson recursion algorithm:

The components of the tangential stiffness matrix KT
i of Equation 8.9 are derived in Smith

(1997).
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Figure 8.2 Flowchart for the Eulerian algorithm

As Figure 8.2 shows, an initial guess is needed to start the algorithm.  For the

simulations conducted here, the initial guess consists of a rectangular domain of dimensions

Wdie by L, in which  = 0, and  and h are determined using the 1D closed-form solutions�v �u
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provided in Appendix G.  For the mesh update step, the y-coordinates for each column of

nodes, as shown in Figure 8.1, must be adjusted to agree with the new predicted width.  Each

node in each column is updated so that its new y value maintains the same ratio to the new

width as it had to the previous width.  To determine convergence the following criterion is

tested:

in which au, ah, aT, and aW are the current solutions for the velocity, thickness, temperature

and width degrees of freedom, û represents the change in these variables and �·� denotes the

Euclidean norm of the vector.  The E simulation results presented in this thesis use the same

value of the tolerance as the UL simulation results: toler = 10-2.

8.2 Comparison of the Accuracy for 1D Film Casting of a Viscous Fluid

This section reproduces the portion of Smith and Stolle (2001) that compares the

accuracy of the UL and E algorithms for the case of 1D film casting.  A comparison of the

accuracy is possible because in the case of 1D film casting of a viscous fluid a theoretical

solution exists.  Appendix G provides the closed-form solution for the rate of energy

dissipation  for 1D film casting of a linear viscous fluid.  This theoretical solution is used�W c

to calculate the relative error in rate of energy dissipation for the E and UL approaches with

varying mesh densities, using the input parameters of Table 5.1.  Figure 8.3 summarizes the

results with a log-log plot of the relative error versus mesh density, where the mesh density
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Figure 8.3 Log-log plot of the relative error in rate of energy dissipation for the E (4)
and UL (/) algorithms

refers to the number of elements in the air-gap.  The distinction that the elements must lie in

the air-gap is made because, in order to simplify the book-keeping, the numerical algorithm

for the UL formulation stores elements inside the die and roll, but these elements do not

contribute to the actual solution.  Moreover, the elements inside the die and on the roll are

not counted for the purposes of comparing the two algorithms because the degrees of

freedom for these elements are not part of the finite element equations, as their motion is

known a priori and thus it is unnecessary to include them in the solution.

As expected for the E algorithm, the error decreased with a doubling of the mesh,

leading to approximately a quartering of the error.  The UL algorithm, on the other hand, did

not perform as well.  For instance, the UL formulation has a greater error than the E
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formulation, and the error does not decrease as rapidly when the number of elements are

increased.  The apparent poorer performance of the UL algorithm relative to the E algorithm

is attributed to: i) there are small oscillations in the solution even after it has reached steady

state; ii) the film casting problem is formulated in terms of spatial boundary conditions,

which the UL scheme can only approximate; and iii) the UL formulation has a viscoelastic

constitutive description, which only approximates a viscous fluid and the closed-form

solution for , presented in Appendix G, is for an Eulerian framework.   The error�W c

associated with the approximation of a viscous fluid by a low relaxation time viscoelastic

fluid was investigated further by decreasing the relaxation time, and looking at the

corresponding decrease in the relative error, as shown in Figure 8.4.  Although the initial

trend with a decreasing relaxation time is a decreasing error, the benefit is seen to level off

below ��10
� 3s.  This levelling off is likely a consequence of the round-off errors associated

with performing calculations with small floating point numbers.  Apparently a practical limit

exists on how well a viscous fluid can be approximated by a viscoelastic fluid with a low

relaxation time.   As an additional point, the small improvement associated with decreasing

the relaxation time below say 0.002 s, is not worth the additional computational effort.

Smaller relaxation times require smaller time steps to capture the material response properly.

For instance, the simulations for Figure 8.4 required a time step of 10 � 6s.  As a consequence

of the small time step, a very large number of time steps, and a correspondingly large

simulation time, was necessary to reach steady-state conditions.
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Figure 8.4 Log-log plot of the relative error in rate of energy dissipation for the UL
algorithm with changing relaxation time � (s)

Although the UL scheme did not perform as well as the E scheme when comparing

numerical solutions to analytical solutions, it is worth noting that with a reasonable number

of elements the UL scheme has acceptable results, with a maximum relative error less than

1%.  One must also recognize that each formulation solves a slightly different problem, with

the real physical process having conditions that likely lie somewhere between the two.
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8.3 Comparison of the Solutions for 2D Film Casting of a Viscous Fluid

Unlike 1D film casting, a closed-form solution is not available for 2D film casting.

For the 2D case, the discussion instead focuses on comparing the simulation results of the

various numerical algorithms.  In Section 7.2 results were presented for the UL and E

algorithms, and for other published studies on 2D film casting of a viscous fluid.  The

comparisons showed disagreement, at times considerable, between the geometry predicted

for the film by the various studies.  All the E approaches solve the same governing equations

and boundary conditions, and the UL approach approximates these same governing equations

and boundary conditions, so the differences in the results must be attributed to differences

in the numerical algorithms.  Table 1.4 summarizes the different numerical algorithms that

have been used for simulating film casting.  In a general sense, the disagreement in the

numerical predictions is a consequence of the highly nonlinear nature of the problem and the

strong coupling between the velocity field and the film geometry.  A more specific

explanation for differences in the simulation results is diff icult to determine because the

information available from other studies is limited to that provided in the published papers.

However, some insight into the differences between E and UL formulations can be gained

by comparing the E algorithm summarized in this chapter to the UL algorithm introduced in

this thesis.

In this section, four potential explanations for differences in predictions, associated

with different algorithms, are explored: 

• the element shapes for the two algorithms are different;
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• the UL algorithm only approximates the E boundary conditions;

• the solution of the UL algorithm may depend on the initial guess; and,

• although the E and UL solutions for velocity and geometry are dissimilar, the two
solutions are diff icult for a finite element algorithm to distinguish between because
they are relatively close in an energy sense.

Before discussing the potential explanations for the differences in behaviour, the 2D UL

simulation results are compared to the 2D E results

8.3.1 UL versus E with Triangular Elements

Section 7.2.1 shows the thickness at the chill roll for various studies, using the

simulation parameters from d’Halewyu et al. (1990).  The figure suggests mediocre

agreement between the UL and E formulations.  However, when the numbers are put into

perspective, the agreement is seen to be reasonable.  For instance, the relative change from

the E to the UL formulations for thickness at the line of symmetry and width at the chill roll

are approximately 8 % and 9 %, respectively.  Although this difference may appear

significant, it is of the same order of magnitude as typical measurement errors.  The

similarity of the simulation results between the E and UL formulations are shown more

dramatically by considering how the thickness changes over the entire plane of the film.

Figure 8.5 shows normalized thickness contours, which each represent a 10 % decrease in

thickness for every step downstream, for the UL and Etri algorithms.  The simulation

parameters are the same as those used in Section 7.2.1, except that the number of elements

for the Etri simulation were varied, with 40 � nelL � 52 and 52 � nelW � 81.  The number of
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Figure 8.5 Thickness contours for film casting simulations reproducing d’Halewyu et
al. (1990), with Dr = 10, using the Updated Lagrangian (UL) algorithm
and the Eulerian algorithm with triangular elements (Etri), quadrilateral
elements (Equad) and UL boundary conditions (Ebc)

elements was varied to investigate the possibilit y of a dependency of the solution on the

mesh density, and no mesh dependency was observed.  Figure 8.5 was created using the

simulation results for nelL = 52 and nelW = 81.  A comparison of the first two diagrams in

the figure indicates that the principle difference between the two studies is that Etri has

greater neck-in than the UL algorithm.  The other contour plots provided in Figure 8.5 are

discussed in later sections.

Although an argument can be made that the E and UL results are in reasonable

agreement for the d’Halewyu et al. (1990) simulation, when the Debbaut et al. (1995)
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Figure 8.6 Thickness contours for the film casting simulations reproducing Debbaut
et al. (1995), with Dr = 20, using the Updated Lagrangian (UL) algorithm
and the Eulerian algorithm with triangular elements (Etri), quadrilateral
elements (Equad) and UL boundary conditions (Ebc)

 simulation is reproduced, the results of the E and UL algorithms are very different.Dr 
 20

This is demonstrated in the thickness at the chill roll plot of Section 7.2.2, where the

magnitude of the relative difference in thickness at the line of symmetry and width at the

chill roll, between the E and UL formulations, is approximately 36 % and 51 %, respectively.

The thickness distribution over the plane of the film also varies considerably between the two

approaches, as shown in Figure 8.6.  One possible reason for the difference in the thickness

distributions could be that at the higher draw ratios the film is closer to instability.  Although

the E algorithm discussed here completely ignores instability, the UL solution could be

influenced by phenomena associated with the approaching instability.  Other possible

explanations for the observed differences in the film geometries are discussed in the sections

that follow.
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8.3.2 Use of Quadrilateral Elements for the E Formulation

The UL and E algorithms as originally developed made use of different element

types; therefore, the possibilit y existed that the observed differences could be due to mesh

dependencies.  To investigate this, the E algorithm was reformulated using quadrilateral

elements.  Figures 8.5 and 8.6 show that the thickness contours for the quadrilateral elements

(Equad) are essentially the same as those previously obtained using Etri.  Consequently, the

difference in element shapes does not explain the greater neck-in obtained with the E

algorithm.

