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Abstract

Thisthesis presents anew numericd algorithm for 2D nonisothermal time-stepping
simulations of anoninea viscoelastic cast film process The most significant contribution
of the dgorithm isthat an updited Lagrangian (UL) description d motion is employed, as
oppased to the more @wnwventional Eulerian (E) description generally used in pdymer
processng simulations. Furthermore, use is made of a wnstitutive equation urlike those
generaly employed for paymers. The constitutive eguationacammmodates viscoel asticity,
extensional thinning/thickening, and strain-hardening. A comparison d the UL and E
algorithms and constitutive equations ows that the UL agorithm in some respeds
represents amore natural andintuiti ve goproad, which hasthe advantage of being “closer”
to the physics of the film casting problem.

This new numericd agorithm can find the steady-state film properties, and it can
predict the onset of instability by observing draw resonance & a resporse problem. By
determining the aiticd draw ratio as aresponse problem, the mathematicd complicaions
of the more cmmmon linea stability analysis approach are avoided. Interms of the stability
of the film, it was observed that stability is deaeased by extensiona thinning, strain-
hardening, and hgher relaxation times and stability isincreased by extensional thickening,

higher hea transfer and higher ratios of air-gap length to die width.
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Chapter 1 Introduction and Background

Two main approaches exist for describing the motion of a body: the material
formulation, where the conservation equations are applied to a specific body, or control
mass, and the spatial formulation, where the conservation equations are written in terms of
aregion in space, or control volume. Although the different formulations should yield
identical resultsfor any smooth motion of abody, for any given type of motion thereis often
an obvious choice as to which formulation is preferable. For instance, fluid mechanics
problems lend themselves nicely to spatial, often termed Eulerian (E), formulations of
motion. On the other hand, solid and structural mechanics problems are usually best treated
using material, a'so known as Lagrangian (L) and updated Lagrangian (UL ), descriptions of
motion. Although the choicefor description of motioniswell established for fluid and solid
mechanics problems, it is not so clear which choice is best when the material in question
exhibits properties of both afluid and asolid; that is, when the material isviscoelastic. To
clarify the relative advantages and disadvantages of the spatial versus material approaches,
this thesis considers the behaviour of an important class of viscoelastic material, polymers.

Intheliterature on polymer processing theusual choiceto describemotionisaspatial
formulation, especially when the processing operates continuously. Therefore, to compare

the spatial and material descriptions, itisfirst necessary to develop amaterial description for
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some continuous process. The process selected for comparison is the film casting process
because it is an industrially significant process, and because the influence of the material
properties and processing conditions on the finished product is not entirely understood.
Therefore, besides comparing spatial and material formulations, thisthesis also providesan
opportunity to investigate the underlying physics of the cast film process.

The film casting process is described in Section 1.1 and some common problems
encountered while casting are listed in Section 1.2. Although numerical simulation is a
useful tool to gain a better understanding of these problems, simulation of the film casting
process has severa complications, which are the subject of Section 1.3. Different
approacheshave been employed to addressthe complications associated with ssimulating film
casting. A review of the different approaches available in the literature is provided in
Section 1.4. Thereafter, an overview of the current study is provided in Section 1.5. One of
the principal distinctions between the new approach and previous approaches is the
description of motion. The distinctions between the different descriptions of motion, E, L
and UL, are clarified in Section 1.6. The final section of this chapter, Section 1.7,

summarizes the purpose and scope of this research.

1.1 Description of the Cast Film Process
Figure 1.1 provides an overview of atypical continuous film casting operation. The
process starts with solid polymer pelletsin ahopper. These pellets are gravity fed into an

extruder. Theextruder consists of ascrew that melts the polymer and provides the pressure
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necessary to force the now molten pdymer through a centre-fed “T” or coat-hanger die.

Information onthe design and operation d these diesis provided in TAPH Press(1992.
After exiting the die, the film is pull ed through an air-gap, where it is cooled by conveded
cold air or aninert gas before it makes contad with athermoregulated chill roll. To ensure
goodcontad of the film with the dill roll andto aid in freezing, an air-knife is often used
to blow ajet of air at the film. After freezing, the secondary film is hauled of for further
treament, such as heaing and baxial stretching. Oncetreaed, thefinished product goesto

awinder, which produces theroll s of finished film.

Hopper

e

Extruder A/D '€
/ Secondary
Air-  Chill Treatment Winding

jw A/RO” v e Film

Roll

Air-Knife

Figurel.l  Overview of the cat film process

One of the most important of the many stages used to produce cat film is the
stretching of the film through the ar-gap. Studies on film casting, including this one,

typicdly focuson hav thefilm behavesin the ar-gap becaise the properties of the finished
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product are mainly determined at this stage (Barqg et al. 1992). Although the air-gap only
represents asmall fraction of the polymer processing time, the behaviour of the filmin the
air-gap isimportant because the success of downstream operations depends on the quality
of the film supplied from upstream. A close-up schematic of theair-gap is shown in Figure
1.2. Further details on the film casting processes can be found in Pearson (1985) and Smith

(1997).

eDie%L
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Figurel.2  Overview of the cast film processin the air gap

1.2 Problems Encountered with Film Casting
Important goals for film line designers are to maximize the production of auniform

thicknessfilm and to minimizewasted film. Threemain problemsinterferewiththesegoals:
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)] the stretching of the film reduces its width (neck-in);
i) thick beads form at the edges of the film (edge bead); and

11)] once the speed at the roll relative to that at the die exceeds some critical value, the
width and thickness of the film begin to vary periodically (draw resonance).

At present, these three problems are still not well understood. Computer simulation of the
processisonetechnique avail able for gaining abetter understanding of the above problems,

and possibly suggesting ways to mitigate them.

1.3 Difficulties Associated with Numerical Simulation of the Cast Film Process

At present, atrial-and-error approach is generally used to design film lines, asthere
are few numerical algorithms available to simulate the process. Any advances in the
numerical modelling of film lines must take into account, and overcome, the following
complications:
)] the free surface isinitialy unknown;
i) the problem is highly nonlinear;
11)] there is a strong coupling between the velocity and the thickness;
iv) alarge number of degrees of freedom are required; and,

V) the stress for most polymers has a complicated dependence on the deformation and
thermal history of the material.

Severa different approaches, which are summarized in the next section, have been used to

address some of the above difficulties.
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1.4 Literature Review on Cast Film

The cast film literature can be cdegorized acording to the assumptions made to
simplify the idedized governing equations. Sedion 1.4.1lists and explains sme typicd
simplifying assumptions made in the film casting literature. Besides caegorizing the
literature acording to the assumptions made, different studies can also be subdvided by
whether or not the model considers draw resonance. The literature that negleds draw
resonance and focuses on stealy-state operationsis the subjed of Sedion 1.4.2.Following
this, the studies that predict draw resonance ae summarized in Sedion 1.4.3. Besides
differences in the asumptions and in the focus of a study, the literature can also be
distinguished by the numericd algorithmsused, which arelisted in Sedion 1.4.4.All of the

references cited in this sdion wse aspatia description d motion.

1.4.1 The AssumptionsMade in Film Casting Resear ch

Idedly, the solutionfor afilm casting problem would acammmodate the foll owing:
threedimensional variation d al the variables;, nonsothermal condtions; all external
influences, such as an air-knife or vaauum box; a cmplete rheologicd charaderization d
the pdymer; and the entire deformation and temperature history of the paymer. Such a
model isnot yet, andmay never be, avail able. Themodelsthat have been creaed are subsets
of thisided model. Typicd assumptionsthat distinguish agiven model from theided model
include the foll owing:

. simplify dimensionality: 1D versus 1.5D versus 2D
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. asume isothermal

. asume a onstitutive equation

. excludeinertia effeds

. exclude the self-weight of the polymer

. negled the sag of non-verticd films

. exclude die-swell

. use uniform boundry condtions at the die

. negled surfacetension

. negled air-drag

. negled the influence of the ar-knife and/or vacuum box
. use a single layer of film, as oppcsed to modelling a process where diff erent

polymers are mmbined to form a multil ayer film

Except for the termindogy introduced for the dimensionality assumptions and the
term die-swell, the items in the @dowe list are self-explanatory. Table 1.1 clarifies the
terminology for the dimensiondlity by summarizing the kinematic assumptions on the
velocity comporents (U, v, w) for ead type of analysis. The correspondng coordinate
diredions (X, y, 2) used in the table ae the same & those shown in Figure 1.2. The
dimensionality of the film problem determines whether nedk-in and edge beal can be
acommodated. Thisinformationisalso shownin Table1.1. Asfor the term die-swell, it
can be explained by referring to Figure 1.2 and nding the increase in thicknessas the film
exitsthedie. Thisincreaseinthicknessisdie-swell, andit isexplained by the sudden change

from a confined shea flow inside the dieto an esentialy extensional flow field in the ar-

gap.
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Tablel.1 Summary of the Kinematic Assumptions

Dim Direction Neck-in | Edge
. Bead
M achine (x) Transverse (y) Out-of-Plane (2)
1D u = u(x v=0 W = (X, 2 No No
15D | u = u(x) vV = V(X Y) W = (X, 2 Yes No
2D u = ulxy) vV = V(X Y) W = (XY, 2 Yes Yes

Published research on film casting consists of various combination of the above
assumptions. In some studies good results are obtained for a limited class of film casting
problems. However, the large range of processing conditions and materials encountered in
industry means that no model has been proposed to date that adequately captures al
behaviour. In the sections that follow, the film casting literature is summarized according
tothreekey assumptions: thedimensionality assumption; whether themodel isfor isothermal
conditions; and the constitutive law adopted. Thestudiescitedinthe sectionsthat follow are
for single layer films. Information on multilayer films can be found in Pis-Lopez and Co

(19964, 1996h).

1.4.2 Literature on Steady-State Film Casting
Table 1.2 summarizes the film casting literature that solves the steady-state film
casting problem. The term steady-state is used to indicate that this literature does not

consider transient behaviour or the related phenomenon of draw resonance. The table
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compares the reseach acording to the threekey assumptions mentioned above. AsTable
1.2shows, most of the steady-state film casting studiesare 1D or 1.5D; asa cnsequence of
this, theinfluenceof the edge-bead onthefilm hasreceved orly limited attention. Thetable
also shows that the mgjority of film casting studies assume aNewtonian fluid.

Tablel.2 Summary of the Assumptions Madein the Steady-State Studies

Reference Dim Constitutive Equation Thermal
Avenaset al. (1986 1.5D Newtonian iSO
Cotto, Duffo and Haudin (1989 1.5D Newtonian nonso
d'Haewyu et al.(1990 2D Newtonian iSO
Agassant et al. (199]) 1.5D Newtonian iSO
Alaie and Papanastasiou (1991) 1D BKZ-type integral nonso
Duffo, Monasse and Haudin (1997) | 1.5D Newtonian Nonso
Barget al. (1992 1.5D Newtonian nonso
lyengar and Co (1993 1D Modified Giesekus iSO
Debbaut et al. (1995 2D Power-Law, Maxwell-B iSO
and Giesekus
Sakaki et al. (1999 3D Newtonian iSO
Beaulne and Mitsoulis (1999 1.5D Upper-Conveded Maxwell | nonso
and K-BKZ Integral Model
Rajagopalan (1999 2D’ Giesekus (Giesekus 1982 | iso
Smith and Stoll e (200(r) 2D Newtonian nonso
Aciernoet al. (2000 1.5D” | Newtonian nonso

" Rajagopalan (1999 is 2D in the sense that the thicknessvaries in the transverse diredion,
but edge-bead and redk-in are not included because the mmputational domain is restricted
to the central portion d the film.

” Aciernoet al. (2000 is 1D for the temperature predictions
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1.4.3 Draw Resonance Literature

Table 1.3 isthe same format as Table 1.2, except that the focus is on the stability
research. This summary shows that only asmall number of papers consider the stability of
2D films. Furthermore, nonisothermal problemshavereceived only limited attention and the
variety of constitutive equations considered is small.