8.3.3 Use of UL Boundary Conditions for the E Formulation

One of the principle distinctions between the UL and E algorithms is that the UL

mesh only approximates the spatial boundary conditions of the E algorithm.  To investigate

whether the boundary conditions could account for the observed differences, the E algorithm

was implemented using the UL boundary conditions.  The simulation results are shown as

Ebc in Figures 8.5 and 8.6.  For the simulations that reproduce the film problems discussed

by d’Halewyu et al. (1990) and Debbaut et al. (1995), the thickness contours are essentially

identical to those previously obtained using the E formulation; therefore, for the problem

analysed the change in boundary conditions does not account for the larger neck-in of the E

simulations. 
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8.3.4 Influence of the Initial Guess on the UL Formulation

Most of the UL simulations conducted for this thesis began with all the elements

inside the die and with the initial stresses and the accumulated creep strain set to zero.  One

may ask whether this initial guess has some influence on the final solution.  To investigate

this possibilit y, a UL simulation was conducted with an initial guess corresponding to the

final geometry of the Equad simulation shown in Figure 8.5.  Convergence, as demonstrated

by the time histories in Figure 8.7, occurred in 5×104 time steps, and the final solution was

essentially the same as that previously obtained with the UL algorithm.  This result is not

unexpected, given that the initial Equad elements will eventually migrate out of the air-gap and

thus their influence will eventually damp out of the system.  Interestingly, although the

solution starts close to the final solution, it still t akes approximately the same number of time

steps for the transient response to die out as when starting with all elements inside the die.

An important observation shown in Figure 8.7 is that the  history is almost a flat curve.�W c

Although the geometry of the film changes, in an energy sense there is littl e to distinguish

the two solutions; i.e., the E solution corresponds to t = 0 and the UL solution corresponds

to t > 0.  The fact that the solutions are so close in an energy sense could explain why

different algorithms find different solutions.  The finite element method optimizes the energy

dissipated, but the optimum is diff icult to determine because adjacent solutions are very close

to optimal.
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Figure 8.7 Histories for the UL algorithm starting from the Equad final solution of
normalized thickness at the line of symmetry, normalized width at the chill
roll and viscous dissipation

8.4 Comparison of the Algorithms

In this section the UL and E algorithms are compared with respect to complexity,

speed, and storage requirements.  The comparison is not quantitative or rigorous; instead, the

idea is to make some qualitative statements about how the algorithms compare in a general

sense.
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8.4.1 Comparison of Complexity

The two algorithms are of roughly equal in terms of their overall complexity.  In this

context the definition of complexity refers to the diff iculty of formulating and understanding

the conceptual details of the algorithms; it does not refer to a formal count of the number of

computer operations.  The judgement that the two algorithms are equal in complexity is

based on the experience of implementing both of the algorithms.  In the process of

implementing the algorithms some general observations with respect to their complexity

were noted, as follows:

• The UL algorithm has the complications of time-stepping and the radial-return

algorithm, whereas the E algorithm has the complications of a fully coupled Newton-

Raphson algorithm and explicitl y solving for the free surface.

• The complexity of the E algorithm would increase if upwinding were introduced;

upwinding is sometimes necessary for the transport equations, either for mass or

thermal energy, in an E framework.  The complication of upwinding is incorporated

in one 2D film casting study (Debbaut et al. 1995) in order to numerically solve the

continuity equation. 

8.4.2 Comparison of Speed

The E algorithm was found to be much faster than the UL algorithm.  For the

simulations discussed in Section 8.2, with Dr = 10, the E algorithm took 4 iterations, whereas

the UL algorithm took 5×104 time steps, with approximately 5 sub-iterations for each step.
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This difference was even more pronounced when Dr was increased to 20; the E algorithm

took 6 iterations and the UL algorithm needed approximately 4.0×106 time steps (see Figure

5.5).  The reason for the dramatic difference between the two algorithms is that the E

algorithm finds the steady state solution directly, while the UL algorithm has to wait for the

transient behaviour to die out and the transient behaviour takes longer to damp out as the

draw ratio increases.

If the E algorithm were changed to incorporate time-stepping, then it would likely be

slower than the UL algorithm because the E algorithm would require as many time steps as

the UL to reach steady-state, but the solution of each step would be more time consuming

because the coupled analysis of the E algorithm has a larger bandwidth stiffness matrix than

the uncoupled UL algorithm.  Also, the stiffness matrix for the E algorithm is unsymmetric,

so that the analysis cannot take advantage, as the UL algorithm can, of the fast solvers that

are available for positive definite symmetric systems of equations.

8.4.3 Comparison of Storage

As to the respective storage requirements of the two algorithms, the UL requires less

memory for the same number of elements, since, as mentioned above, its stiffness matrix is

symmetric, while that for the E algorithm is not.  Of course a significant advantage of the 1D

E algorithm in terms of storage is that it requires fewer elements than the UL algorithm for

similar accuracy, as demonstrated in Section 8.2.   However, for the 2D simulations the E

algorithm also needs a significant number of elements to accommodate the gradients in the



Chapter 8 Comparison of Algorithms 125

transverse direction, especially near the film’s edge.  The UL algorithm does have some

additional storage requirements over the E algorithm, because in the UL algorithm it is

necessary to store the history dependent quantities, such as the stress and the total effective

creep strain.  The additional storage requirements however, are relatively small when

compared to the storage needed for the stiffness matrix.

8.5 Advantages of the UL Algorithm

The principle advantages of the UL algorithm over the E algorithm is that it is a more

intuitive and natural approach.  The approach is intuitive in the sense that the equations and

theories of continuum mechanics are first formulated with reference to the material, and in

the UL approach the focus is on the material.  In the E algorithm it is necessary to introduce

extra mathematics to account for the fact that the mesh is spatially fixed, but the material is

moving.  Another advantage of the UL algorithm is that it does not mix different “ types” of

degrees of freedom in one analysis.  The UL algorithm works in terms of displacements,

whereas the E algorithm includes degrees of freedom for velocities and for the film

geometry.  In the UL approach the geometry is naturally updated as a consequence of

predicting the displacements, but in the E approach the values for the new thickness and

width must be explicitl y solved.  Further advantages of the UL algorithm are discussed in the

sections that follow.  Section 8.5.1 discusses how the UL algorithm determines instabilit y

as a response problem.  Sections 8.5.2 and 8.5.3 highlight the fact that a constitutive response

that depends on the thermomechanical history of the material is more naturally implemented



Chapter 8 Comparison of Algorithms126

in a UL framework.  The final advantage, which is discussed in Section 8.5.4, is the more

robust convergence characteristics of the UL algorithm.

8.5.1 Determination of Instability

The UL algorithm directly accommodates the detection of instabilit y, since film

casting is treated as a response problem.  If draw resonance occurs, then it will be observed

in the simulated solution.  It is because the UL algorithm detects instabilit y as a response

problem that it takes longer to reach steady state for Dr = 20 than for Dr = 10.  The usual

approach used in the polymer processing literature to identify instabilit y is linear perturbation

analysis.  Appendix M summarizes the linear perturbation analysis for 1D film casting of a

viscous fluid.  As this Appendix shows, the process is mathematically complex even for a

simple constitutive equation and a 1D analysis. The analysis becomes considerably more

involved for power-law (Aird and Yeow 1983) and for viscoelastic fluids (Anturkar and Co

1988).  If the analysis is modified for 1.5D simulations other complications are introduced,

as demonstrated by Silagy et al. (1996a, 1996b).  A linear perturbation analysis has

apparently not been published for 2D film casting.  Instead the studies that consider the

stabilit y of 2D films use the approach adopted in this thesis of observing the draw resonance

as a response problem.

The E algorithm in its current form cannot detect draw resonance and will i n fact

predict “ impossible” solutions with draw ratios greater than the criti cal draw ratio of 20.2.

The E algorithm can however be modified to detect instabilit y by adding the transient terms
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to the governing equations (Barq et al. 1990; Barq et al. 1994; Silagy et al. 1998; Silagy et

al. 1999).  However, if this change is made, the E algorithm loses the advantage of speed,

as discussed in Section 8.4.2.  It is worth noting that, unlike the UL algorithm, time-stepping

E algorithms are usually supplied with an artificial perturbation of the solution in order to

demonstrate instabilit y.  In the studies of Barq et al. (1990, 1994) and Silagy et al. (1999) a

perturbation is added to the roll velocity in order to induce oscill ations, which can be

monitored to determine whether the film is stable or not.

8.5.2 Constitutive Description

The response of most polymers is not entirely viscous, and a more realistic

viscoelastic constitutive equation is desirable.  The UL algorithm already incorporates

viscoelasticity, as each element is essentially a Maxwell body.  Although the constitutive

equation for the UL algorithm adopted in this thesis is fairly simple, the changes necessary

for a more complex constitutive equation are straightforward.  Different constitutive

equations can be implemented by changing the state equation that predicts the rate of creep

straining (Equation 2.8).  This may involve tracking different history dependent properties,

but because the property can be “stored” with the element the algorithmic book-keeping

required is straightforward.

The complexity of the E algorithm increases dramatically when viscoelasticity is

introduced, since E algorithms are not naturally set up to track particle paths or to take into

account deformation history.  The extraction of the history of particles requires separate
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explicit  integration along the streamlines (Luo and Mitsoulis 1990) or the use of convected

derivatives (Marchal and Crochet 1987).  Moreover, the E framework can obscure the extent

of past deformations, unless some special measures are taken to capture this information.

The UL approach, on the other hand, quickly summarizes the past deformation history

through the current shape of the finite elements, as demonstrated via Figure 7.1.