Tablel.3 Summary of the Key Assumptionsin the Draw Resonance Research

Reference Dim | Constitutive Equation Thermal
Y eow (1974) 1D Newtonian iSO
Aird and Y eow (1983) 1D Power-Law iSO
Minoshima and White (1983) | 1D Newtonian Noniso
Lee (1984) 2D Power-Law iso
Anturkar and Co (1988) 1D Modified Convected Maxwell iSO
Barq et al. (1990) 1D Newtonian iSO
Barq et al. (1994) 1D Convected Maxwell iSO
Silagy et al. (1996a) 15D | Newtonian iSO
Silagy et al. (1996b) 15D | Newtonian iSO
lyengar and Co (1996) 1D Modified Giesekus iSO
Sialgy et al. (1998) 2D Newtonian and viscod astic iSO
Silagy et al. (1999) 2D Newtonian iSO

" Lee (1984) models the film differently than the other studies, by considering thefilm asa
paralel composition of numerous fibre filaments spun simultaneously.
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1.4.4 Solution Techniques

Table 1.4 summarizesthe sol ution techniques corresponding to the simulation studies
of Table1.2. Thissummary showsthat closed-form solutions are rare and only exist for the
1D and 1.5D cases, and only for the case of viscous fluids. Of the numerical techniques
used, the finite element method (FEM) is the most popular. For the finite element
simulations, the agorithm is either step-wise uncoupled or coupled. When the analysisis
uncoupled, the velocity, width and thickness are each solved in turn, based on the current
values of the other variables. Since such an approach may be slow or may have convergence

problems, coupled al gorithms, which solveall of the variablessimultaneously, are preferred.
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Tablel.4
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Summary of Techniquesused for Solving the Governing Equations

Reference

Solution Technique

Avenas et al. (1986

closed-form solution

Cotto, Duffo and Haudin
(1989

an explicit finite difference method

d'Haewyu, Agassant and
Demay (1990

step-wise uncouded solution tedhnique:

)] the velocity isfound wsing FEM;

i) the width isfound wing the Newton-Raphson
method and then

iii) the thicknessis found wsing the finite volume
method.

Agassant et al. (1991

closed-form solution

Alaie and Papanastasiou
(1997

fully couded Newton-Raphson FEM

Duffo, Monas® and Haudin
(199)

an explicit finite difference method

Barget al. (1992

Runge-Kutta's and Adams-Bashforth’s methods
(Conte and De Boor 198Q pp373376)

lyengar and Co (1993

4™ order Runge-K utta with adaptive step size control

Debbavt et al. (1999

fully couded Newton-Raphson mixed FEM with
upwinding for the masstransport equation

Sakaki et al. (1999

streamline finite dement method

Beaulne and Mitsoulis (1999

fully couged Newton-Raphson FEM

Rajagopalan (1999

a ouped finite dement method kesed onthe dastic-
viscous Plit stressformulation developed by
Rajagopalan et al. (1990

Smith and Stoll e (2000a)

fully couded Newton-Raphson FEM

Aciernoet al. (2000

ashoaing method
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With resped to the determination o draw resonance, the most popuar approad is
linea stability analysis, which is used for aimost all of the studies of Table 1.3. Ancther
approacdh that is sometimes employed isto observe draw resonance & aresporse problem.
In this case the time-dependent governing equations are solved and resonanceis observed
diredly as oscill ationsin thefilm’s geometry. Thisisthe gproach employed by Barq et al.

(1990, 199%and Silagy et al. (1998, 1999

1.5 An Overview of the New Algorithm

Following theheadingsusedin Tables 1.2and 1.3,the arrent study can be dassfied
as 2D and nonsothermal, with aviscoel astic constitutive equation. The constitutive eguation
acaommodates Newtonian fluids, power-law viscosity, elastic df eds and strain-hardening.
Of the asssumptionslisted in Sedion 1.4.1theinfluenceof the following are asumed to be
negligible in this thesis: inertia, self-weight, sag, die-swell, surfacetension and air-drag.
Furthermore, only uniform boundiry condtions are used, the influence of the ar-knifeis
negleded, and only asingle layer of film is modell ed.

The agorithm developed in this thesis can be used for both steady-state and draw
resonance studies, as the dgorithm uses time stepping to solve the transient governing
equations. Stability isassumed to exist if the oscill ations of the film geometry die out when
astealy-state solution hesbeenreaded. Ontheother hand, if the oscill ationsdo nd dieott,

then draw resonanceis assumed to have developed.
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Probably the most important distinction between the algorithm introduced here and
those used in previous studies, isthat the current study usesamaterial description of motion.
This decision has significant ramifications for the finite element algorithm. To better
understand theseramifications, the next section describesthe differences between spatial and

material descriptions of motion.

1.6 Types of Description of Motion

Let us consider the motion of an arbitrary material particle P corresponding to three
different configurations over time, as shown in Figure 1.3 for a two-dimensional (2D)
coordinate system. The motion of P can be described by a relation between the spatial
position (x) and the initial coordinates (X) and time (t); that is, x = x(X, t), with the
independent variables being X and t. This equation expresses a materia description of
motion in aLagrangian (L) formulation. In aLagrangian analysis theinitial configuration
at X provides a reference configuration to which al future variables are referred back to.
Although the choice of a reference configuration is an arbitrary one, often the initia
configuration of the body is selected for a Lagrangian analysis. If instead, the reference
configuration is continuously updated, then one has the updated Lagrangian (UL)
formulation, in which x = x(x(t), t) with the independent variables being x(tr) and t. Inthe
UL approach all variables are expressed relative to the present configuration, at timet, in
order to find the state of the system in a future configuration, at time t+At. For both the L

and UL formulations one explicitly tracks the motion of the particles.
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particle
& path

X(X, T+At)

Y

Figure1.3  Maotion of aparticle over time

For the spatial, or the so-called Eulerian (E), formulation, time and the current
location in space x are the independent variables. Since the focusis on aregion in space,
denoted by the control volume shown by the dashed line in Figure 1.3, particle P is not
unique to the spatial point located at P’. Particle P, which is coincident with point P’ at t =
T, IS one of many particles that pass through P’. It isfor this reason that the kinematics of
the spatial formulation are best expressed in terms of velocitiesand vel ocity gradientsrather
than displacements and displacement gradients.

The choice of description of motion strongly influencesthe numerical algorithm and
theimplementation of thefinite element method. Table 1.5 distinguishesfour finite eement

formulations: Lagrangian, updated Lagrangian, Eulerian and arbitrary Lagrangian Eulerian
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(ALE), and provides osme example gplicaions for eadr. When interpreting the finite
element literature using the definitions of Table 1.5, caution shoud be enployed sincethe
terms UL and E are nat always applied corredly (Gadala, Oravas and Dokainish 1983.

Tablel1l5 Different Finite Element For mulations

Type Mesh Example Applications
L Stationary, corresponds to Solid and structural medhanics, including
material large deformation problems
UL Moves with material, Large deformation problemsin solid and
corresponds to material structural medanics
E Stationary, corresponds to Fluid medhanics, viscoelastic fluids
space (Marchal and Crochet 1987 Louand
Mitsoulis 1990, soil penetration (Van Den
Berg, De Borst and Huétink 1996
ALE Motion independent of Fluid structure interadion, freesurface
material, corresponds to space | problems (Liu et al. 1989

1.7 Purpose and Scope

A new numericd agorithm, based on an updited Lagrangian formulation, is
introduced in this thesis for the simulation o film casting. The two main puposes for
developing the dgorithm are: i) simulations can be performed to gain abetter understanding
of thefilm casting process and hav the problems of nedk-in, edge-bead and draw resonance
are influenced by the material and the processng condtions; ii) the UL algorithm can be

compared to E agorithms to identify the respedive strengths and weaknesses of eat

approad.
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Chapter 2 summarizes the governing partia differential equations and boundary
conditions assumed for this study with Chapter 3 presenting the corresponding numerical
agorithm used to solve the governing equations and associated boundary conditions. The
proposed al gorithm usesaconstitutive equation that ismore commonly encountered in L and
UL formulations, even though theliterature on polymers uses constitutive equationsfrom an
E framework. To relate the current study to the existing body of knowledge, it is necessary
to relate the UL and E constitutive equations, which is the topic of Chapter 4. Chapter 5, 6
and 7, respectively, provide simulation results for 1D, 1.5D and 2D versions of the
simulation algorithm. Each of these chapters includes a parametric study to examine the
influence of various constitutive parameters and processing conditions on steady-state
conditions and on the stability of the film. Chapter 8 compares the UL algorithm to an E

agorithm and Chapter 9 lists the conclusions and recommendations from this study.






Chapter 2 Governing Equations

This chapter presents the governing equations and boundary conditions for the 2D
film casting problem following a UL framework. Equations are provided for equilibrium,

continuity, conservation of thermal energy and the constitutive response.

2.1 Coordinate System and Notation

Figure 2.1 shows the Cartesian coordinate system used for the film casting problem.
Theoriginislocated at the centre of the die, and the coordinates run in the machinedirection
X, the transverse direction y, and the out-of-plane direction z. The dimensions of the film
problem are defined by the air-gap length L, the die width 2W;, and the die thickness 2hy,.
A factor of 2isused inlabelling the dimensions of the dieto facilitate the introduction of the
Symmetry constraints.

In this and most of the subsequent chapters, the notation used is similar to that of
Zienkiewicz (1977), in which symmetric 2™ order tensors, such as stress and strain, are
represented as vectorsand the constitutive descriptioniswritteninmatrix form. All symbols
used inthisthesisaredefined upontheir first usage. Inaddition, alist of symbolsisprovided
starting on page xvi and the component expansions of the variables are summarized in

Appendix A.

19
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Figure2.1  Coordinate system and dimensions for the 2D film casting problem

2.2 Equilibrium Equation
Ateveryinstantintimethefilm must satisfy theequilibrium equation. If inertia, self-
weight, air-drag and surface tension are neglected, then the equilibrium equation can be
written as
L6 = 0 (2.2)
where L isthelinear differential operator that relates incremental strains Ae to incremental

displacements u, such that Ag = Lu, and ¢ is the Cauchy stress tensor for the deformed
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configuration. Appendix A shows the comporent expansionsfor L, 6, Ac andu. Thefilm
is asumed to behave & a membrane, which reduces the number of comporents in the
equili brium equationto orly those necessary for aplane stressproblem;i.e. 6 =[o,, o, GXy]T.
This reduction is posgble because for a membrane the normal to the film’s surfaceis
approximately in the z-diredion, and the magnitude of the out-of-plane shea is negligible
when compared to that of the other comporents. Thisassumptions applieswhen thefilm is
thinandthethicknessgradient is small. Strictly spe&king the membrane gproximation daes

not hold at the edges of the film (Peason 1985 p478.

2.3 Continuity Equation
Theequili brium cdculation using the membrane gproximation ony predictsthein-
plane incremental displacements u and v. To determine the out-of-plane incremental
displacanent w, an explicit cdculation wsing continuity, that is, volumetric strain
considerations, must be introduced. If the melt is assumed incompressble for both the
viscous and the dastic resporses, the out-of-plane strain can be related to the two in-plane
comporentsvia
A, = ~(Ag,, + Ae)) (2.2

which in turn can be used to cdculate w.
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2.4 Conservation of Thermal Energy

In the case of nonisothermal film casting, the transient 2D temperature field T(x,y,t)
of the membrane can be calculated using the following governing partia differential
eguation:

W) - oT - T,) - O = 0 (2.3)

where V' = [0/0x 0/9y], a is the hea transfer coefficient from the film’s surface T, isthe
surroundng air’'s temperature, and k, p and C are material properties for the thermal
conductivity, density and spedfic hed cgpadty, respedively. The sourceterm inthe ébove
equationis adualy aboundry condtion onthe film’s upper surface where Newton'slaw
of codling isassumed to apply. The conservation d thermal energy equation assumes that
the temperature varies littl e through the thicknessof the film. The equation aso negleds

viscous disgpation, asit is assumed negligible for the film casting process

2.5 Constitutive Equation
Adopting a onstitutive equation for an elastic material that is cregoing andinvoking
the alditivity postulate, the incremental form of Hooke' s law may be written as
Ac = D (Ae - Ag®) (2.9)
where Ac isthe stressincrement, D represents the dasticity matrix, and Ae and A¢® are the
total strain and creep strain increments, respedively. The mmporents of D are given in

Appendx A andthe derivation d D is hown in Appendix B.
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The creep strain increment may conveniently be expressed using the approach
adopted by Perzyna (1966), which in amodified form can be written as

.c Oy
Ag® = Atg =L
q ac (25)

with At being the time step, a; the effective creep strain rate and y the creep potential
function, which is defined as
v =9, withq =,/3], (2.6)
The parameter q is the effective stress (Kraus 1980: p29), and J, represents the second
invariant of the deviatoric stress tensor.
If the creep strain rate is assumed to follow atime hardening creep law, then
a; = Ag™t" (2.7)
where A, mand n are constants and t is the total time. Thislaw can be transformed into the
strain hardening form, by holding g constant and taking the time derivative of Equation 2.7.
After some manipulations, the strain hardening relationship for the creep strain rate is

obtained by eliminating timet in the rate equation through the use of Equation 2.7; i.e.,

n-1

& = NATQ " (g) " (2.8)
A close examination of the above equation indicates that it is an equation of state, in which
& = f(eq 0). A special caseof Equation 2.8 occurswhenm=n=1and A= 1/(2y°). Inthis

case the above equation describes a Von Mises material, with a creep viscosity of n°. The
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viscosity isassumed to depend ontemperaturevia an Arrheniusrelation,whichisintroduced

through the A parameter via
# 4
A= Ag RIT T (2.9

where Q isthe adivation energy, Ris the gas constant (8.314Jmol™* K™*) and A, and T, are
the referencevalues for the A parameter and for the temperature, respedively.

Figure 2.2ill ustratesthe constitutive resporse by showing how the stresschanges as
the material undergoes an isothermal uniaxial extension. Plot (a) shows that the function
relating stressc and elastic strain €® islinea, with aslope equal to the dastic moduus E.
Theviscousresporseis siowninPlot (b), whichill ustratesthe variation o stresswith cregp
strainrate £°. Inthe cae of aNewtonian fluid the viscosity is constant, bu for extensional
thinning and thickening materias, increasing strain rates lead to deaeasing and increasing
viscosities, respedively. The mnstitutive description adopted in this thesis combines the
resporses shownin (a) and (b) to produce aviscoelastic material, whichisill ustrated in Plot
(c). Thisplot shows threelinea Maxwell elements undergoing the same wnstant rate of
straining. The dementsare distinguished from one another by their relaxationtime, which
isameasure of how long the material “remembers’ past deformations. Thelower the value
of A, the doser the materia’s resporse is to a viscous fluid and the higher the value, the
closer the resporseisto an elastic solid. The threepreviously discussed plots (a, band )
show amaterial that isnot fundamentall y changed by itsdeformation history, bu if thevalue

of the strain-hardening parameter nis not equal to 1.0,then the material behaviour will be
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affected by itspast deformation. Plot (d) shows strain-hardening and softening materials, for
which the constitutive behaviour depends on the total value of the accumul ated creep strain.
The softening behaviour (n > 1) in Plot (d) is unstable; therefore, the materials considered

in this study will requirethat n < 1.

a) Linear Elasticity b) Power-Law Viscosity (n = 1.0)
g, E1 o Extensional Thickening (m < 1)
E2 Newtonian (m = 1)
E,
- Extensional Thinning‘m >1)
E,>E,>E, €° £°
c) Linear Viscoelasticity (m=n=1.0) d) Nonlinear hardening
o—A )\1 OA Strain-Hardening (n < 1)
A,
)\3 n=1
- Strain-Softening (n > 1)
_ e _ g
A <A,<A; ; € = constant € = constant

Figure2.2  Examplesof constitutive behaviour under isothermal uniaxial extension

2.6 Boundary Conditions
The boundary conditionsfor the half width of the film casting problem are shownin
Figure 2.3. Asmentioned earlier, the film is assumed to be symmetric about its centre line.

The mechanical boundary conditions specified inside the die and on the roll imply that the
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filmwill move downstream (in the machinedirection) asarigid body at theselocations. The
ratio of the downstream speed at the roll to the speed at the die provides an important
dimensionless number for characterising the film casting problem, the draw ratio Dr, where

Dr=u,,/U,.. Ontheroll thetransverse v and out-of-plane W velocities are set to zero to

roll
simulate the sudden freezing of the melt when it contacts the chill roll. At the free surface
and theline of symmetry, the natural boundary conditions of zero normal stress(e,) and zero
shear are assumed to apply. The thermal boundary conditions for the film consist of
prescribing the temperature inside the die as T, and setting the normal thermal flux g, to
zero on all other surfaces. A zero thermal flux approximation is reasonable given the
thinness of the film and its poor thermal conductivity.

One should note that the boundary conditions are expressed in terms of spatial
locations, but the governing equations are expressed in terms of the material particles. The
boundary conditions that are applied to a given material particle will change as it moves
downstream. For aparticle with afinite size the spatial location of the transition from one

set of boundary conditions can only be approximated. Thisfact causes some difficultiesfor

the numerical agorithm, which will be discussed in the next chapter.
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Y a
Free Surface
Die
U = Uge
V= Roll
\'1'\/:_19 U: l-Jroll
die \-/= O
w=0
0,=0
. - >
Line of Symmetry v=0 X
Oy = 0
q,=0

Figure2.3  Boundary conditions for the 2D film casting problem

2.7 Initial Conditions

Thetransient analysesof thisstudy typically start with thefilminsidethediewiththe
temperature set to T, The initial stresses and accumulated creep strain for the material
inside the die are assumed to be zero. Strictly speaking, the initial stresses and creep strain
are not likely to be zero, as flowing through the die will deform the material. However, the
flow in the die is beyond the scope of the present work, so in the absence of upstream

information, the stresses and accumulated strains will be assumed to be zero. Thisisthe
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same assumption used by Debbaut et al. (1995) for their viscoel astic fluid film casting study.
A consequence of the zero stress condition, along with use of the membrane approximation,

isthat the die-swell phenomena cannot be accommodated by the present study.



Chapter 3 Numerical Algorithm

Thischapter describesthe UL time-stepping finiteelement algorithm for numerically
simulating film casting. Section 3.1 provides an overview of the agorithm and the
definitionsfor theimportant variables. Thereafter, Sections 3.2to 3.7 provide more specific
details on the algorithm by describing the following steps: data input, initialization of
variables and updating constraints, the nonlinear solution step, the radial return algorithm,
the solution of the nodal temperatures, and updating the mesh. Section 3.8 develops the
average strain element used by the algorithm with Section 3.9 discussing some issues
regarding efficiency. Inthefinal section, Section 3.10, the computer implementation of the

numerical algorithm is addressed.

3.1 Overview of the Time-Stepping Algorithm

Figure 3.1 provides aflowchart for the time-stepping UL finite element agorithm.
To simplify the presentation, the flowchart shows only those variables that are most
important, which include the current time (t), the final time (t;,.,), the nodal coordinates (x,
y, 2), the displacement degrees of freedom (u, v, w), the stresstensorsaat theintegration points
(o), thetotal effective creep strain at the integration points ( sg) and the temperature degrees

of freedom (T). Asusual, the symbol A is used to denote a change in avariable. In the

29
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current context the bold face symbolsrefer to system level variables; that is, they are vectors
that storevaluesfor al thenodes, or al theintegration points, as appropriate. Some of these
same symbolswill bereused later in this chapter, but to refer to element level variables. The
multiple meanings of the symbolsisintended to simplify the notation, and it should not lead
to any confusion, asthe meaning of the variableswill be clear from the context in which they
are used.

Each time step of the UL algorithm starts from a known configuration and solves a
materially and geometrically nonlinear finite element problem for the nodal displacements
and temperatures. At theend of each time step the mesh, stresses, effective creep strainsand
temperaturesareall updated. Theupdated values provide anew reference configuration and
state, which allows one to repeat the prediction process for the following time step.

After many time steps, agiven finite element will experiencethefollowing sequence
of events: i) exitsthedie; ii) travelsthrough the air-gap; iii) moves on to the chill rall; iv) is
removed from theroll and isreinserted and reinitialized inside the die to begin the sequence
again. In principle, the time-stepping process can be continued indefinitely; however, this
isunnecessary for astable film problem as the transient behaviour will eventually damp out

and a spatialy steady-state solution will be reached.
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Input:
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Solve:
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Figure3.1  Flowchart for the time-stepping UL finite element
algorithm

3.2 Input Data

The first step in the program is to read in the information that describes the film
casting problem, such as the materia properties, the numerical parameters, the element

connectivity and the boundary conditions. Initial values must also be provided for the time,
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the nodal coordinates, the stress, the total effective creep strain and the temperatures. By
default, theinitial time, stress and effective creep strain areal zero, the temperatures are all
equal to T4, and all of the elementsare stored insidethedie. However, for some simulations
it ismore efficient to use more complex initial valuesfor these variables. One option isto
useinitial values for anew simulation that are the fina values of a previous simulation, in
order to start an analysis from a reasonable initial geometry. Figure 3.2 shows a sample

mesh for the situation when such an option is followed.

y
Free Surface
¥
[ //\/\\\\\\\\\\
. /
[/
[11]]
WIS )]
Ll
L]
Line of Symmetry
s X,
<« <> -
Inside Die Air-Gap On Rall

Figure3.2 A samplefinite element mesh
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3.3 Initialize Variables and Update Constraints

At the beginning of ead time step various variables are initialized, such as the
incremental displacement degrees of freedom (dof), which are set to zero. Ancther task that
is performed at the beginning of ead step is updating the constraints on the displacement
dof. To determine the mnstraints, ead nock of the finite dement mesh is classfied
acordingtoits gatial locaion. Figure 3.2showsthefive spatia clasgficaions: insidethe
die, onthe chill roll, in the ar-gap, onthe line of symmetry, and at the freesurface. In
additionto constraints required by anode’s gatia location, constraints are dso required if
the problem isassumed to be ather 1D or 1.9D. Thekinematic assumptions that define the
terms 1D and 1.9 are given in Sedion 1.4.1. The @nstraints asociated with the node's
gpatial location and the dimensionality of the problem are shown in Table 3.1.

Table3.1 Displacement Constraintsfor the Nodal Degrees of Freedom

L ocation of node Dimension of Problem Prescribed Displacements
Inside die any U=Ug,vV=0,w=0
Onroll any u=ug,v=0,w=0
On line of symmetry any v=0
In air-gap 1D problem U=Ug,V=0,w=wg

1.5D problem U=Ug, W=Wg

For agiven film casting problem, the values of the velocities at the die androll are provided,

which dlows the cdculation d uy, = At-u,, and u, = At-u In Table 3.1, the

roll roll *

subscript CL refers to the centre line incremental displacements, which are handed
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differently than the constraints at thedieand roll. When the CL constraint applies, all of the
appropriate degrees of freedom in agiven column, say column j, are constrained to the same
value as that corresponding to the dof at the line of symmetry. That is, using the node
numbering shown in Figure 3.3, U; = U ; and w; = Wy, wherei is the row number (2 to 4)
and j isthe column number. This constraint is used for al the columns that are located in
the air-gap. When the constraint u; = u; is active dl the columns of nodes will remain
paralel to the die. If the w; = w,; constraint is also in effect, then the thickness across a

given column of nodes is constant.

YA columnj-1 column j columnj+1

Figure3.3 A sample of several columns and
rows of the finite el ement mesh



Chapter 3 Numerical Algorithm 35

3.4 Solvefor the Nodal Displacements

Tofind the displacement degrees of freedom, afully implicit creep agorithm (Stolle
1991) isused. Owing to the linearization of the equations, an iterative scheme is required
to converge to an equilibrium solution within each time step. On the first pass, the finite
element equations for equilibrium can be expressed as follows, using the notation of

Zienkiewicz (1977):

fBTD"eB dva = R - fBTch + fBTAcch (3.1)

\Y \Y \Y

with

.

p* - b - ¢,p%9[ %) p 3.2)
oo\ Jo
Ac® = C FD% (3.3)
! 06 )
) 1 ~(oF) T, aq __OF

R e A e @4

q
where F = At-é;, aisthe dof vector for the in-plane displacement increments (u and v), R

istheload vector, V isthe volume of the domain, B isamatrix such that A = Ba, Ac®isthe
creep stressincrement, and DY isthe viscoel asti ¢ constitutive matrix, which may correspond
to nonlinear behaviour. It should be recognized that at this stage of the calculations a
represents afirst estimate for the changein displacements. For subsequent passes within an
equilibrium iteration loop, the finite element equations, which provide a correction for a,

simplify to
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fBTDB dVAa = R - fBTch (35)
\ \%

with a < a + Aa, where theright arrow notation represents the assgnment of avaueto the
variable a (Rojiani 1996 p65). In Equations 3.1and 3.5,the so-cdl ed initial stressmatrix
K., whichisusually included for an updited reference @nfigurationformulation (Stoll e and
Schad 1992, isnat introduced, asit wasfoundto havelittl einfluenceonthefinal resultsfor
the classof problems addressed in thisthesis. The bookkegping indices denating the time
step have been left out of the dove egquations to simplify the natation. A derivation d the
implicit creg agorithm andan expansion d itstermsare provided in Appendices A and C.

Asthe equili brium equationis appli ed to the membrane, Aa doesnot contain the out-
of-plane comporent of the incrementa displacement Aw. To find Aw, the cntinuity
eguation (Equation 2.2 is multi plied by the traceof the virtual strain tensor 6(Ag), whichis

consistent with the virtual displacements, and is then integrated over the film’s domain

f (6(Ae,) + S(Aayy) + 8(Ae,))(Ag,, + Aayy + Ag)dV = 0 (3.6)
v

Equation 3.6 hesthe advantage that it preserves the units of work dore, asthe changein the
virtual volumetric work dore an be expressed as 6(AW,) = tr(6Ag)-Ap and Ap = a-tr(Ag),
where Ap isthe dhangein presaure andtr(Ag) > Oasa — «, for an incompressble material.
Equation 3.6can besimplified by observing that Ae,, = 3Ae,, = 0, sincebath Auand Av are

spedfied by Aa, which is known:
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f 3(Ae )Ae, dV = - f 3(Ae)(Ae, + Ag ) dV (3.7)
Vv \%

Theabowve gquationcan be expressed in the usual finite dement notation, with theuse of B,,,

which contains the cmponrents of the B matrix that are used to cadculate Ae,,
T T
fBZZBZZdVAW = —fBZZ(AaXX + Mg, ) dV (3.8)
\ \

in which Aw is the nodal values for Aw and (Ag,, + Ag,) can be caculated for eah
integration vdume dter a or Aa is determined from the equili brium considerations.
For ead time-step, the changesinthedof vedorsare cdculated repeaedly, urtil the

convergence citeria satisfies a given tolerance (toler), as foll ows:

ax[ IAa] M) < toler 39
lal " Iwi

where ||-||impli es the Euclidean nam of the vedor in question.