8.5.3 Temperature Dependence

The E algorithm summarized in Section 8.2 is for a viscous fluid, for which the

temperature only effects the viscosity.  If a nonisothermal viscoelastic fluid is introduced, the

algorithm is more complicated as it is necessary to accommodate the influence of both the

temperature and the deformation histories.  In an E framework, this is typically done by

shifting the time scale, as shown for 1D film casting in the study of Alaie and Papanastasiou

(1991).  The UL framework avoids the complication of shifting the time scale by explicitly

tracking the material.  The temperature-dependent properties are updated as the mesh

deforms.

8.5.4 Convergence Characteristics

The UL algorithm has better convergence characteristics than the E algorithm in that

the UL algorithm is not overly influenced by the initial mesh.  Whether the algorithm begins

with all elements inside the die, or with some configuration of elements in the air-gap, the

time-stepping generally leads to a steady-state solution for a stable film problem.  On the
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other hand, the E algorithm does not converge if the initial guess is not close enough to the

final solution.  This observation is li kely due to the choice of the Newton-Raphson method

for solving the system of equations, as the Newton-Raphson algorithm requires a solution

that is “suff iciently” close to the root (Chapra and Canale 1990).

Another advantage of the UL algorithm is that when convergence problems do occur,

they provide insight into the physical process.  In this way a negative is turned into a positive

feature of the algorithm.  For instance, if the transient behaviour does not die out, or leads

to “breakage” of the film, then instabilit y has been identified.  Another example occurs when

the UL algorithm halts because of an ill -conditioned stiffness matrix due to excessive mesh

deformations at the die or roll .  The mesh distortions that lead to the ill -conditioned matrix

are a consequence of high gradients and/or rotation and distortion of the elements; therefore,

the convergence problems are an indication of real factors in the physical problem.

8.6 Spatial Boundary Conditions and a Material Mesh

As discussed in Section 3.8, the UL algorithm, especially for the 2D case, only

approximates the spatial location of the die and roll where the boundary conditions on the

film are modified.  The uneven and changing boundary conditions are partly responsible for

limiti ng the draw ratio that can be obtained with the UL algorithm in a 2D framework.  In

defence of the UL algorithm, the imperfect satisfaction of the transition from one set of

boundary conditions to another is a mathematical problem, not a physical one.  The real film

casting process will probably not have die and roll l ocations that can be precisely defined
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over time.  The location of the boundary conditions likely migrate slightly over time, with

the boundaries seldom, if ever, corresponding to a straight line.  The spatial boundary

conditions used for the E algorithm are attractive from a computational viewpoint, but in a

sense they are no more correct than the UL boundary conditions, as both are idealizations of

the real process.
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Chapter 9 Conclusions and Recommendations

This thesis presented a new numerical algorithm for 2D nonisothermal simulations

of a nonlinear viscoelastic cast film process. The algorithm is new with respect to how it is

implemented and with respect to the physical phenomena included in the governing

equations.  In the case of the implementation, the algorithm described in this thesis is the first

to model film casting using an updated Lagrangian description of the motion.  Furthermore,

the algorithm provides one of the few examples of determining draw resonance as a response

problem, as opposed to the more common approach of linear stability analysis.  When

compared to the existing literature, the algorithm described in this thesis also contributes to

the body of knowledge on film casting by removing some of the simplifying assumptions

used in previous studies.  The new features of the model include the following:

i) The transient behaviour of a 2D film can be observed;

ii) Use is made of a constitutive equation unlike those generally employed in polymer
processing.  The constitutive equation accommodates viscoelasticity, extensional
thinning/thickening, and strain-hardening.

iii) The influence of temperature on the stability of 2D films can be observed.

The body of this chapter is divided into two main sections: Section 9.1, which

summarizes the simulation results and the differences between UL and E algorithms, and
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Section 9.2, which consists of recommendations for future work.  Following these two

sections, concluding remarks are provided in Section 9.3.

9.1 Summary

Parametric studies were conducted for the 1D, 1.5D and 2D versions of the UL

algorithm.  The results of these studies are summarized in Section 9.1.1.  Besides presenting

the results of simulations, the thesis also discussed the differences between and the

advantages and disadvantages of the UL and E formulations.  Section 9.1.2 provides the

highlights of this discussion.

9.1.1 Summary of Simulation Results

The simulations in Chapter 5 ill ustrated the influence of the material properties and

processing conditions on the steady-state 1D velocity and thickness distributions in the air-

gap.  As the polymer is assumed incompressible, the product of the velocity and thickness

at any distance from the die must be constant.  Therefore, the points used to summarize the

results only need to refer to the changes in the thickness, with the understanding that the

conservation of mass will cause a corresponding change in the velocity.  The simulations in

Chapter 5 lead to the following conclusions:

• extensional thinning (increasing m) decreases the thickness gradient at the die

• extensional thickening (decreasing m) increases the thickness gradient at the die

• strain-hardening (n < 1) increases the thickness gradient at the die
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• the elasticity of the melt (increasing �) decreases the thickness gradient at the die

• heat transfer (increasing .) increases the thickness gradient at the die

Chapter 5 also considered draw resonance in 1D film casting and the following observations

were made:

• compared to a viscous fluid (m = 1), extensional thinning (m > 1) decreases stabilit y,
whereas extensional thickening (m < 1) increases stabilit y

• increases in strain-hardening cause decreases in stabilit y

• increases in � lead to decreases in stabilit y

• increases in . lead to dramatic increases in stabilit y

In Chapter 6 attention was focussed on the so-called 1.5D simulations, where the

thickness is not allowed to vary across the width of the film.  This kinematic assumption

about the thickness is a popular simpli fying assumption in the film casting literature.  The

discussion in Chapter 6 suggests the following conclusions:

• higher aspect ratios (increases in the air-gap length relative to the die width) lead to an
increase in neck-in and a higher thickness at the chill roll

• higher aspect ratios have a stabili zing influence on the film

• the 1.5D assumption is not a good approximation of the film casting process because the
restraining influence of the edge-bead is not accommodated

The 1D and 1.5D assumptions were dropped in Chapter 7, where the analysis turned

to 2D simulations.  The steady-state simulation results presented in Chapter 7 show that, for

the draw ratios considered, changes to the material properties do not have a dramatic

influence on the film’s geometry.  This observation suggests that, at least for the case of
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lower draw ratios, the solution for the film casting problem is continuity driven.  The

instability of 2D films was also discussed in Chapter 7 and it was concluded that the trends

with changing constitutive parameters and nonisothermal conditions are the same as for the

1D simulations and that higher aspect ratios have a stabilizing effect, like that observed for

the 1.5D simulations.

9.1.2 UL versus E Formulations for Film Casting

One of the principal questions asked by this thesis is whether UL algorithms hold

promise for the simulation of continuous polymer processing, in particular for the simulation

of film casting.  To answer this question it was first necessary to relate the terminology used

in the polymer processing literature to the conventions adopted for the UL constitutive

equation.  This was the purpose of Chapter 4, where mathematical relations were developed

to relate the E versions of power-law viscous and linear viscoelastic fluids to the UL

constitutive equation.  However, in the case of nonlinear viscoelasticity, Chapter 4 illustrates

that the mapping between the two formulations is unclear.  Moreover, it is suggested that,

in some respects, the UL approach provides a more natural analog of the idealized Maxwell

fluid for two reasons: the rate of deformation tensor used in the E approach is not equivalent

to the rate of strain tensor, and the convected stress rates chosen for the E constitutive

equations may not be conjugate to the rate of deformation tensor in the energy sense.  This

second point is suggested by the common practise in the chemical engineering literature of
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deriving new constitutive equations by changing the definition of the objective stress rate

with no corresponding modification to the associated rate of deformation tensor.

The investigation of the potential of the UL algorithm to simulate film casting was

pursued further in Chapter 8, where the UL algorithm is compared to several different E

algorithms.  Table 9.1 summarizes the Chapter 8 conclusions with respect to the advantages

and disadvantages of each type of algorithm.
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Table 9.1 A Comparison of the UL and E algorithms

Advantages Disadvantages

E • accurate for 1D viscous
• fast

• would lose the speed advantage if time-
stepping is incorporated

• more complex for treating viscoelastic
constitutive equations

• can be sensitive to the initial guess
• different dof “ types” (mechanical and

geometric degrees of freedom are
included in the same analysis)

UL • a natural and intuitive approach
• draw resonance is predicted as a

response problem
• complex constitutive equations are

relatively easy to implement
• robust convergence behaviour
• advection is not necessary for the

thermal analysis or for the
continuity equation

• the dof are of the same “type” (the
mechanical analysis uses
displacement dof to predict the
velocity field and the geometry)

• the deformation of the material
mesh provides a picture of the
deformation history of the material
particles

• in boundary conditions is only
approximated

• slow to reach steady-state
• the rotation and distortion of the finite

elements can lead to an ill -conditioned
stiffness matrix

Table 9.1 shows that the UL description of motion is a viable alternative to the usual E

description for simulating film casting.  Although the UL approach has its drawbacks, it does

provide a powerful framework for the numerical simulations and it accommodates a wide

range of materials and processing conditions.  Moreover, some of the disadvantages of the
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algorithm can, in a sense, be interpreted as advantages.  For instance, the approximation of

the spatial location of the die and roll may be closer to the physics of the actual film casting

process than the mathematical idealization of straight unchanging boundaries.  Furthermore,

the distortion of the mesh, while potentially leading to an ill-conditioned stiffness matrix,

also provides a useful picture of where and how a given material particle will deform over

time.