3.5 The Radial Return Algorithm

After solving for the displacement increments the loca stresses and strains are
updkted using aradial return algorithm simil ar to that presented in Borja andLee (1990 and
Stolle et al. (1997). In the radia return algorithm, the stressinvariants p and g, which
correspondto the presaure and the dfedive stress respedively, are first updated and then

used to scaethe stresstensor ¢ and to updite the dfedive aee strain e;. Sincethe aee
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response of the constitutive equation (Equation 2.8) does not depend on the pressure, p and
g may be updated in an uncoupled manner.

Updated values of g may be expressed as

d = q, + 3GAs, - 3GASS = q, - 3GAsS, where Ag, = %J; (3.10)

with g, astheinitia valuefor g, g, asthe elastic prediction for g in the absence of creep, G
as the shear modulus, J,* as the second invariant of the strain deviator, and Ae, and Ag, as
the increments in the effective strain for the total and creep responses, respectively. The
equationsfor theinvariantsare providedin Appendix A. A closed-form solutionfor Ag® can
be found, as shown in Appendix D, by integrating the creep response over the time step At,
with the assumption that the stress is constant over the time step, yielding
Aag = 8;[(n8;)’”(ns; + é;At)” - 1] (3.11)
where n is the constitutive parameter that determines the strain-hardening nature of the
material. If Equations 3.10 and 3.11 are combined, then the following equation results
q = 0, — 3Geg(neg) "(neg + sAN" — 1] (3.12)
Aniterative Newton-Raphson schemeis adopted to solvefor g, as presented in Appendix E.
Once g is determined, the deviatoric stress tensor s may be updated using the

following scaling:

s = —s° (3.13)
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with s° being the deviatoric stress tensor for the elastic stress that corresponds to the
invariants p, and ., where p, is the elastic prediction for p in the absence of creep.

To obtain the compl ete stress tensor, the value for p must also be calculated. For the
membrane formulation 6,,=s,,- p = 0 and tr(s) = O; therefore, a simple relation exists for
determining p for any stress state; i.e.,

Pp= (54 *S (3.14)

The updated stress is obtained by using Equation 3.13, along with Equation 3.14 to
calculate

6=--pl +s (3.15)
where | isdefined (see Appendix A) so that p is added only to the normal stresses.

Finally, thechangeintheeffective creep strain may befound by rearranging Equation

3.10 asfollows:

Agg = (3.16)

With the increment of effective creep strain determined, the total effective creep strain can

be updated asfollows: & - g + Agg.

3.6 Solvefor the Nodal Temperatures
Thefinite element equations for temperature are found by multiplying Equation 2.3

by avirtual temperature 5T and integrating over the volume of the film. After application
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of the divergencetheorem, introducing the 2D discretization for temperature, and the zero

flux boundry condtions, the foll owing is obtained:

HT + CT =F (3.17)
with
H - [BrkBrhdA + [NraN dA (3.18)
A A

C - fNIpc N dA (3.19)

A
F = [N7aT,,dA (3.20)

A

where T isthe temperature dof vedor, T isitstime derivative, A isthe aeaof thefilm, N,
isamatrix suchthat T = N-T, Byisamatrix such that VT = BT, histhefilm’sthicknessand
the other termsaredefined asin Sedion 2.4. Thefinite dement matricesfor thetemperature
analysis are expanded in Appendix A.

To cdculate thetransient temperaturefield afinite diff erence gproximationfor the

time derivativeisintroduced as foll ows;

oo T T (3.21)

At
where the subscripts k and k+1 refer to the aurrent time and the next time step, respedively.
A fully implicit algorithm isobtained if the ebovedivided dff erenceisassumed to represent

the rate of change & the end d the aurrent time step. If Equation 3.21is substituted into
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Equation 3.17,a the end d the aurrent time step, then, after some manipulations, the

following is obtained:

C
[H + E]ATK = F, - HT, (3.22)

whereT,,, =T, + AT,. Equation 3.22islinea; therefore, urlike the displacement dofs, AT,

can be solved dredly withou any need for iteration.

3.7 Update M esh, Update Temperatures, Output Results and Renumber the Mesh
Oncethe nonlinea solution has converged and the temperature changes have been
determined, the time, the mesh, the temperature e well as other variables are updated. The
mesh is not updated during the solution step to improve the stability of the dgorithm by
working from apreviously converged solutionfor all of theintermediate cdculations. After
theupdate, theresultsfor thedisplacanent field, geometry, stresses, strains, total cregp strain
and temperatures are output to files. Foll owing this, the mesh is cheded to seeif elements
that areontheroll can beremoved andreinserted badk insidethedie. Elementsareremoved
from theroll after a mlumn of elements ansthe dill roll’swidth because these dements
nolonger contribute to the solutionin the ar-gap, which istheregion o interest. They are
removed by shifting the node numbers and element numbers aheal by one; this effedively
deletes the information in the last elements. To add rew elements inside the die, the first

column of nodes and elements are redefined to take on the new element properties.
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3.8 Average Strain Film Elements

To construct the finite element stiffness matrices an average strain approach is
employed, as presented by Stolle (1992) and Stolle et al. (2000). The average strain
approach, which is an aternative to Gauss quadrature, has the advantage of defining
gradients for a region, rather than for a point. This suits the assumption that the film
properties are averaged through its thickness. Another advantage for the average strain
approach, which is beneficial for the deforming mesh of a UL formulation, is that the
integrations are exact, even for distorted elements.

The finite element used for film casting, which is shown in Figure 3.4, is a special
case of the three-dimensional brick element. One element is used across the entire half-
thickness of the film because, although each element has a 3D geometry, only thefirst four
nodes are necessary to fully describe its shape and behaviour. Thisis possible when the x
and y coordinates, and the associated u and v displacements, are assumed not to vary across
the thickness. Furthermore, the z-coordinate, and the associated w displacement, are both

assumed to be zero at the mid-plane of the film.
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Figure3.4 A typical film element

Figure 3.4 showsalocal film element (the global element usesthe global numbering
for the entire system). Thelocal element must be divided into four sub-elementsto prevent
asingular stiffnessmatrix (Stolle 1992). Figure 3.5 showsthe plan view of the film element

and the four sub-elementsin the x-y plane.

Figure3.5 Planview of afilm element and
its sub-elements
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The 3D strain tensor Ag® is caculated for the d™ sub-element using the foll owing

eguation:
u
a_ 1 _ nd
Ag? = Wffde v|dxdydz = B% (3.23)
\4 w

where V® isthe sub-element’s volume. Starting from the @owve eguation, the BY matrix for
the d' sub-element can be derived, as shown in Appendix F. The entries from B¢ can then
be used to construct the B matrices used to cdcul ate the in-planeincremental displacements
and the B, matrices used to cdculate the out-of-plane incremental displacements.
AsFigure 3.2 shows, the nodes of the film elements that are a@ossng the die or roll
rarely coincidewith the start locaion o these spatial boundary condtions. Figure 3.6shows
thismore dealy via an exploded view of sometypicd el ementsasthey crosstheroll for the
1D, 1.5D and 2D cases. To addressthe problem of diff erences between the mesh and the
gpatial boundry condtions, two speda elementsare used: adie dement andaroll element.
For an element that is crossng the die or roll, the average shape function gradients are
cdculated using aredefined geometry. For these dements the x-coordinates are redefined
to coincide with the x-coordinate of thedieor roll. Inthe cae of the die dement, nofurther
redefinition d the locd coordinates is required, whereas for the roll element they and z
values must be interpolated to their values where the dement crosses onto the roll. The
redefined noddl locaions for the 1D and 1.9 cases are shown in Figure 3.6 as trapezoids

that coincide with the locaion d theroll. Figure 3.6 dbesnot show redefined nodesfor the



Chapter 3 Numerical Algorithm 45

2D case, because the 2D elements cannat be treaed in this Smple manner. Asthe figure
shows, two ou of thethree ekample dementsfor the 2D case have an oddnumber of nodes
ontheroll. Thismakesit impassblefor asimple redefinition o the nodesto form a “new”
quadril ateral element in the ar-gap. Therefore, in the cae of 2D analyses the die and roll
elements are not employed. For the 2D case no speda measures are taken to corred the

elements at thedieor roll.

Figure3.6  Movement of typicd film
elements onto the roll

3.9 Improving the Efficiency of the Algorithm
The UL time-stepping algorithm is computationally expensive due to the large
number of time steps required; therefore, some measures were taken to improve the overall

efficiency.
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The majority of the program’s exeaution time is gent in the solver step, so an

efficient LDL" solver isused, simil ar to that presented in Bathe (1982. A conjugate
gradient (CG) solver was alsoimplemented, bu it proved to belessefficient thanthe
LDL" solver. Although ead solutionfor Aa isfaster with the CG solver, more sub-

iterations are necessary, owing to the gproximate nature of ead solution. Another

measure for reducing the time aciated with matrix decompasition is to reuse a
previous matrix decompaosition for subsequent caculations. Although the stiff ness
matrix changes from the first to the second sub-iterations (from Equation 3.1to
Equation 3.5), after the second passthe stiff nessmatrix no longer changes, so the
same deamposition can be reused urtil the dof vedor converges.

Ancther approach to speel up the solver step is to solve for fewer degrees of

freedom. Besides using an appropriately numbered and dvided mesh, the degrees
of freedom can be reduced by not solving for nodes inside the die, which as Figure
3.2 shows, represents a large number of nodes. The solution for these nodes is
known a priori so there is no real to include them in the cdculations. A

straightforward methodfor eliminating these nodes from the cdculationsisto shift

the constrained dsplacementsinsidethedie, as iownin Table 3.1,from uy, to zero.

Asthesolver ignoresthefixed dd's, thediedofsnolonger need to beincludedinthe
cdculations. To ensurethat the proper gradients are cdculated, theroll constraints

must also be shifted, from u,,, to u,, - Uy.. Thex-diredionnodal displacenentsare
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i)

shifted forward by uy, before updating the mesh and writing the displacementsto the
output file.

To reduce the number of degrees of freedom further, the middle of the width of a2D
film may sometimes betreated asa 1.5D problem. That is, aband of nodes, starting
at the line of symmetry and forming a column parallel to the y-axis, are constrained
to share one value for each of u and w. Besides reducing the total number of dofs,
this1.5D constraint also reducesthe error that can accumulatein the mesh after many
timesteps. The source of thisaccumulated error isthe boundary condition at theroll.
If the situation occurs where a node at the line of symmetry isin the air-gap, while
the node above it has moved asmall distance onto the roll, then asmall error exists,
which may be exaggerated significantly over subsequent time steps.

A final step to improving the speed of the program is the addition of another
constraint to Table 3.1. If anodeisintheair-gap and it ison the leading edge of the
film, then it is constrained to have avalue that gradually increases from ug, to u,,, as
it movesfrom the dieto theroll. Thisconstraint isonly active at the beginning of a
simulation, when the mesh has not yet reached the chill roll. Itisintended to reduce
the number of time steps necessary for the film to reach the roll. Moreover, by
gradually increasing thevel ocity of theleading edge, thefilm naturally acquiressome

of the characteristics of its eventual solution.
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3.10 The Computer Implementation of the Algorithm

The numerical agorithm described in this chapter was programmed using Borland
Delphi, which isaversion of the Pascal language that incorporates object-oriented features
and rapid application development using visual components. The program was written to
accomplish the following tasks: generate the initial meshes and input files, implement the
time-stepping algorithm and generate the output files. Post-processing was done using
Matlab to view the time histories and Quattro-Pro and Tecplot to visualize the data at
different instants in time. The magjority of the simulations for this thesis were run on a
Pentium Il computer with 128 MBytes of RAM.

Thetime required to complete the simulations varied depending on two factors: the
assumed dimensionality of the problem and the draw ratio. In general, when the problemis
assumed 1D, the simulationstake lesstimethan for a1.5D or 2D simulation, becausethe 1D
problem does not require additional el ementsin the transverse direction. Thedraw ratiois
an important factor in the overall ssimulation time because, as presented in future chapters,
when al other parameters are held constant the higher the draw ratio the longer the duration
of the transient behaviour. For a 1D problem at a low draw ratio, the simulation time is
approximately onehour. At higher draw ratiosthe simul ations may take eight hoursor more.
In the case of 1.5D and 2D simulations, the processing time can range from afew days to

over aweek for 2D problems operating at high draw ratios.
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Information on the material properties of many polymers can be found in the
chemical engineering literature, however these properties do not map directly onto the UL
constitutive equation presented in Chapter 2. For the cases of aviscous fluid and alinear
viscoelastic fluid, it is possible to mathematically relate the common E equations to the
proposed UL equations. In the case of nonlinear viscoelasticity however, the mapping
between the constitutive equationsin the E and UL frameworksisunclear. Asaconsequence
of this, caution must be employed when comparing the results of this study to observations
in the film casting literature when nonlinear constitutive equations are involved.

Section 4.1 relates the UL constitutive parameters to the power-law fluid often used
in the polymer processing literature. Section 4.2 presents the Maxwell element and how it
is typically generalized in the UL and E frameworks. In the case of a linear Maxwell
element, the parameters of the UL and E versions can be related, as shown in Section 4.3.
The simple mapping however does not apply for the nonlinear constitutive equations, as
demonstrated in Section 4.4, where the nonlinear responses are compared for the case of a
constant rate of uniaxial extension. Throughout this chapter the index notation is used to
represent vectors and tensors and the Einstein summation convention is assumed to apply.

This notation differs from that in the other chapters, where bold face symbols and tensors

49
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written as column vectors are employed. The change in notation is made to simplify the
presentation and to highlight the fact that the discussion in this chapter is more general, in

that it refersto stress and strain measuresfor any problem, not just the film casting problem.

4.1 Power-L aw Viscous Fluids

In the E framework most often used in fluid mechanics, the power-law constitutive
eguation can be written as

T, = 2K1i "D, , 1i = /2D, D (4.)

where t; is termed the extra-stress tensor, D;; is the rate of deformation tensor, K and p are
constants, and |i is proportional to the second invariant of the rate of deformation tensor.
Appendix H shows how Equation 4.1 can be related to the UL constitutive equation
presented in Section 2.5 by taking the following into account:
) the extra-stresstensor hasthe same definition asthe deviatoric stresstensor (t;, = s);

i) for viscous materials (low rel axation times) the el astic strain rateis small, so that &;

is approximately equal to & ;

11)] for small displacement gradient components, &; is approximately equal to D;
(Malvern 1969: p162); and,

iv) the material is assumed to have no strain-hardening (n = 1.0).

The UL constitutive parameters in terms of the power-law parameters are as follows:

(4.2)

= |

and
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B1 1
A:32ﬁK[} (43)

A specia caseof the power-law fluid isthe Newtonian fluid, which is obtained when
B =1. Inthiscase Equations 4.2 and 4.3 simplify to m=1 and A = 1/(3K). To further
highlight the Newtonian fluid, two symbols are introduced: n® and n°, which are termed the
shear and creep viscosities, respectively. These viscosities are related to K and A, and to

each other via

3
K=w, A=——, andn"--n (4.4)

4.2 UL and E Generalizations of a Maxwell Element
A linear Maxwell element consists of a spring and dashpot in series, as shown in
Figure 4.1. The corresponding constitutive equation for the Maxwell element is (Joseph

1990: p2)

c+ A =20y, A = (4.5)

nS
G
where ¢ isthe force in the element, which isthe sameforcein the spring and in the dashpot,

and 7 isthe sum of the rate of straining in the spring and dashpot (7 = 735 + 79).
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Figure41l A Maxwell element

Both the UL and E forms of the Maxwell fluid are based on generalizations of the
linear Maxwell element shown above. The generalizations have to address two points: i)
how to extend the one-dimensiona element to multiple dimensions; and, ii) how to
accommodate large deformations. Table4.1 showshow these points are typically addressed
in each framework.

Table4.1 UL and E Generalizations of the 1D M axwell Element

Framework | New o New vy L arge Deformations
UL 5 Ag; follow the material
At
E S D;; convected derivative for the stress

As Table 4.1 shows, both the UL and E frameworks generalize the force as a
deviatoric stresstensor. The constitutive responseiswrittenintermsof the deviatoric stress
because the materia is assumed to be incompressible. Large deformations in the UL

approach are accommodated by following the material. The E formulation, on the other
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hand, does not directly follow the material; it focuses attention on a point in space.
Therefore, the E formul ation employs convected derivativesfor therate of change of stress.
Convected derivatives are derived so that the constitutive equation is objective; that is, a
stressrate is chosen that isframe-indifferent (Malvern 1969: p402). Convected derivatives
account for the mass movement of the materia, its rotation, and in some cases its
deformation. Anin-depth discussion of the convected derivatives can be found in Oldroyd
(1950), Lodge (1974) and Bird (1987). A unique definition for convected derivatives does
not exist, although one popular form is the upper convected derivative, which is presented
in Section 4.4.

From the above discussion it appearsthat the UL formulation provides amore direct
anaog of the original Maxwell element. The E formulation is more complicated, and has
two inconsi stenciesthat are worth noting: therate of strain tensor isnot equivalent to therate
of deformation tensor, except in the case of small displacement gradients (Malvern 1969:
p162), and, although the convected derivative for stress and the rate of deformation tensor
are both objective, there is an inconsistency in that they may not always be chosen so as to
be conjugate to one another in the energy sense. Given the differences between the UL and
E formulations of the Maxwell element, it seems unlikely that the formulations describe the
same constitutive response, except possibly inthelinear case, which isdiscussed in the next

section.
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4.3 TheLinear Maxwell Fluid

In this section the discussion islimited to small displacements (say lessthan 5%), so
that the nonlinearities associated with convected derivatives need not be considered and a
linear constitutive equations can be assumed. Inthe chemical engineering literature alinear

small strain Maxwell fluid is often written as (Joseph 1990: p6)

T+ Mij = 211SDij (4.6)
As Appendix H shows, the UL constitutive equation may be written in an equivalent form,
by using assumptionsi), iii) andiv) from Section 4.1, and by settingm=n=1

S; t A8 = 2% (4.7)

Appendix H also shows several equivalent definitions for the relaxation time

o (4.8)

4.4 UL and Nonlinear E Constitutive Response for a Constant Rate of Extension

In the previous section small strainswere assumed,

but in this section larger strains are allowed; therefore, the U,
constitutive response becomes nonlinear. To simplify the 1»’)2
< L -

comparison of the constitutive response in the E and UL

Figure4.2  Uniaxia
formulations, this section focuses on the case of aconstant extension

rate of uniaxia extension, for which the equationsare 1D and rotation isnot afactor. Figure

4.2 shows the boundary conditionsfor the uniaxial extension problem. Theinitia length of
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the specimen is L,. For a constant rate of natural strain (¢) the natural strain () can be
determined by integration, and the length (L) as a function of time can be determined as

follows:

L .
e =In(—) =&, - L=LeH
(Lo) 0 (4.9)

Equation 4.9 can be used to determine the variation of the velocity at the free end (U)
required to keep the extension rate constant
o= 9t g e (4.10)
dt 0 '
Inthe UL framework the constitutive equation (Equation 4.7) for aconstant uniaxial

extension ssimplifiesto

. . Gxx
GXX = E(S - 2_1,]0) (411)

Thislinear differential equation can be solved using theinitial condition ,, = 0 to yield

t

. (4.12)

As mentioned previously, a popular nonlinear version of the Maxwell fluidinan E
formulation is the upper convected Maxwell (UCM) fluid, which can be written as
}"Eij T = ZHSD”- (4.13)

with the upper convected derivative defined as
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o= —0 -

i Dt T~ Tk (4.14)

where L; is the velocity gradient tensor and D/Dt is the material derivative. Inthe cae of
a onstant rate of uniaxial extension, the stressin a UCM fluid as afunction d the naturd

strain rate ¢ isfoundin Appendix | to be

@2yt (-1

2n% x N %
= 1-e€ + ——(1-e 4.15
P T ZM,( ) 1+ M,( ) (415

4.4.1 A Comparison of the UL and UCM Solutions

To see how the two solutions compare the same problem was slved in both
frameworks for strain rates of 0.2, 1.0and 2.5s*. The material properties for the UL and
UCM constitutive equations are shown in the UCM and UL columns of Table 4.2.

Table4.2 Comparison Between the UL and E Constitutive Parameters

Material Parameter | UCM UL Best Fit UL
A 0.255s 0.255s 0.02066s
n° 1000Pa's | 1000Pas -

A - 1/(3n°) = 3.333x 10* 0.003227
m - 1 0.6659

n - 1 0.8608
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Figure 4.3 shows that the UL and UCM solutions are mnsiderably different, most notably

at higher strains and for the higher strain rate.

g=25¢?

e=10s?

0]

£=02s?

0.1 0.2 0.3 0.4 0.5

o 4

Figure4.3  Stressversus natural strain for a constant rate of uniaxial extensionwith
the UL (ma) and the UCM (-) versions of Maxwell’s equetion

To further highli ght the diff erencesin the @nstitutive response between the UL and
UCM versions of the Maxwell equation, the UL equationwas fit to the UCM results using
aHooke and Jeevesagorithm, whichisexplained in Appendix J. Figure4.4showsthat the
agreament hasbeen muchimproved. To acaompli shthisimprovement however the material
properties for the UL version hed to be grealy modified, as saown in Table 4.2. The
relaxation time has been reduced, the linea viscosity has been replaced with extensional
thickening andthe material has become strain-hardening. It isworth nding that the best fit
parametersare not unique, sinceother combinations of the parameterswill also significantly

reducethe diff erences between the UL and UCM sol utions.
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Figure4.4  Stressversus natura strain for aconstant uniaxial extension with the UL
(wm) parametersfit to the UCM (-) equation

Although the fit has been greatly improved for the uniaxial extension, such good
agreement does not necessarily exist for other loading configurations when using the
optimum parameters. For instance, if the UCM and best fit UL parameters are used to
predict the stresses for an equibiaxia extension, different results are obtained, as shown in
Figure 4.5. The equation for stress versus strain for the UCM fluid under equibiaxial
extension is derived in Appendix I. This simple example demonstrates the fact that model
calibration using one material test does not guarantee good agreement for other loading

cases.
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Figure45  Stressversus natural strain for a constant biaxial extension using the UL
(wa) parametersfit to the uniaxial UCM (-) equation

4.4.2 A Comparison of The Special Cases: The Viscous and Elastic Responses

To better highlight the differences between the UL and E versions of the Maxwell
equation, the behaviour corresponding to the viscous and elastic limits of the viscoelastic
equations presented in Section 4.4 are considered. The viscous solution is found by taking
the limits of Equations 4.12 and 4.15 as G approaches infinity so that the relaxation time
approaches zero. Thestressinthe x-direction isfound to beidentical for both formulations,
with

o, = 2% = 3% (4.16)
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Tofindthe dastic solution,thelimitsof Equations4.12and 4.15are taken asn?® approadies
infinity so that A approadesinfinity. Inthiscasethe stresesfor thetwo cases are diff erent.
For the UL framework

o, = Ee (4.17)
where ¢ isthe natural strain. The dastic limit for Equation 4.15requires the gplicaion o

L’Hogpital’ sruletothefradionsat the beginning of eatterm toyield thenoninea equation

E < —€
o, = g(e2 - e (4.18)

This observation suggests that the nonli neaity of the dastic response of the UCM fluid can
acourt for the increasing diff erence between the two formulations with increasing strain
rate, asill ustrated in Figure 4.3. Sincethe UL formulationislinea in the dastic resporse,
anoninea cree resporse is required to take into acourt the nonlinea behaviour of the
UCM formulation, as shown by the fitted parametersin Table 4.2.

Although the viscous resporse is the same in the two frameworks, the dastic
resporse is different. Spedficdly, the strain measure used is diff erent between the two
formulations. The 1D elastic resporse discussed above generalizes to approximate the

following in the UL framework:

oy = ~pS; + 2Gg; (4.19)

e

InEquation 4.19thestrain measureisthenatura strain g;;,

which correspondstointegrating
the rate of deformation tensor over time while holding the material constant. It is worth

emphasizing that it isthe material particlethat isheld constant, nat thelocaionin space As
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pointed out by Malvern (1969: p151) the integration of the natural strain increments has no
physical meaning unlessthe material particleisbeing followed. Malvern also observes that
although the natural strain increments are tensors, the integral of the natural strains while
holding the material particle constant is not a tensor.

For the E framework the multi-dimensional elastic responsefor aUCM fluid with an
infinite relaxation timeis given by

o; = -pS; + G(B; - &) (4.20)
where B; is the Finger, or left Cauchy Green, deformation tensor. This equation is derived
in Appendix K.