Chapter 8 also compares the solutions obtained for 2D film casting of a viscous fluid

using the UL algorithm and the E algorithm of Smith and Stolle (2000a).  Although the

agreement is reasonable at low draw ratios and low aspect ratios, the differences can be

significant between the results of the different algorithms.  Several possible explanations for

the differences were investigated, including the element shapes, the approximation of the

boundary conditions, and the initial mesh used for the UL analysis.  None of these factors

seemed to explain the differences between the solutions of the UL and E algorithms.  Instead

the differences were explained by the nonlinear nature of the problem and the fact that the

algorithms cannot easily distinguish between dissimilar solutions because they are so close

in an energy sense.  Furthermore, unlike the E algorithm in question, the UL algorithm

accommodates transient behaviour, so the observed increase in differences between the

solutions as the draw ratio increases might be related to the approaching instability.
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9.2 Recommendations for Future Work

Although this thesis provides useful insight into the film casting process and the use

of a UL description of motion for continuous processing, future work is required to improve

the constitutive description.  The goal of this analysis was to provide a UL framework for

simulating film casting, not to exactly describe the complex rheology of polymers.  Now that

the framework has been established it would be relatively straightforward to modify the

constitutive equation.  The question then becomes: what is the best approach to use?  The

answer to this question would likely lie in collecting experimental data and in increasing the

understanding of the mapping between the E and UL frameworks for the complex

constitutive equations that have been developed and had success within the E description of

motion.  Whatever approach is used in the future, it should take advantage of the fact that the

constitutive behaviour refers to the material and the UL algorithm is derived in terms of the

material.

Another improvement to the existing algorithm would be to increase the draw ratios

that can be simulated using the 2D analysis.  The main hurdle to overcome here would be the

deformation of the mesh and the associated problems for the conditioning of the stiffness

matrix.  A desirable algorithm would be one that combines the material tracking nature of

the UL algorithm and the stable mesh features of the E approach.  The algorithm could make

use of the Arbitrary Lagrangian Eulerian (ALE) finite element method (Liu et al. 1988), or

it could use a spatial mesh and track the deformation history explicitly, as done by Van Den

Berg et al. (1996) for a geomaterial.
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Another suggestion for future work is to take the lessons learned in this thesis and

apply them to the similar process of metal casting.  In fact, the physics of the film casting

process are similar enough to other industrial problems that some of the ideas of this thesis

could be applied to problems in the following areas: polymer fibre spinning, downstream

secondary treatment of polymer films, biaxial drawing of films, continuous casting using

polymers or metals, pulp and paper manufacturing, etc.

9.3 Concluding Remarks

The choice of description of motion is an important consideration for the finite

element analysis of any problem.  In the case of film casting, E algorithms have been

popular, and deservedly so for 1D film casting of viscous fluids, since the E scheme is

superior to the UL scheme in simplicity, speed and accuracy.  The superiority of the E

scheme can be traced to the fact that it is specifically tailored to this type of problem.  Two

tradeoffs are associated with this specific tailoring: i) a lack of robustness; and ii) the

difficulty of extending the algorithm to more complex material descriptions and operating

conditions.

As presented in this thesis the UL algorithm is more robust than the E algorithm

because it naturally picks up the steady-state solution, with little dependence on the initial

guess.  The UL algorithm can also model viscoelastic fluids and transient phenomena, such

as draw resonance.  Although the E algorithm performs well for simple problems, the UL

algorithm is attractive for complex problems, which include the addition of two-dimensions,
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complex viscoelastic constitutive equations, and nonisothermal effects.  The advantage of

the UL approach lies in the fact that the principles of mechanics apply directly to the body,

not to the region in space that it momentarily occupies.  Moreover, the numerical

bookkeeping necessary for history-dependent constitutive equations is easier for a UL

algorithm, since this information is explicitly stored for each element.  The major drawback

of the UL algorithm is the difficulty of applying spatial boundary conditions to a material

mesh, although this drawback can be mitigated by using a fine mesh and by recognizing that

a small migration of the spatial boundaries is likely more representative of the actual physics.

In conclusion, UL algorithms are a viable alternative to E algorithms for simulation of

continuous polymer processing, such as film casting.



141

References

Acierno, D., and Di Maio, L., (2000), Film Casting of Polyethylene Terephthalate:
Experiments and Model Comparisons, Polymer Engineering and Science, Vol 40,
No.1: pp108-117.

Agassant, J. F., Avenas, P., Sergent, J. P. and Carreau, P. J., (1991), Polymer Processing.
Principles and Modeling, Hanser Publishers, Munich; Vienna and New York.

Aird, G. R. and Yeow, Y. L., (1983), Stability of Film Casting of Power-Law Liquids,
Industrial Engineering Chemical Fundamentals, 22: pp7-10.

Alaie, S. M. and Papanastasiou, T. C., (1991), Film Casting of Viscoelastic Liquid,
Polymer Engineering and Science, 31, 2: pp67-75.

Anturkar, N. R. and Co, A., (1988), Draw Resonance in Film Casting of Viscoelastic
Fluids: a Linear Stability Analysis, Journal of Non-Newtonian Fluid Mechanics, 28:
pp287-307.

Avenas, P., Agassant, J. F. and Sergent, J. Ph., (1986), La Mise en Forme des Matières
Plastiques.  Technique et Documentation, 2nd ed., Lavoisier, Paris.

Barq, P., Haudin, J. M. and Agassant, J. F., (1992), Isothermal and Anisothermal Models
for Cast Film Extrusion, International Polymer Processing, VII, 4: pp334-349.

Barq, P., Haudin, J. M., Agassant, J. F., and Bourgin, P., (1994), Stationary and Dynamic
Analysis of Film Casting Process, International Polymer Processing, IX, 4:
pp350-358.

Barq, P., Haudin, J. M., Agassant, J. F., Roth, H. and Bourgin, P., (1990), Instability
Phenomena in Film Casting Process, International Polymer Processing, V, 4:
pp264-271.

Bathe, K. J., (1982), Finite element procedures in engineering analysis, Prentice-Hall,
Englewood Cliffs, N.J.

Beaulne M., and Mitsoulis, E., (1999), Numerical Simulation of the Film Casting Process,
International Journal of Polymer Processing, 3: pp261-275.



References142

Bird, R. B., (1987), Dynamics of Polymeric Liquids, Wiley, New York.

Borja, R. I. and Lee, S. R., (1991), Cam-Clay Plasticity, Part 1: Implicit Integration of Elasto-
Plastic Constitutive Relations, Computer Methods in Applied Mechanics and
Engineering, 78, pp. 48-72.

Chambon, F., Ohlsson, S. and Silagy, D., (1996), Validation of a Model for the Cast-Film
Process, First Joint Topical Conference on Processing, Structure and Properties of
Polymeric Materials, Conference Preprint, American Institute of Chemical
Engineers, New York, New York: pp39-42.

Chapra, S. C. and Canale, R. P., (1990), Numerical Methods for Engineers, 2nd ed., McGraw-
Hill Publishing Company, New York.

Conte, S. D. and deBoor, C., (1980), Elementary Numerical Analysis an Algorithmic
Approach, 3rd ed., McGraw-Hill Book Company, New York.

Cotto, D., Duffo, P. and Haudin, J. M., (1989), Cast Film Extrusion of Polypropylene
Films, International Polymer Processing, IV, 2: pp103-113.

d'Halewyu, S., Agassant, J. F. and Demay, Y., (1990), Numerical Simulation of the Cast
Film Process, Polymer Engineering and Science, 20, 6: pp335-340.

Debbaut, B., Marchal, J. M., and Crochet, M. J., (1995), Viscoelastic effects in film
casting in Zeitschrift fur Angewandte Mathematik und Physick Special Issue, Casey
J. and Crochet M. J. (eds.), Birkhäuser Verlag, Boston, 46: ppS679-S698.

Denn, M. M., (1975), Stability of Reaction and Transport Processes, Prentice-Hall ,
Englewood Cli ffs, N. J.

Dobroth, T. and Erwin, L., (1986), Causes of Edge Beads in Cast Films, PolymerEngineering
and Science, 26, 7: pp462-467.

Duffo, P., Monasse, B. and Haudin, J. M., (1991), Cast Film Extrusion of Polypropylene. 
Themomechanical and Physical Aspects, Journal of Polymer Engineering, 10, 1-3:
pp151-228.

Fisher, R. J. and Denn, M. M., (1975), Finite-Amplitude Stabilit y and Draw Resonance in
Isothermal Melt Spinning, Chemical Engineering Science, 30, pp1129-1134.



References 143

Gadala, M. S., Oravas, G. Æ., and Dokainish, M. A., (1983), A Consistent Eulerian
Formulation of Large Deformation Problems in Statics and Dynamics, International
Journal of Non-Linear Mechanics, 18, 1, pp. 21-35.

Iyengar, V. R. and Co, A., (1993), Film Casting of a Modified Giesekus Fluid:A Steady-State
Analysis, Journal of Non-Newtonian Fluid Mechanics, 48: pp1-20.

Iyengar, V. R. and Co, A., (1996), Film Casting of a Modified Giesekus Fluid: Stabilit y
Analysis, Chemical Engineering Science, 51, 9: pp1417-1430.

Joseph, D. D., (1990), Fluid dynamics of viscoelastic liquids, Springer-Verlag, New York.

Kraus, H., (1980), Creep Analysis, John Wiley & Sons, New York, New York.

Lee, W. K., (1984), A Slit Die Design for Stable Film Extrusion, Advances in Rheology,
International Congress on Rheology Mexico, Elsevier Science Publishing Company,
New York, New York: pp473-481.