From the above discussion it is clear that the UL and UCM equations are not
equivalent. Moreover, it is apparent that the definition of the relaxation time in the UL
formulation is different than that in the nonlinear E approach. Therefore, the viscoelastic
simulations presented inthe next chapterscannot bedirectly related to the cast film literature.
Although the UL constitutive behaviour assumed in this thesis differs from the usual
behaviour assumed using an E approach, thisdoes not initself indicate a shortcoming of the
current approach. In fact, the UL framework has an intuitive appeal because constitutive
lawsaregenerally interpreted using amaterial point perspective, evenfor Eulerian equations.
Therefore, one cannot clearly state that the E interpretation is more correct than the UL, and

vice-versa






Chapter 5 One-Dimensional Film Casting

In 1D film casting simulations the complications of neck-in and edge-bead are not
included, which simplifies the numerical algorithm and reduces the number of degrees of
freedom required. Furthermore, the problemsinherent with spatial boundary conditionsand
amaterial mesh are mitigated by the ability to redefine the element coordinates to coincide
withthedieandroll locations, asdiscussed in Section 3.8. Consideration of the 1D problem
is not only motivated by the simplifications and improvements to the algorithm, the 1D
problem has several other advantages, which include the following: i) the 1D assumptionis
agood approximation of many film lines, where the die width is much greater than the air-
gap length; ii) the 1D simulations provide asimpler framework for examining the influence
of the constitutive and thermal responses; and iii) the 1D problem can be solved in closed-
form for some simple fluids, thus it provides a means to validate the numerical algorithm.

The main division of this chapter is between the stable and unstable simulations,
which are discussed in Sections 5.1 and 5.2, respectively. In both sections the ssmulation
results are first validated against the available closed-form solutions. Following this,
parametric studies are performed to investigate the influence of the constitutive parameters

(m, n, &) and nonisothermal conditions. Smith and Stolle (2000b) presents material similar

63
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to that in this chapter, but with a constitutive equation that allows for some compressibility

in the e astic strains.

5.1 Stable Simulations

Thesimulation results presented in this section correspond to stable simul ations; that
is, the simulations were carried out until al of the transient behaviour damped out. Details
on the transient behaviour and determination of stable versus unstable conditions are the
subject of Section 5.2.

Section 5.1.1 validates the 1D algorithm for the film casting of a power-law fluid.
Sections5.1.2,5.1.3and 5.1.4 consist of parametric studiesto look at theinfluence of strain-

hardening, the relaxation time and nonisothermal conditions, respectively.

5.1.1 Comparison to the Closed-Form Solutionsfor Steady-State Film Casting

To validate the 1D agorithm, the numerical solution was compared to the closed-
form solution, which is derived in Appendix G, for a power-law fluid. The simulation
parameters are provided in Table 5.1, where nel stands for the total number of elements,

which includes those inside the die and on the chill roll.
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Table5.1 Film Casting Parametersfor the 1D Simulations
Geometry Boundary Material Parameters Numerical
Conditions Parameters
L=0.1m Uge = 0.0Im/s | m=1.0 nel =200
h4 =0.001m | 4., = U, Dr n=1.0 At=10%s
Dr=10 L =0.002s toler = 102
n°=2000Pas
A=1/(3n =1.666%10" (Pas)*
E=1/(\A) = 3.0x1(f Pa

Figure5.1showsthenumericd solutionsfor thedimensionlessthicknessand vel ocity
distributionsin the ar gap for aviscous fluid (m= 1), an extensional thickening fluid (m=
0.75 andan extensional thinning fluid (m=1.25. The solutionsfor velocity, thicknessand
stressagreevery well with the dosed-form solutions, which are nat shown onthe figure
because they are esentialy coincident with the plotted curves. A convenient measure of
error, which encgpsulatesthe aror in all of thesevariables, istherelative eror in the rate of

energy disspation W ¢, which is defined as

ninteg

Y (Aggq),V, |/At (5.1)
i=1

W = [¢TedV = [ggaV =
A

where the subscript i refersto the values for thei™ integration vdume and ninteg isthe total
number of integration vdumes for the film. In the cae of 1D and 1.9 film casting, the
cdculation of W° uses the die and roll elements discused in Sedion 3.8. For the

simulationswheremisvaried, therdative arorsare4.7%, 056% and 0.2 % for m=0.75,
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1.0 and 1.25, respectively. The error can be decreased further by increasing the number of

elementsinthe air-gap. Thistopic isdiscussed in detail in Section 8.2.

Figure5.1  Dimensionless thickness and velocity distributionsin the air-gap with m=
1.25(—), 1.0 () and 0.75 (---)

5.1.2 Influence of Strain-Hardening on Stable Film Casting

The influence of the m parameter of Equation 2.8 was presented in the previous
section. This section considers the influence of the strain-hardening parameter n. To
observe the influence of n, simulations were conducted using the simulation parameters of
Table5.1, with altered values of mand n. Figure 5.2 show the simulation resultsfor velocity
and thicknessin the air-gap. Strain-hardening is seen to increase the thickness gradient at

the die, which seems reasonable as the material will become more difficult to deform as it
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moves downstream and accumulates creep strain. The thickness gradient at the dieis even
further increased for astrain-hardening fluid with extensional thickening (m=0.75). Again
thisbehaviour isto be expected, given that extensional thickening isseento follow the same

trend, even in the absence of strain hardening (Figure 5.1).

Figure5.2  Dimensionless thickness and velocity distributionsin the air-gap with m=
1.0,n=05(—);m=0.75,n=05(---)andm=1.0,n=1.0(-)

5.1.3 Influence of the Relaxation Time on Stable Film Casting
Toinvestigatetheinfluenceof therel axationtime, thesimul ation parametersof Table

5.1 were used again, but in this case the relaxation time was varied from 0.002 sto 0.5 s.

Figure 5.3 showshow thischangeinfluencesthevel ocity and thickness profiles. Anincrease

intherelaxation time causesthe thickness profileto approach astraight line, and the vel ocity
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profile to change accordingly, to ensure that the continuity requirement is satisfied. This
behaviour is qualitatively different from that observed in some published studies of film
casting, where the velocity is seen to approach a linear profile (Alaie and Papanastasiou
1991). However, as explained in Chapter 4, the meaning of the relaxation time for the
constitutive equation used in this thesis does not have the same meaning as that generally

adopted in the film casting literature.

Figure5.3  Dimensionless thickness and velocity distributionsin the air-gap with A =
0.5s(—),and A =0.002 s ()

5.1.4 Influence of Nonisothermal Conditions on Stable Film Casting
The previous simulations were for isothermal film casting. To investigate the

influence of heat transfer, on an approximately viscous fluid, the simulation parameters of
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Table 5.1 were used together with the additional parameters provided in Table 5.2, and heat
transfer coefficients o of 0, 20, and 40 W/(m? K). The parameters selected for Table 5.2 are
typical parameters for polypropylene (PP).

Table5.2 Typical Nonisothermal Film Casting Parametersfor PP

Boundary Conditions Material Parameters
T4e=215°C p =910 kg/m?* (Rauwendall 1986: p218)
T, =30°C k =0.15 W/(m K) (Rauwendall 1986: p218)
o =20 W/(m? K) C = 2100 J(kg K) (Rauwendall 1986: p218)

Q/R=5100 K (Tanner 1985: p353)
T, =190 °C (Tanner 1985: p353)

N = /(3A,) = 3200 Pars (Tanner 1985: p353)

Figure5.4 showshow increasing heet transfer coefficientsinfluencesthevel ocity and
thicknessprofiles. Astheheat transfer coefficient increases, thethicknessgradient at thedie
alsoincreases. Thisbehaviour isreasonableif one considersthat as the film moves further
downstream its temperature decreases and thus its viscosity increases. The lower upstream
viscosity, when compared with that downstream, should force the film to deform more near
thedie, wherethereislessresistanceto ahigher rate of deformation. The sametrendsinthe
velocity and thickness profiles for viscous fluids with increasing heat transfer are observed

in the E analysis of Smith (1997).
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Figure54  Dimensionless thickness and velocity distributionsin the air-gap with o =
0(~), 10 (- - -) and 20 (—) W/(m? K)

5.2 Instability in 1D Film Casting

In the previous sections, the transient behaviour of the film was not shown. As
indicated previoudly, for each of the above simulations, the time-stepping was continued
until the rate of change of al the variables, holding the spatial location constant, was
negligible. However, for somematerial sand processing conditions, thespatia rate of change
of the geometry does not approach zero, instead it continues to oscillate; this correspondsto
instability or draw resonance. This fact places a limit on the parametric study results

previously shown, since for agiven draw ratio the film is only stable within a certain range
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of the cngtitutive parameters. It isthe purpose of this sdionto identify the stable ranges
andto investigate further the phenomenon d draw resonancein 1D film casting.

Sedion 5.21 presentsthe gpproad for identifying instabilit y asaresponse problem.
Thisapproadh isused in Sedion 5.2.2t0 5.2.4to examine the influence of the cnstitutive

parameters (m, n and A) and nonsothermal condtions onthe aiticad draw ratio.

5.2.1 Identification of Draw Resonance as a Response Problem

Thecriticd draw ratio wasidentified by monitoring thethicknessat theroll over time
for successiveinteger values of thedraw ratio. Only integer valuesare considered dweto the
uncertainty inherent inthisapproad. By definition,an upper bourd for stabilit y corresponds
tothesituationwherelarge oscill ationsin afilm’ sthicknessdo nd damp ou over time. This
definition of stability does nat require a onstant thickness history, only one that stays
reasonably bourded. Analternative gproadhisto definethe processng condtionsas gable
if the time rate of change of \W “approaches zero astime progresses. The alvantage of this
definition is that the rate of energy disspated is a scdar measure that depends on the
changing corfiguration d the entire body, na just the thicknessat the dill roll.

Figure 5.5 shows the thicknessat theroll andthe W* histories, using the smulation
parameters of Table 5.1, bu with Dr increased from 10to 20. The thicknessis normali zed
with the thicknessexpeded by the continuity requirement (h,,, = h;/Dr). An examination
of this figure shows that after an initial increase in thickness the oscill ations deaease.

According to the proposed definition, this implies that the processis dable with Dr = 20.
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It is noteworthy that this plot shows two frequencies. The higher frequency is likely
associated with the imperfect satisfaction of the boundary conditions over each time step.
Although this higher frequency makesfor anoisy plot, it approximates the actual physics of
the processwheretheboundary conditionslikely migrate slightly over time. Thisconclusion
is supported by the experimental datafor film casting presented in Barq et al. (1990), who

show noise, even for stable operations.
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Figure55  Normalized thickness at the chill roll and rate of energy dissipation
histories for Dr = 20
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The time histories corresponding to a draw ratio of 21 are shown in Figure 5.6.
Unlike at Dr = 20, the amplitude of the oscillations in the final thickness andW ° do not
decreaseover time. Therefore, thefilmisconsidered to beunstablefor Dr =21. Thisallows
one to conclude that the critical draw ratio lies between 20 and 21, which agrees well with

the theoretical prediction for aviscous fluid of Dr, = 20.2 (Yeow 1974).
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Figure5.6  Normalized thickness at the chill roll and rate of energy dissipation
historiesfor Dr = 21
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5.2.2 Influence of m and n on Stability

The approach described in the previous section for an approximately viscous fluid
is repeated here, using different constitutive parameters. All of the ssimulations of this
section use the processing conditions and numerical parameters of Table 5.1, but the
constitutive parameters are changed as indicated.

Figure 5.7 shows the dependence of the critical draw ratio on the extensional
thinning/thickening parameter for fluidswith and without strain-hardening. Thisfigurealso
plots the closed-form solution for the critical draw ratio of afluid without strain-hardening,
as derived by Aird and Yeow (1983). The curvein Figure 5.7 for n = 1.0 agrees very well
with theoretical expectations, although as the extensional thickening nature increases (m <
1.0), Figure 5.7 underpredicts the theoretically determined critical draw ratio. Thisis most
likely a consequence of the numerical algorithm, which does not perform as well at the
higher draw ratios required for these cases, because the downstream elements are
considerably elongated. To partially compensate for the effect of the elongation of the
downstream elementsat higher draw ratios, the simulations used to producethem < 1 points
of Figure 5.7 employed 1600 elements, instead of the usua 200.

When strain-hardening is added, the shape of the curveissimilar, but it is shifted to
lower draw ratios. The mechanism that leads to this decrease in stability is unclear at this

time.
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Figure5.7  Dependenceof Dr onthe extensional thinning/thickening
parameter, with and withou strain-hardening for the
closed-form (—) and numericd solutions (O and [J)

5.2.3 Influence of Relaxation Time on Stability
The criticd draw ratio for higher relaxationtimesisidentified using the procedure
described in Sedion 5.2.1.1t shoud be noted that a diff erent time step size than that shown

in Table 5.1was foundto change the aiticd draw ratios for the simulations of this edion,
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athough the change was small and the qualitative trends were unchanged. Figure 5.8 plots
the highest stable draw ratio for the different relaxation times. This figure shows that a
higher relaxation time decreases the stability of the system. The decrease in Dr, could be
related to the increase in the elastic strain energy, which is available to do work when it is
released. The trend shown in Figure 5.8 differs from that predicted by linear stability
analysisof viscoel astic fluids, which suggeststhat increasing rel axation timehasastabilizing
effect (Anturkar and Co 1988; Silagy et al. 1996). However, as previously mentioned, the
constitutive equation used in this study fundamentally differs from those used in previous

stability studies.
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Figure5.8  Dependenceof the aiticd draw ratio Dr, onthe relaxation
time A (9)

5.2.4 Influence of Nonisothermal Conditions on Stability

To investigate the influence on a viscous fluid o increasing hed transfer from the
film’s surface the parameters of Tables 5.1 and 5.2were used for a range of draw ratios,
until instability was observed. Theresultsof the analysisare summarizedin Figure5.9. As
thefigure shows, increasing hed transfer hasasignificant benefit for the stabilit y of thefilm.

Thesame stabili zing influenceisobserved in fibre spinning (Shah and Pearson 1972, which
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has esentialy the same governing equations as 1D film casting. Anincreaseinthe aiticd
draw ratio with increasing hea transfer from thefilm’s surfaceprovides an explanationwith
regardtowhy industrial film linesoperate & much higher draw ratiosthan shoud bepossble

acording to the isothermal theory.
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Figure5.9  Dependenceof the aiticd draw ratio Dr, onthe hea
transfer coefficient a



Chapter 6 One and a Half Dimensional Simulations

The previous chapter considered film that was either infinite in width or constrained
in the transverse direction. Although this assumption provides useful information, it is not
realistic because real films tend to neck-in. This chapter presents what is termed a 1.5D
model, which allows for neck-in, while still maintaining the simplifying assumption of
uniform thickness acrossthewidth. Onereason for considering the 1.5D model, besidesthe
fact that it provides a convenient framework for investigating neck-in, is that a somewhat
modified form of the model is popular in the literature on film casting (see Tables 1.2 and
1.3.)) Furthermore, the 1.5D assumption has the advantage of allowing for die and roll
elements that can be redefined to coincide with the spatial boundaries, as discussed in
Section 3.8. Although there are advantages to the 1.5D formulation, there are also some
drawbacks, which are also discussed in this chapter. Given the shortcomings of the 1.5D
assumption, only alimited number of simulation results are presented here. Those results
that are presented focus on an approximately viscous fluid and the influence of the aspect
ratio Ar, which is defined as the ratio of the air-gap length to the die width; that is, Ar =
L/W..

Section 6.1 considers two sets of steady-state simulations: one that compares the

current work to an available closed-form solution; and the other that investigates the

79
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influenceof the asped ratio onthefilm’s sealy-state geometry. Theinfluenceof the asped
ratio is also considered in Sedion 6.2, bt this time with resped to its influence on the
criticd draw ratio. The final section, Sedion 6.3, dscusses the problems and dawbadks

asciated with the 1.5D kinematic assumption.

6.1 Steady-State Simulations

The approac for deteding the steady-state mndtionsisthe same asthat used for the
1D simulations, except that now the width at the dnill roll, aswell asthe thicknessand the
rate of energy disspation, are monitored urtil the oscill ations cease. All of the simulations
inthis dionwere cntinued urtil their steady-state wasreadied. Thetransient results are

discussd in Sedion 6.2.

6.1.1 Comparison with a Closed-Form Solution

Sergent (1977 developed amathematicd solutionfor thefilm casting problem using
the same kinematic assumptions as the 1.5D numericd agorithm developed for this gudy,
although thetwo approaches are nat identicd in terms of the boundary conditions. Whereas
Sergent (1977 setsthe die width as a prescribed boundry condtion, the airrent approach
doesnat prescribethewidth. However, the same objediveisacaompli shedinthenumericd
agorithm by setting the transverse velocity at the die to zero. The solution developed by

Sergent (1977 is sImmarized in Appendix L.
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Avenaset al. (1986 present the answersfor severa film casting problems using the
closed-form solution d Sergent (1977). The description d one of these problems is
summarized in Table 6.1, along with the numericd parameters used to perform the
simulation of this gudy. The parameters nelL and nel W stand for the number of divisions
in the finite éement mesh in the macdiine and transverse diredions, respedively.

Table6.1 Film Casting Parametersfor Comparison to the Closed-Form Solution

Geometry Boundary Material Parameters Numerical
Conditions Parameters
L = Wj-Ar Uje = 0.01m/s [m=10 nelL =150
hg =0.00055m [ ., = U, Dr n=1.0 nelW= 30
W, =0.1m Dr=9 A =0.002s At=10%s
Ar=43 A=1.111%10°(Pas)* | toler =102
E = U(\A) = 4.5x10" Pa

Figure 6.1comparesthefilm’sfreesurfacefor the dosed-form versusthe numerical
solution, using the simulation parameters of Table 6.1. Goodagreament is siown between
thetwo solutions, espedall y considering the scd e of they-axis used inthefigure. However,
there is a significant difference in terms of the behaviour a the die and roll, where the
numericd solution shows curvature, and the dosed-form solution maintains alinea trend.
This variationis due to the differencein boundry condtions between the two approadies
and the requirement of zero massflux aaossthe film’sfreesurface In order for the zero

massflux condtionto hdd, the velocity vedor at the elge of the film and the freesurface
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must be tangent to ore ancther. At thedie androll v= 0; thus, the freesurface ca ony be
tangent to the velocity if it liesin the samediredionas u. Thebourdary condtionsused by
the numericd algorithm are gparently in better agreement with acual film casting process
asa aurved shapeisin better qualitative agreement with experimental evidence(d' Halewyu

etal. 199Q Barq et al. 1992)

0 0.2 0.4 0.6 0.8 1
XIL

Figure6.1  Freesurfacefor the dosed-form solution (---) and for the numericd
solution (-)

The smulated film thicknesswas also compared to the dosed-form solution. A
maximum relative diff erence of -5% was found letween the dosed-form and numericd
solutions. The relative difference is negative becaise of the continuity requirement and

because, asFigure6.1shows, thenumericd solution hasagreaer width thanthe dosed-form
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solution. In order to have the same massflux in bah cases, the thicknessmust deaease to
compensate.

The previousresultsare for adraw ratio of 9; Avenaset al. (1986 aso show results
for different draw ratios. Figure 6.2 shows how the force F, width and thickness of the
numericd and closed-form solutions vary with the draw ratio. For the numericd solution,

the forcewas cdculated by numericdly integrating the foll owing equation:

Wi
F=2 f ho, dy (6.1)
0
where W, ,, isthefilm’shalf width at theroll. Figure 6.2 showsthat the two solutionsarein
goodagreement with resped to their forcepredictions. The numericdly predicted thickness
and width a'so foll ow the same trend as the d osed-form solution, with the eror deaeasing
as the draw ratio increases. As mentioned previously, the numericdly simulated width is
greder than the dosed-form solution; therefore, in arder to satisfy continuity the smulated

thicknessmust be lessthan the dosed-form thickness as demonstrated in Figure 6.2.
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Figure6.2  Force(v), width (o) andthickness(O) versus draw ratio for the numericd
solutions and the @rrespondng closed-form solutions (---, —, and —--,
respedively)

6.1.2 Influence of the Aspect Ratio

The parametersprovidedin Table 6.2were used to conduct the simulations presented
in this edion, bu with dfferent values of the asped ratio Ar = L/W,,.. An approximately
viscous fluid is used to avoid the compli cations of extensional thinning/thickening, strain-

hardening or effeds of material elasticity.
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Table6.2 Film Casting Parametersfor the 1.5D Simulations
Geometry Boundary Material Parameters Numerical
Conditions Parameters
L = Wj-Ar Uje = 0.01m/s [m=10 nelL = 150
hge = 0.001m Uy = UgeDr n=1.0 nelW= 30
W, =0.5m Dr =10 A =0.002s At=10%s
Ar=0.2 A=1.666%10*(Pas)® | toler =10?
E=1(MA) = 3.0x10° Pa

Figure 6.3showsthethicknesscontoursfor variousvauesof the asped ratio Ar, with

Ar = 0.0 correspondng to W,;, > « and thus to 1D condtions. All of the contours are

parall el becaisethe 1.5D assumption daes naot all ow the thicknessto vary in the transverse

diredion. This means that ead crosssedion d the film must be redangular. Figure 6.3

shows that as the asped ratio increases the nedk-in also increases. This result is to be

expeded, as a longer air-gap provides a greaer oppatunity for the film to nek-in. A

consequence of theincreased nedk-inisthat the thicknessof the film at theroll i ncreases as

the asped ratio increases, owing to continuity. For the same massflux to crossonto therall

with a deaeased width, there must be a orrespondng increase in the thickness
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Figure6.3  Normalized thickness contours (h/h,) for varying aspect ratios (Ar)

6.2 Influence of the Aspect Ratio on the Critical Draw Ratio
Theapproachtoidentifyinginstability for the 1.5D problemsisthe sameasthat used
for the 1D simulations discussed in the previous chapter. The findings are summarized in
Figure 6.4, which shows how the critical draw ratio varies with the aspect ratio. One of the
points (Ar = 0.4) in the figure deviates from the trend exhibited by the other points. The
deviationislikely aconsequenceof thelack of precision associated with limiting theanalysis
toonly integer values. Toillustrate this point, the figureincludes adashed linefor the trend
that would occur if the critical draw ratio for the point in question were increased by one
integer value. Thefirst point in Figure 6.4 correspondsto the critical draw ratio for 1D film
casting. As the aspect ratio increases, a stabilizing influence is observed, although the
benefitsseemto level off at Ar =1.0. A stabilizing influence from an increasing aspect ratio

isaso shown in the studies of Silagy et al. (1996a, 1996b) and Chambon et al. (1996).
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Figure6.4  Critica draw ratio Dr, versus the aspect ratio Ar

6.3 Problemswith the 1.5D Kinematic Assumption

87

As discussed in Section 6.1, the formulation used by Sergent (1977) and others

predicts a linear shape for the free-surface, which is unlike the curved shape observed in

practice. Although the numerical algorithm used in this thesis does not have this

shortcoming, there is another problem, which both the closed-form and 1.5D numerical

algorithm share. In thereal film casting process, edge beads are observed and edge beads
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canna be acommodated within the 1.5D assumption. Not being able to predict edge-bea
may nat seem like amagjor problem, asthe edge-bead ony representsasmall fradion o the
overal width andit istypicaly trimmed from the film, however the edge-beal has astrong
influence onthe overall film geometry. The alge-bead provides arestraining influenceon
the film, with the result that the middle of the film is essntidly in a state of plane strain.
When a state of plane strain is combined with the membrane gproximation, the 1D model
discus=d in the previous chapter is obtained. Therefore, the 1D model seeans more
consistent with the behaviour aaossthe majority of film’swidth, than doesthe 1.5D model.

The ideathat the midd e of the film isin a state of plane strain, and that the edgeis
in a state of uniaxial extension, was first proposed by Dobroth and Erwin (1986. This
theory is suppated by the results of others, including Smith and Stoll e (200@g), where the
restraining influence of the edge-bed is ill ustrated for nonisothermal film casting, film
falling under its own weight, and for the cae when the alge-beal is partialy removed by
employing anonunform thicknessaaossthedie. However, the assumptionof 1D behaviour
in the midde of the film does not seem to hdd for larger asped ratios. For instance the
simulation results of Debbaut et al. (1999 at Ar = 1.0 do ndshow azone of 1D behaviour.
Therefore, when higher asped ratios are used, a when thereisinterest in the behaviour of
the edge-bedd, it is necessary to adopt afully 2D formulation. The next chapter presents

steady-state and stability results for a 2D formulation.
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Although useful information can be gained from 1D and 1.5D simulations, the film
casting process is more accurately approximated as 2D. A 2D formulation is necessary to
accommodate the presence and influence of an edge-bead. Furthermore, experimental
measurements show that velocity in the machine direction (u) isafunction of both in-plane
coordinate directions (Chambon et al. 1996). The necessity of a 2D formulation becomes
more apparent as the aspect ratio increases, because the size of the region of approximately
1D behaviour decreases as the aspect ratio increases.

Unfortunately the more realistic 2D description does not come without a price; the
2D formulation has challenges that are not encountered in either the 1D or 1.5D
formulations. Two complications for the 2D formulation are:

)] the elements can now rotate, which can introduce error; and,

i) the nodal coordinates cannot be redefined at the roll so as to agree with the spatial
boundary conditions.