Liu, W. K., Chang, H., Chen, J., and Belytschko T., (1988), Arbitrary Lagrangian-Eulerian
Petrov-Galerkin Finite Elements for Nonlinear Continua, Computer Methods in
Applied Mechanics and Engineering, 68, pp259-310.

Lodge, A. S., (1974), Body Tensor Fields in Continuum Mechanics, with Applications to
Polymer Rheology, Academic Press, New York. 

Luo, X. L. and Mitsoulis, E., (1990), An Eff icient Algorithm for Strain History Tracking
in Finite Element Computations of Non-Newtonian Fluids with Integral Constitutive
Equations, International Journal for Numerical Methods in Fluids, 11: pp1015-1031.

Malvern, L. E., (1969), Introduction to the Mechanics of a Continuous Medium,
Prentice-Hall , Englewood Cli ffs, New Jersey.

Marchal, J. M. and Crochet, M. J., (1987), A New Mixed Finite Element for Calculating
Viscoelastic Flow, Journal of Non-Newtonian Fluid Mechanics, 26: pp77-114.

Minoshima, W. and White, J. L., (1983), Stabilit y of Continuous Film Extrusion Processes,
Polymer Engineering Reviews, 2, 3: pp211-226.

Oldroyd, J. G., (1950), On the Formulation of Rheological Equations of State, Proceedings
of the Royal Society of London A, 200, pp523-541.



References144

Pearson, J. R. A., (1985), Mechanics of Polymer Processing, Elsevier Applied Science,
London.

Perzyna, P., (1966), Fundamental problems in viscoplasticity, Advances in Applied
Mechanics, 9, pp243-377.

Pis-Lopez, M. E. and Co, A., (1996a), Multil ayer Film Casting of Modified Giesekus
fluids Part 1. Steady-state analysis, Journal of Non-Newtonian Fluid Mechanics, 66:
pp71-93.

Pis-Lopez, M. E. and Co, A., (1996b), Multil ayer Film Casting of Modified Giesekus
fluids Part 2. Linear stabilit y analysis, Journal of Non-Newtonian Fluid Mechanics,
66: pp95-114.

Rajagopalan, D., (1999), Impact of Viscoelasticity on Gage Variation in Film Casting,
Journal of Rheology, 43, 1: pp73-83.

Rajagopalan, D., Armstrong, R. C., and Brown, R. A., (1990), Finite element methods for
calculation of steady viscoelastic flow using constitutive equations with a Newtonian
viscosity, Journal of Non-Newtonian Fluid Mechanics, 36: pp159-192.

Rauwendaal, C., (1986), Polymer Extrusion, Macmillan Publishing Company, Inc., New
York.

Rojiani, K., (1996), Programming in C with Numerical Methods for Engineers, Prentice
Hall , Englewood Cli ffs, N.J.

Sakaki, K., Katsumoto, R., Kajiwara, T. and Funatsu, K., (1996), Three-Dimensional
Flow Simulation of a Film-Casting Process, Polymer Engineering and Science, 36,
3: pp1821-1831.

Sergent, J. P., (1977), Etude de deux Procédés de Fabrication de Films.  Le Soufflage de
Gaine.  L'extrusion de Film à Plat, Thesis, Université Louis Pasteur, Strasbourg.

Shah, Y. T. and Pearson, J. R. A., (1972), On the Stabilit y of Nonisothermal Fiber Spinning,
Industrial Engineering Chemistry Fundamentals, 11, 2, pp145-149.

Silagy, D., Demay, Y. and Agassant, J. F., (1999), Numerical Simulation of the Film Casting
Process, International Journal of Numerical Methods in Fluids, 30: pp1-18.



References 145

Silagy, D., Demay, Y. and Agassant, J. F., (1998), Stationary and Stabilit y Analysis of the
Film Casting Process, Journal of Non-Newtonian Fluid Mechanics, 79: pp563-583.

Silagy, D., Demay, Y. and Agassant, J. F., (1996a), Study of the Stabilit y of the Film
Casting Process, Polymer Engineering and Science, 36, 21: pp2614-2625.

Silagy, D., Demay, Y. and Agassant, J. F., (1996b), Étude de la Stabilit é Linéaire de
L'étirage d'un Film Newtonien, Comptes Rendus de l’académie des Sciences, 322,
Série IIb, 4: pp283-289.

Smith, A. A., Hinton, E. and Lewis, R. W., (1983), Civil  Engineering Systems Analysis and
Design, John Wiley & Sons, New York.

Smith, W. S., (1997), Nonisothermal Film Casting of a Viscous Fluid, M. Eng. Thesis,
McMaster University, Hamilton, ON.

Smith, W. S. and Stolle, D. F. E., (2001), A Comparison of Updated Lagrangian and
Eulerian Finite Element Algorithms for the Simulation of Film Casting, accepted to
Finite Elements in Analysis and Design.

Smith, W. S. and Stolle, D. F. E., (2000a), Nonisothermal Two-Dimensional Film Casting
of a Viscous Polymer, Polymer Engineering and Science, 40, 8, pp1870-1877.

Smith, W. S. and Stolle, D. F. E., (2000b), Draw Resonance in Film Casting as a Response
Problem using a Material Description of Motion,  Journal of Plastic Film &
Sheeting, 16, 2, pp95-107.

Stolle, D. F. E., (1992), Average Strain Quadrilateral Elements, Communications in Applied
Numerical Methods, 8, pp505-510.

Stolle, D. F. E., (1991), An Interpretation of Initial Stress and Strain Methods and Numerical
Stabilit y, International Journal of Numerical and Analytical Methods in
Geomechanics, 15, pp399-416.

Stolle, D. F. E., Bonnier, P. G. and Vermeer, P. A.. (1997), A Soft Soil Model and
Experience with Two Integration Schemes, Numerical Models in Geomechanics,
pp123-128.

Stolle, D. F. E., Pringle, M. M. and Smith, W. S., (2000) A Direct Approach for Average
Strain Elements, submitted to International Journal for Computational Civil and
Structural Engineering, September, 2000.



References146

Stolle, D. F. E. and Schad, H., (1992), An Updated Reference Configuration Formulation for
Large-Deformation Problems, International Journal of Numerical and Analytical
Methods in Geomechanics, 16, pp295-306.

Tanner, R. I., (1985), Engineering Rheology, 2nd ed., Clarendon Press, Oxford.

Tappi Press (1992), Film Extrusion Manual Process, Materials, Properties, Tappi Press,
Technology Park/Atlanta.

Van Den Berg, P., De Borst, R. and Huétink, H., (1996), An Eulerian Finite Element Model
for Penetration in Layered Soil ” , International Journal of Numerical and Analytical
Methods in Geomechanics, 20, pp865-886.

Yeow, Y. L., (1974), On the Stabilit y of Extending Films: a Model for the Film Casting
Process, Journal of Fluid Mechanics, 66, part 3: pp613-622.

Zienkiewicz, O. C., The Finite Element Method, (1977), 3rd Edition, McGraw-Hill ,
London.



147

0

0x
0

0

0y

0 0

0y
0

0x

T

Appendix A Components and Expansions for Various Variables

This appendix summarizes the components for the variables used in the body of the

thesis.   Table A.1 shows the components of the linear differential operators and Table A.2

expands the vector and tensor variables.  Tables A.3 and A.4 summarize the finite element

matrices for the thermal analysis and the deviatoric tensor invariants, respectively.

Table A.1 Linear Differential Operators

Variable Components Variable Components

/ [0/0x  0/0y]T L

Table A.2 Vector and Tensor Variables (written as column vectors)

Variable Components Variable Components

u, [ u v ]T,  [   ]T
u
.

�u �v 1 [ 1xx 1yy 1xy ]
T

û0 [ û0xx û0yy û�xy ]
T û1 [ û1xx û1yy û1xy ]

T

û0c [ û0c
xx û0

c
yy û�

c
xy ]

T s [ sxx syy sxy ]
T
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Variable Components Variable Components

Dv [ Dv
xx D

v
yy D

v
xy ]

T D

G #

4 2 0

2 4 0

0 0 1

0Q
01

0Q
01xx

0Q
01yy

0Q
01xy

T 0F
01

0F
01xx

0F
01yy

0F
01xy

T

I [ 1 1 0 ]T0q
01

0q
01xx

0q
01yy

0q
01xy

T

In the above table the material properties introduced are G, the shear modulus, and �,

Poisson’s ratio.  The shear modulus is related to the elastic modulus E, via G = E / (2(1+�)),

or G = E/3, for an incompressible material.  The strains are calculated using the standard

definitions; that is, û0xx = , û0yy = , û0zz = , û�xy = .  Similarly, the rates
0u
0x

0v
0y

0w
0z

0u
0y

�
0v
0x

of deformation are calculated as follows: Dv
xx = , Dv

yy = , Dv
zz = , Dv

xy = .
0 �u
0x

0 �v
0y

0 �w
0z

0 �u
0y

�
0 �v
0x

Table A.3 Finite Element Variables for Solving for the Temperature

Variable Components Variable Components

NT N1 N2 N3 N4 BT 0N1

0x

0N2

0x

0N3

0x

0N4

0x

0N1

0y

0N2

0y

0N3

0y

0N4

0y
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In Table A.3 the values of N1, N2, N3, and N4 are the usual shape functions for a quadrilateral

element (Zienkiewicz 1977: p156).  Table A.3 defines the matrices for shape function and

shape function gradients for the temperature analysis.  The mechanical analysis uses different

matrices, which are summarized in Appendix F.

Table A.4 Expansion of Invariants using the Membrane Approximation

Invariant Expansion

J2 (s 2
xx � s 2

yy � sxxsyy � s 2
xy)

q 3(s 2
xx � s 2

yy � sxxsyy � s 2
xy)

J
�

2 (ûe 2
xx � ûe 2

yy � ûexxûeyy � ûe 2
xy), where

ûexx 
 û0xx 	 û0v /3
ûeyy 
 û0yy 	 û0v /3
ûexy 
 û�xy /2
û0v 
 û0xx � û0yy � û0zz

û0q 4

3
(ûe 2

xx � ûe 2
yy � ûexxûeyy � ûe 2

xy)

In the above table ûexx, ûeyy, and ûexy are the components of the in-plane incremental

deviatoric strain tensor.  For an incompressible material, as used in this thesis, the deviatoric

components are the same as the regular incremental strain components, since û0v = 0.  The

expansion of the above invariants uses the membrane approximation to simplify the out-of-
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plane shear components, so that sxz = syz = 0 and exz = eyz = 0.  Also, for the deviatoric tensors

the remaining out-of-plane components can be related to the in-plane values; that is, 

szz = �(sxx+ syy) and ezz = �(exx + eyy).
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û1xx 
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Appendix B Derivation of the Elasticity Matrix for the Membrane
Approximation

The constitutive relation for an elastic material can be expressed as follows:

where the 3D tensors for change in stress and elastic strain are used (in column vector form),

ûp is the change in the pressure and I � [1 1 1 0 0 0]T.  If the membrane approximation is

introduced, then the number of components in the change in stress tensor may be reduced by

three, since û1zz = û1xz = û1yz = 0, but the change in pressure is still unknown.  Using the fact

that the out-of-plane stress is zero ( ), the pressure can be writtenû1zz 
 2Gû0
e
zz 	 ûp 
 0

in terms of the elastic strain as

Using the assumed incompressibility of the elastic strain (Equation 2.2, using the elastic

components), the pressure can be expressed in terms of the in-plane elastic strains via

If Equation B.3 is substituted into Equation B.1, then the plane stress components of the

change in stress tensor are as follows:
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û1 
 D û0 e , D 
 G #

4 2 0

2 4 0

0 0 1

(B.5)

where the relationship that  has been employed.û�
e
xy 
 2û0e

xy

Using the column vector notation for the change in stress and strain tensors, the above

relation (Equation B.4) can be expressed as

in which the change in stress and strain tensors are now modified to only include the plane

stress components.
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Appendix C Derivation of the Finite Element Equations for the
Implicit Creep Algorithm

The derivation of the finite element equations for creep follows the approach

presented by Stolle (1991).  To estimate the displacements for the (i+1)th time step the

residual for that time step (�i+1) should be approximately zero, as shown below

The stress change over the time step may be written as

Introducing the constitutive matrix allows the stress increment to be related to the total and

creep strain increments

The creep increment can be calculated from the creep strain rate

For a fully implicit approach the variables are evaluated at the end of the time step, so the

creep strain increment is as follows:
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Now F is defined as

Taylor’s expansion can be applied to F to find F at the end of the time step (Fi+1)

If Equations C.3 and C.5 are substituted into the above equation, then the following results,

after rearranging

where

Equation C.8 and Equation C.5 may be used to express the creep stress increment (Equation

C.3), which in turn may be substituted into Equation C.1 to yield the required finite element

equations

with
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To actually use the above equations a specific function for % is needed, which in the

current work is % � q.  The gradient of F with respect to 1 may be expanded as 

An examination of the above equations shows that the gradient of q with respect to

1 occurs several times.  This term is equal to

Another term that occurs frequently in the finite element equations is termed vec, which for

the membrane formulation is defined as

It is now possible to expand He and Hc.  For the membrane formulations they are given by

With the above expansions the viscoelastic constitutive matrix may be written as
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with the creep stress increment being given by

To complete the definitions of the above terms the creep strain rate and its derivatives must

be specified.  For a power law strain hardening form, they are

where for a constant stress creep test.0
c
q 
 Aq mt n
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Appendix D Closed-Form Solution for the Effective Creep Strain
Increment

In terms of differentials, the effective creep strain rate (Equation 2.8) may be written

as follows:

The above equation can be rearranged and integrated over a time step ût = t2 � t1, where the

subscripts 1 and 2 refer to the beginning and the end of the time step, respectively

where is the effective creep strain increment.  If the material properties andû0
c
q 
 0

c
q2
	 0

c
q1

q are assumed constant over the time step, then the definite integrals can be expanded to

The above equation can be further rearranged to yield
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The effective creep strain increment can be found by taking the nth power of both sides of the

previous equation and rearranging terms

An examination of this equation shows the occurrence of   as defined by Equation 2.8.�0
c
q

Therefore, the effective creep strain increment can be rewritten in compact form as
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qi 	 1 	 qi

qi

� Tolerance (E.4)

Appendix E The Newton-Raphson Algorithm for Solving for q

If Equation 2.8 is substituted into Equation 3.11, then after some rearrangement a

nonlinear function f(q) is obtained

The root of the above equation is solved via the Newton-Raphson algorithm

where the derivative  can be calculated by taking the derivative of Equation E.1 to yieldf



(q)

The initial value for q0 in the root finding scheme is qe and the iterations are ceased once the

following criteria is met:





161

x 
 N b
i xi ; y 
 N b

i yi ; z 
 N b
i zi ; u 
 N b

i ui ; v 
 N b
i vi ; w 
 N b

i wi (F.1)
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1
8

(1 � ri r)(1 � si s)(1 � ti t) (F.2)

Appendix F The Average Shape Function Gradients for the Film
Element

The finite element equations to determine the displacements for the UL film casting

algorithm described in this thesis use average strain elements (Stolle 1992; Stolle et al.

2000).  This appendix summarizes the derivation of the average shape function gradients for

the d th sub-element, so that Equation 3.23 can be expressed using each sub-element’s average

Bd matrix.  To perform the integration of Equation 3.23, the integral is transformed from the

x-y-z to the local r-s-t basis.  In the r-s-t system the element is a cube centred at the origin,

with each side having a length of 2.  The relationship between the x-y-z and the r-s-t systems

is expressed using the brick element shape functions (Ni
b) via:

where index notation and the summation convention are assumed and xi, yi, zi, ui, vi and wi

are the nodal values for the coordinates and displacements.  For a brick element, which is

il lustrated in Figure F.1 in the x-y-z system and in Figure F.2 for the r-s-t system, the shape

functions are (Zienkiewicz 1977: p169):
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Figure F.1 A typical brick element in
the x-y-z system
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Figure F.2 A typical brick element in
the s-r-t system
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where Ni 

1
4

(1�ri r)(1�si s) and t 
 1�t
2

(F.3)

where i is the node number, (r, s, t) are the coordinates in the transformed basis and (ri, si,

ti) are the coordinates of the ith node.  The summation convention does not apply to this equation.

In the case of a film element, the above shape functions can be simplified by

recognizing that some of the information is redundant.  With reference to Figure F.1, it is

assumed for the film that for x, y, u and v, the ith nodal value is equal to the (i+4)th nodal

value, for 1 � i � 4 and for z and w, the ith nodal values are zero, for 5 � i � 8.  If these

relations are substituted into Equation F.2 then
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(F.4)

The shape functions Ni, which do not use the summation convention, correspond to the shape

functions for a quadrilateral element (Zienkiewicz 1977: p156).

Now that the finite element approximation for u, v and w are available, the average

Bd matrix can be expressed in terms of the average shape function gradients:

with a comma used to represent partial differentiation.  For the membrane formulation,

parasitic shear is suppressed by calculating the gradients associated with the shear terms for

the entire element, instead of for each sub-element.

  In Equation F.4, the average shape function gradients in the x, y and z directions are

needed, both for the quadrilateral shape functions and for the quadrilateral shape functions

multiplied by .  These gradients are calculated by using the Jacobian of transformation (Jij),t

which can be written for a given variable f = f(x(r,s,t), y(r,s,t), z(r,s,t)) as follows:
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Equation F.5 is inverted by using the rule that the inverse of a matrix is equal to the adjoint

of the matrix divided by its determinant

where Mij are the minors of the Jij and are defined as follows:

Using Equation F.6, Equation 3.23 is transformed to the r-s-t basis:
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One should note that the determinant of the Jacobian cancels out of the above equation.  The

values of the integration limits for each sub-element, and for the entire element, are

summarized in Table F.1.

Table F.1 Integration Limits to Define each of the Sub-Elements and the Entire
Element

Sub-element d rl
d ru

d sl
d su

d tl
d tu

d

1 -1 0 -1 0 -1 1

2 0 1 -1 0 -1 1

3 0 1 0 1 -1 1

4 -1 0 0 1 -1 1

entire element -1 1 -1 1 -1 1
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The minors in terms of the finite element discretizations are given by

The above expansion of the minors takes advantage of the fact that x,t = y,t = 0.

The minors can be substituted into Equation F.8, along with the displacement

gradients in the r-s-t basis (with u,t = v,t = 0) to yield

A common expression appears in this calculation, which motivates the following definition:
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Using the definition of Iijk and integrating Equation F.10 over t (tl = -1, tu = 1 for all d), the

following equation is found:

This equation shows that the expression Iijk contains the terms that depend only on r and s,

which suggests the following definition:

Using Equation F.13, Equation F.12 can be expressed as:

From Equation F.14 the average shape function gradients can be expressed as 
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Equation F.15 shows that the average shape function gradients for the d th sub-element

can be determined using the element’s nodal coordinates and the  expression.  AnA d
ijk

examination of Equation F.13 shows that the calculation of  only depends on integrationA d
ijk

in r-s space; therefore, the integration can be performed once and the results can be reused

throughout the analysis.   was evaluated using Maple and, after some rearranging, A d
ijk A d

ijk

can be expressed as follows:

In Equation F.16 the summation convention does not apply, ri = [-1 1 1 -1], si = [-1, -1, 1, 1],

and the remaining terms are summarized in Table F.2.
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Table F.2 Terms used for the Calculation of Aijk
d

Sub-element d g(d) r̄ s̄

1 1 -1 -1

2 1 1 -1

3 1 1 1

4 1 -1 1

entire element 4 0 0

The volume calculation can also be done using , as follows:A d
ijk

This appendix has shown how the entries in Bd are calculated.  These entries can be

used to construct the B matrix used to calculate the in-plane incremental displacements  and

the Bzz matrix used to calculate the out-of-plane incremental displacements.  The B matrix

uses the  and  terms and the Bzz matrix uses the  terms.N d
i,x N d

i,y (tNi)
d
,x
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Appendix G The Closed-Form Solution for 1D Isothermal Film
Casting of a Power-Law Fluid

The governing equations for 1D isothermal film casting of a power-law fluid in an

Eulerian formulation are as follows:

Equations G.1 and G.2 are the 1D versions of Equations 8.1 and 8.2, respectively.  The

constitutive equation, Equation G.3, is found using Equation 4.1 along with 1xx = �p + 2xx,

1zz= �p + 2zz = 0 (membrane approximation),  (incompressibility constraint) and
0 �u
0x


 	
0 �w
0z

= .  The boundary conditions for the 1D film casting problem are�II 2
0 �u
0x

Integration of Equations G.1 and G.2 yields

and
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where F represents the force per unit width and Q is the volume flux per unit width.  Now

Equation G.3 and Equation G.6 (rearranged to explicitl y calculate h) are substituted into

Equation G.5 and rearranged as follows:

Now both sides of the resulting equation are integrated:

Applying the boundary condition for velocity at x = L, the theoretical velocity profile is found

to be

Substituting this result into Equation G.6 and using Q = udie·hdie, the theoretical thickness

profile is found to be



Appendix G Closed-Form Solution for 1D 173

d �u
dx




� �udie

(�	1)L
(Dr

� �
1�
	1) 1 � (Dr

� �
1�
	1) x

L

1� �
1 (G.11)

dh
dx




	�hdie

(�	1)L
(Dr

� �
1�
	1) 1 � (Dr

� �
1�
	1) x

L

1
�
2

�
� �

1 (G.12)

1xx 
 2
� �

1K
� �udie

(�	1)L
(Dr

� �
1�
	1) 1 � (Dr

� �
1�
	1)

x
L

1� �
1

�

(G.13)

�W c

 PP

V
P1ij Dij dV 
 PP

V
P1xx Dxx dV 
 P

L

0

h(x)1xx(x) d �u
dx

dx (G.14)

�W c

 2

� �
1 Khdie �u

� �
1

die (Dr	1)
�(Dr

� �
1�
	1)

(�	1)L

�

(G.15)

The gradients of velocity and thickness can be found by differentiating Equations G.9 and

G.10, respectively

Using Equations G.3 and G.11, the stress in the machine direction can be expressed as

Another quantity of interest is the rate of energy dissipation over the domain .�W c

For the 1D domain this quantity may be expressed as follows:

where  is the steady state rate of energy dissipation per unit width of the film.  If�W c

Equations G.10, G.13 and G.11 are substituted into Equation G.14, the energy dissipated can

be expressed as

A special case of the power law fluid is the linear viscous fluid, where � = 1.  The

above equations for velocity, thickness, stress and energy dissipation are undefined for
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; however, the solutions for these variables can be derived in an analogous manner to� 
 1

the above derivation.  If the above steps are repeated for the Newtonian fluid, then the

following results are found:
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Appendix H Relating UL to E Constitutive Parameters for the Power-
Law and Linear Maxwell Fluids

The constitutive equation presented in Section 2.5, which is expressed in a UL

framework, can be related to two constitutive models commonly employed within an E

framework: the power-law fluid, and the linear Maxwell fluid.

The Power-Law Fluid

In the E framework most often used in fluid mechanics, the power-law constitutive

equation can be written as

where 2ij is termed the extra stress tensor, Dij is the rate of deformation tensor, K is a

constant, and  is proportional to the second invariant of the rate of deformation tensor.�II

If there is no strain hardening (i.e. n = 1.0), then the creep strain rate tensor

introduced in Section 2.5 can be written, using index notation, as

Equations H.1 and H.2 can be related by taking the following into account:

i) the extra-stress tensor has the same definition as the deviatoric stress tensor (2ij = sij);

ii) for viscous materials (low relaxation times) the elastic strain rate is small, so that
is approximately equal to ; and,�0ij �0

c
ij
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iii) for small displacement gradient components, is approximately equal to Dij�0ij
(Malvern 1969: p162).

Using the above statements, Equation H.1 can be written as

and Equation H.2 can be written as

Equation H.3 includes an invariant of the strain rate tensor, while Equation H.4 contains an

invariant of the deviatoric stress tensor.  To relate the two equations it is necessary to relate

the invariants.  This is done through the constitutive relationship for the UL description

Equation H.5 is only valid in the case of viscous flows, when the stress can be assumed to

only depend on the current rate of strain; that is, when the stress is independent of the

previous deformation history.  If Equation H.5 is substituted into Equation H.4 and the strain

rate is isolated in Equation H.3, then the two forms of the constitutive equation can be

equated, which after rearranging yields

To further relate the two expressions, the strain rate invariants can be introduced into the

above, so that after rearranging
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If the powers of  for both sides of Equation H.7 are equated, then the following result�0ij �0ij

is found:

Similarly, if the constants for both sides of Equation H.7 are equated, then the following

relation holds:

Equations H.8 and H.9 relate the parameters commonly available in the chemical engineering

literature (� and K) to the UL constitutive parameters adopted in this thesis (m and A).

A special case of the power-law fluid is the Newtonian fluid, which is obtained when

� = 1.  In this case Equations H.8 and H.9 simplify to m = 1 and A = 1/(3K).  To further

highlight the Newtonian fluid, two new symbols are introduced: �s and �c, which are termed

the shear and creep viscosities, respectively.  These viscosities are related to K and A, and

to each other via
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The Linear Maxwell Fluid

In the chemical engineering literature the linear Maxwell fluid is written as (Joseph

1990: p6)

In the UL constitutive equation, with m = n = 1, the rate of change of the deviatoric stress is

written as follows:

The above equation can be rearranged and simplified to

If the statements i) and iii) from above are used, along with Equation H.10, then Equations

H.11 and H.13 are shown to be identical.  Therefore, several alternative definitions for the

relaxation time are as follows:

The above equation uses the relationship between the elastic and shear moduli for an

incompressible material; that is, E = 3G.
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Appendix I The UCM Solutions for Constant Rates of Uniaxial and
Equibiaxial Extension

This appendix summarizes the closed-form solutions for stress as a function of time

for a UCM material under a constant rate of natural strain for two material tests: uniaxial

extension and equibiaxial extension.  The two tests are shown in Table I.1.

Table I.1 Summary of the Uniaxial and Equibiaxial Material Tests

Uniaxial Extension Equibiaxial Extension

Figure of
Material Test
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0 �u

0x

 �0 �0xx 


0 �u

0x

 �0yy 


0 �v

0y

 �0

Velocities �u 
 �0L0e
�� t

�u 
 �0L0e
�� t ; �v 
 �0W0e

�� t

Incompressibility
and Symmetry

0 �v

0y



0 �w

0z

 	

1
2
0 �u

0x

 	

1
2
�0

0 �w

0z

 	

0 �u

0x
�

0 �v

0y

 	2�0

The first row of Table I.1 summarizes the material tests by showing the dimensions,

boundary conditions and coordinate system, for which the z-axis is directed out of the page.

Table I.1 also shows the constant natural strain rate assumptions for each test and the
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0 
 ln(
L
L0

) 
 �0t , j L 
 L0e
�� t

(I.1)

�u 

dL
dt


 �0L0e
�� t

(I.2)

velocities ( ) necessary to maintain the constant strain rate ( ), as a function of time (t)�u, �v �0

and the initial length (L0) and width (W0).  The final row of Table I.1 uses the assumed

incompressibility of the material to express the strain rates in the directions where the

velocity is not controlled.  In the case of the uniaxial extension test, use is also made of the

fact that the strain rates in the y and z directions should be equal, as neither direction should

strain preferentially.

The equation for  in the third row of Table I.1 is found by using the fact that the�u

strain rate is constant.  For a constant rate of natural strain ( ) the natural strain (0) can be�0

determined by integration; that is, 0 = . The length (L) as a function of time can be�0t

determined using the definition of natural strain, as follows:

where the exponential function has been applied to each side of the equation to remove the

natural logarithm.  Equation I.1 can be used to determine the variation of  required to keep�u

the extension rate constant

An analogous approach is used to determine  for the equibiaxial extension test.�v

Now that the kinematics of the material tests have been summarized, the discussion

can move to the description of the upper convected maxwell fluid (UCM), for which the

extra-stress relation can be written as



Appendix I The UCM Fluid Under Constant Rates of Extension 181

�2ij 

D2ij

Dt
	 Lik2kj 	 2ikLjk (I.4)

Lij 
 Dij 


�0xx 0 0

0 �0yy 0

0 0 �0zz

; 2ij 


2xx 0 0

0 2yy 0

0 0 2zz

(I.5)

DEij

Dt

 Fmi Dmn Fnj (I.6)

��2ij � 2ij 
 2�sDij (I.3)

with the upper convected derivative defined as

where Lij is the velocity gradient tensor and D/Dt is the material derivative, which simpli fies

to d/dt for the current problems, as the stress is uniform throughout the body and

consequently there is no advection of stress.

For both the uniaxial and biaxial cases there is no shearing; therefore, the velocity

gradient, rate of deformation and extra-stress tensors can be written as

In this equation the rate of deformation is related to the rate of change of the natural strain.

To prove that this is possible, one can consider the following relation from Malvern (1969:

p162):

which relates the Green’s finite strain Eij to the material deformation gradient Fij and the rate

of deformation tensor Dij.  For the simple uniaxial extension problem, the terms in this

equation can be expanded, rearranged and interpreted in terms of the natural strain, to obtain

Equation I.5.
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��
zz
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�
d2xx

dt
	 2�0xx2xx � 2xx 
 2�s

�0xx (I.7)

Using the Lij and Dij tensors and the definition of the upper convected derivative, the

x-component of the extra-stress tensor in Equation I.3 can be written as

This linear nonhomogeneous differential equation, which has constant coefficients, can be

solved using the initial condition that 2xx = 0 to yield

where the symbol for the constant strain rate ( ) has been substituted in for the strain rate�0

in the x-direction.  Similarly, the other two extra-stress values in Equation I.3 can be solved

For the uniaxial extension .  If this relation is substituted into Equation I.9,�0yy 
 	
1

2
�0

then the following results

As there is no resistance to deformation in the y-direction, the stress 1yy in that direction is

zero; therefore, from the definition of the extra-stress tensor p = 2yy and 1xx = 2xx�p = 2xx�2yy.
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Using this final relation and the previously derived values for the extra-stress components,

the stress in the x-direction may then be written as

which can be rearranged to yield

The stress for the equibiaxial case can be derived in an analogous manner to that for

the uniaxial case.  First, the relations  and  are substituted into�0xx 
 �0yy 
 �0 �0zz 
 	2�0

Equations I.8, I.9 and I.10.  Second, the equation 1zz = 0 is used to find 1xx = 2xx � 2zz.  Third,

the first two steps are combined, to yield

which can be rearranged and written as
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min z 
 M
ndata

i � 1
(1vexp 	 1nsim )2

s.t. m > 0
n > 0

(J.1)

Appendix J Fitting to Virtual Experimental Data

Ideally the constitutive parameters would be found by fitti ng to experimental data,

but unfortunately there is a paucity of extensional data available in the literature.  For this

reason, and because it highlights the differences between the E and UL approaches, the

constitutive parameters are found by fitting the UL equation to “virtual” experiments

conducted using the E constitutive equations.  It is worth emphasizing that the virtual

experiments differ from real experiments because exact data points are generated; that is,

there is no noise or random experimental error in the data.  As the film casting problem is

extensional in nature, the virtual experiments are chosen to be constant rate of uniaxial

extension and equibiaxial extension problems.  The closed-form solution for uniaxial and

equibiaxial experiments using a nonlinear Maxwell fluid are presented in Appendix I.

The best fit is determined using a Hooke and Jeeves algorithm (Smith et al. 1983:

p180-183) with the following objective function and constraints
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where z is the squared error, ndata is the number of data points, and 1vexp and 1nsim are the

stress values for the virtual experiment and the numerical simulation, respectively.  The

constraints are enforced using a penalty function.
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Appendix K Elastic Limit of the UCM Equation

The integral form of the UCM constitutive equation is given by (Joseph 1990: p14)

as

where is a relative strain tensor, called the relative Finger tensor or the relative leftB t
ij(2)

Cauchy Green tensor and /ij is the Kronecker delta.  The relative Finger tensor depends on

the relative deformation gradient tensor , which is the gradient of the current positionF
�

ij(t)

of the material particle at time t with respect to some past configuration at time 2; that is,

Using the relative deformation gradient tensor, the relative Finger tensor is defined as

Using the properties of integrals, Equation K.1 can be split into two integrals, as follows:
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where in the first integral the relative Finger tensor will be constant with respect to 2 because

the material is assumed not to deform until t is greater than zero.  The first integral can be

evaluated to yield

Now � = �s/G can be substituted into this equation to produce

The elastic limit of the extra-stress tensor occurs when �s approaches infinity.  In this case

the exponential function in the first term will approach one, and the exponential function in

the second term will approach zero; therefore, in the elastic limit

where the reference to time has been dropped because for an elastic material the stress will

only depend on the current deformation, not on any past configurations.  The Finger tensor

for the elastic case depends on the deformation gradient of the deformed position with

respect to the original configuration.
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Appendix L Closed-Form Solution for 1.5D Film Casting

Given the drawing force (F) in the film, Avenas et al. (1986: pp359-369) and

Agassant et al. (1991: pp239-250) present relations to find the following variables: the draw

ratio ( / ), the neck-in (Wroll/Wdie) and the thickness change (hroll/hdie).  The theoretical�uroll �udie

relations assume that the process is isothermal and that the fluid is Newtonian.  Also,

restrictions are made on the admissible velocity field, so that the problem is 1.5D, with the

kinematic assumptions listed in Table 1.1.  Therefore, as mentioned in Section 1.4.1 the film

maintains a rectangular shape from the die to the roll, as the thickness does not vary in the

transverse direction.

The neck-in at the roll is calculated from the following transcendental equation:

Once Wroll/Wdie is known the following relation is used to solve for hroll/hdie:

The continuity equation can then be used to determine the draw ratio (Dr) via
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Dr 


uroll

udie




Wdiehdie
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Wroll

Wdie


 1 	 2 L
Wdie
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In addition to the above relations, Avenas et al. (1986) and Agassant et al. (1991) present a

theoretical limit for the neck-in
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Appendix M Linear Stability Analysis for 1D Film Casting

The most common approach for determining the stability of continuous polymer

processing is linear stability analysis, as described by Denn (1975).  In a linear stability

analysis the steady-state solution is perturbed by some infinitesimal amount and the

behaviour of the linearized governing equations is considered.  If the small perturbation

damps out, then the process is stable.  If the perturbation continues to grow, then the process

is considered unstable.

i) Governing Equations

In an Eulerian framework, the conservation equations and the constitutive equation

for transient isothermal film casting of a viscous fluid are as follows:

An equation can be eliminated from the above by substituting Equation M.3 into Equation

M.2 to obtain
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�u(x,t) 
 �uss(x) � �(x,t) ; h(x,t) 
 hss(x) � µ(x,t) (M.6)

0µ
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�ussµ � hss� 
 0 (M.7)

0
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0x
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The boundary conditions for Equations M.1 and M.4 are ,�u(0, t) 
 �udie

 and .  As usual, the draw ratio is defined as Dr = / .�u(L, t) 
 �uroll h(0, t) 
 hdie �uroll �udie

ii) Steady-State Solutions

The steady state solutions for velocity and thickness ( and hss) are derived in�uss

Appendix G and are repeated here for convenience

iii) Linearize for Infinitesimal Disturbances

The solutions for the velocity and thickness may be expressed as the steady-state

solutions plus some small perturbations (�, µ), as follows:

If Equation M.6 is substituted into Equations M.1 and M.4, and if terms over first order in

� and µ are neglected, by assuming that higher order perturbations are negligible, then the

following is obtained:

Equations M.7 and M.8 take advantage of the simpli fication that results because and hss�uss

are solutions for Equation M.1 and M.4, respectively, and thus drop out of the equations.
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The steady-state and perturbed velocities and thicknesses are assumed to satisfy the

same boundary conditions; therefore, the boundary conditions for the perturbation variables

are �(0,t) = �(L,t) = µ(0,t) = 0.

iv) Separation of Variables

The following separation of variables is assumed to apply:

If Equation M.9 is substituted into Equation M.7, divided by �23 and rearranged, then the

following equation is obtained:

where the superimposed dot (#) and the dash ( /  ) represent differentiation with respect to time

and position, respectively.  The first ratio is independent of x and if �1 = �2 then the second

ratio is independent of time; therefore, the equality can only hold if � is a constant (� does

not represent the relaxation time in this usage).  The ordinary differential equation for the

first ratio can be solved, to yield

The differential equation corresponding to the second ratio is

Another differential equation in x is found by substitution of Equations M.9 and M.11 into

Equation M.8 and rearranging to yield
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To reduce the order of the above equation, let .  The system of differential equations,& 
 %
�

after substitution of Equation M.5 and rearranging, becomes

and the associated boundary conditions are 3(0)=%(0) =%(L) = 0.

Equations M.14 to M.16 are the same as those obtained by Fisher and Denn (1975),

except that their equations are written in dimensionless form.  The system of equations forms

a linear eigenvalue problem, which Fisher and Denn (1975) solve by direct numerical

integration, assuming &(0)=1 and varying � until the downstream boundary condition,

%(L)=0, is satisfied.  The integration for various draw ratios shows that the real part of the

eigenvalue first becomes positive at a critical draw ratio of 20.2.  Below this draw ratio

Equation M.11, and thus the perturbations in velocity and thickness, will decay over time,

but above this value an arbitrarily small disturbance will grow over time.