A consequence of thesecomplicationsisthat the stiffnessmatrix may becomeill-conditioned
at higher draw ratios because of the mesh distortion through element stretching and rotation.
Another complication for the 2D description isthat more elements are required than for the
1D and 1.5D agorithms because the 2D formulation has to accommodate additional

gradientsin the transverse direction. The need for more elements means an increase in the

89
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computer timerequired to exeautethe simulations. To avoid theimpad of mesh dstortions
and long simulation times, the smulations of this chapter are mnduwcted at relatively low
draw ratios. Astheinstability of thefilm isapparent at higher draw ratios, the goproach used
for the 1D and 1.9 analyses to determine the aiticd draw ratio is not used for the 2D
analyses, that is, instability isnot determined by finding the operating condtionsthat cause
undamped oscill ations in the film geometry andin the rate of energy disdpated. This does
not mean hawvever that instability canna be mnsidered for the 2D simulations, since a
comparison of thetransient behaviour of diff erent simulationsat the samedraw ratio provide
insight into how different materials and operating condtions influence stability. Besides
providing information onstability, the transient resporse & low draw ratiosisalso valuable
becaiseit provides a picture of how the film’s width and thicknessinterad.

Stealy-state results are presented in Section 7.1to ill ustrate the influence of the
congtitutive parameters (m, n and A) and nonsothermal condtions on the film’s thickness
and velocity profiles. Following this, Sedion 72 compares the results for the arrent
formulation against previously pullished viscous fluid film casting smulations. Thefinal

sedion, Sedion 7.3,focusses on the time-dependent behaviour of the 2D film.

7.1 Steady-State Parametric Study
All of thesimulationsthat were condicted for the parametric study were based onthe
parametersfrom Table7.1,andthey were ontinued urtil W © converged to an approximately

constant steady-statevalue. As siowninTable7.1,an asped ratio of Ar = L/W;;, = 1.4was



Chapter 7 Two-Dimensional Smulations 91

chaosen. Although most film lines operate & lower asped ratios, this value was chasen for
two reasons. Firstly, the 2D nature of the film is more gparent at higher asped ratios and
seaondy, the higher asped ratio simulations amplify the influence of changes in the
constitutive parameters or operating condtions, becaisethelarger air-gap all ows moretime
for an adjustment intheflow charaderistics. Theseamndreasonfor usingalarge asped ratio
isimportant because, as the simulations of this sdion show, in many respeds the film is
relatively insensitive to changes in the material properties or operating condtions.

Table7.1 Film Casting Parametersfor the 2D Simulations

Geometry Boundary Material Parameters Numerical
Conditions Params
hge = 0.001m Uy, = 0.01 m=1.0 nelL = 200
m/s
W,.=0.5m Ug = UgeDr | n=10 nelW=40
Ar=1.4 Dr=10 A =0.002s At=10%s
L=W,,-Ar =0.7m n° = 2000Pas toler = 10?
A=1/(3n9 =1.666%10* (Pas)™
E=VU(\A) = 3.0x10° Pa

All of thesimulations of this edion have steady-statefinite dement meshes smilar
to that shown in Figure 7.1, which corresponds to the smulations parameters of Table 7.1.
Although the mesh is a “snap-shot” at one instant of time, the distortion d the dements
providesa dea picture of the deformation history for the material, asone can easily identify

the distortions that develop as the material is dretched through the ar-gap. Figure 7.1
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ill ustrates that the materia experienceslarge acumulated strains. Along the centre line of
thefilm the acamulated strain is mostly extensional, whereas neaer the elge, the material
experiences significant shea strain.  The shape of the finite dement mesh also highlights
thefad that the dements nea the edge have alonger path and residencetimewithin the ar-
gap. Anexamination d Figure 7.1reinforcesthe pradise of using low asped ratiosfor film
lines because the high asped ratio all ows the undesirable result of the high nedk-in shown
in the figure. Moreover, the pronourced dfferences between the shapes of the finite
elementsat the dill roll suggeststhat thedesired uriformity of thefilm propertiesaaossthe
film’swidth will not be atieved, becaisethe deformation histories of the diff erent material
particles are so dsdmilar. From a pradicd point of view, the shape of the mesh and its

elements provides useful information onthe behaviour of the film.
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Figure7.1  Finite element mesh for the film casting of a Newtonian fluid

7.1.1 Influence of Extensional Thinning/Thickening

To investigate the influence of extensional thickening/thinning, the parameters of
Table 7.1 wereused, with mvaluesof 1.0 (Newtonian fluid), 0.75 (thickening fluid) and 1.5
(thinning fluid). Figure 7.2 illustrates how the normalized thickness contours are effected
by the power-law nature of the viscosity. The extensional thickening fluid shows a higher
thicknessgradient at thedie, in the machinedirection. Thisbehaviour was also observed for

the 1D simulations presented in Section 5.1.1. Just asthe thickness at the die changes more
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rapidly for the extensional thickening fluid, the freesurfacened<s-in more rapidly for the
extensional thickening fluid. However, the final width of thefilm isalmost identicd for all
threefluids under consideration. In fad, the diff erences in geometry between the diff erent
fluidsisfairly small. Thisfindingisin keguing with the results presented by Debbaut et al.
(1995, who show steady-state simulation results for the 2D film casting of an extensional
thinning fluid. For small degrees of extensiona thinning (m = 1.25), Debbaut et al. show
only asmall change from the thicknesspredictions for a Newtonian fluid. However, for
larger degrees of extensional thinning (m= 2 and m= 3), they show adramatic changein the
thickness distribution.  These high values of m could not be reproduced with the UL
algorithm becausethe stiff nessmatrix becaneill -condti oned, li kel y because of theincreased
physicd instability for higher values of m. As demonstrated in Sedion 5.2.2for the 1D
formulation, higher m values leal to a dramatic deaease in the aiticd draw ratio. The
algorithm presented by Debbaut et al. does nat acourt for instability, so the posshility
exists that the high extensional thinning value smulations they present adually represent
“imposgble” results. The influence of extensional thinning on the stability of 2D film

casting is discussd further in Sedion 7.3.
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Figure7.2  Thickness contours for various values of the extensional
thinning/thickening parameter m

7.1.2 Influence of Strain-hardening

Theinfluence of the n parameter isdemonstrated by three simulations, for which the
normalized thickness contours are shown in Figure 7.3, using the parameters of Table 7.1,
with n = 1.0, 0.5 and 0.25. As for the 1D simulations discussed in Section 5.1.2, strain-
hardening leads to a higher thickness gradient at the die. In fact, the initial decrease in
thicknessis so rapid for n = 0.25 that the h/h;, = 0.9 contour is close enough to the die that
thefirst two contoursin Figure 7.3 are almost coincident. The jump in thickness reduction
at the die may be partly due to the imprecise satisfaction of the boundary conditions at the
die. However, the high gradients at the die also point to a potential problem area in the
physical processthat an engineer should beawareof. Strain-hardening also hasaninfluence
on the shape of the free surface. For every film casting simulation the free surface must be

normal to the die and to the roll to ensure that the free surface is tangent to the velocity
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vector. At these locations the boundary conditions specify that the only non-zero vel ocity
component is in the machine direction; however, as the film moves away from the die the
free surface adjusts so that it is no longer perpendicular to the die. In the case of a strain-
hardening fluid this adjustment in the free surface occurs more rapidly than for aNewtonian
fluid. Another influenceof strain-hardeningisawider final filmwidth. A likely explanation
for thisisthelonger particle path along thefree surface. Thelonger path provides moretime
for the creep strain to accumulate and this results in a stiffer material. The stiffer material
at the edges provides arestraining influence, which leadsto aslightly larger final film width.
Asalfinal point, the 0.5 contour for all three materialsisin approximately the samelocation,
so the change in the constitutive behaviour has not had an overly dramatic influence on the

overal film geometry.

h/hg.= 1.0 10 10

05 0.5 0.5

n=10 n=0.5 n=0.25

Figure7.3  Thickness contours for various values of the strain-hardening parameter n
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7.1.3 Influence of Relaxation Time

Once again using the parameters of Table 7.1, ssimulations were completed with
relaxation timesof 0.002, 2 and 7s. Figure7.4illustratestheinfluence of therelaxation time
on the normalized thickness contours. Although the influence is not dramatic, the higher
relaxation times lead to a more sharply defined edge-bead and alarger final film width. A
similar result is observed by Debbaut et al. (1995) with increasing relaxation time, but
Debbaut et al. show much more significant changes. Furthermore, Debbaut et al. show a
higher thicknessgradient at thediewithincreasing relaxation time. Thedifferencesbetween
the current study and Debbaut et al. are not surprising though, given that their Maxwell
eguation is not equivalent to the Maxwell equation used by the current formulation, for the

reasons discussed in Chapter 4.

h/hg.= 1.0 10 1.0
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Figure7.4  Thickness contours for various values of the relaxation time A ()
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7.1.4 Influence of Nonisothermal Conditions

The normali zed thickness contours shown in Figure 7.5 were found ly using the
parameters of Tables7.1and5.2, with ahea transfer coefficient o of 0, 20and 40W/(m?K).
For the material properties and processng condti ons chosen, the nonisothermal condtions
are seen to increase the thickness gradient at the die, as was also odbserved for the 1D
simulations in Sedion 5.1.4and for the 2D simulations of Smith and Stolle (200().
Ancther observation from Smith and Stolle (200() that is reproduced by the simulations
under considerationis a deaease in the nedk-in with increasing hed transfer. Smith and
Stoll e suggest that the deaeasein nedk-inisa cnsequenceof thelonger particle path at the
edge of thefilm, asthislealsto increased coding and a greder restraining influenceof the

edge, becaise of the increase in the temperature-dependent viscosity.

h/hg.= 1.0 10 10
05 05 05
.
a=0 a=20 a=40

Figure7.5  Thicknesscontours for various values of the hed transfer coefficient a
(W/(m?K))
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7.2Comparison to Other Steady-State, Viscous Fluid Studies

Although the viscoelastic constitutive equation for the UL formulation canna be
compared to viscoelastic film casting E studies, the gpproximately viscous UL formulation
has asimil ar constitutive resporse & that used in the E formulations for the film casting of
aviscousfluid. Inthis ®dion, the steady-state simulationresultsusing the aurrent algorithm
are compared to the simulation results for the stealy-state viscous film casting studies
presented by d’Halewyu et al. (1990, Sakaki et al. (1996, Smith and Stolle (200() and

Debbattt et al. (1995.

7.2.1Comparison tod’Halewyu et al. (1990

Toreproducethesimulation presented by d’ Halewyu et al. (1990, the parameters of
Table 7.1were used, bu with the asped ratio modified to Ar = 0.4. Figure 7.6 shows the
thicknessprofile & the dill roll as predicted by several authors for this same film casting
problem. The simulations of Sakaki et al. (1996 and Smith and Stolle (200(1) are seen to
agreequitewsell, bu theresultsof d Halewyu et al. (1990) andthe aurrent study providetwo
different answers. In the centre of the film, where the film behaviour is essentialy 1D, all
of the simulations agreg bu neaer the edge the results differ. With the exception d the
current study, all of the papers cited in Figure 7.6 wse an Eulerian agorithm. Smith and
Stolle (200Q8) comparethe results of the threeEulerian simulations shown in thefigure and
suggest that the results of d'Halewyu et al. differ becaise of their use of an urcoupled

numericd algorithm. It appeas that the noinea nature of the film problem leads to
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numericd solutions that are not necessarily unique. The UL algorithm is sgnificantly
different from the E approaches and this might explain the observed dfferences. Thisisue

islooked at more dosely in the next chapter.

Figure7.6  Thicknessprofile & the dill roll for d Haewyu et al. (1990 (----),
Sakaki et al. (1996 (), Smith and Stolle (200() (---), and the aurrent

study (—)

7.2.2 Comparison to Debbaut et al. (1995)

Ancther 2D study of viscousfilm casting is presented by Debbaut et al. (1995. To
simulate the film casting problems discussed by them, the smulation parameters of Table
7.1weremodifiedto Ar = 1.0and Dr = 9 o Dr = 20. Thethicknessprofile & the dill roll

is shown in Figure 7.7, as predicted by Debbaut et al. (1999, the E agorithm of Smith
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(1997) and by the current UL formulation. As in the previous section, the different
algorithms lead to different predictions. The differences are even more pronounced here,
since these simul ation use a higher aspect ratio, Ar = 1.0 versusthe previousvalue Ar = 0.4.
The higher value of Ar allows the flow to readjust so that there is no zone of approximately
1D behaviour at the centre of the film. The most pronounced differencein Figure 7.7 isfor
the UL simulation versusthe two E algorithms at adraw ratio of 20. The differencesin this
case may be due to the differences in the numerical algorithms, or possibly the differences
in how the downstream boundary condition is implemented. These possibilities are

investigated in the next chapter.
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Figure7.7  Thickness profile at the chill roll for Debbaut et al. (1995) (---), using
the E agorithm of Smith (1997) (--), and the current study (-)
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7.3 Transient Behaviour in 2D Film Casting

In the 2D simulations, the thickness distribution and the width of the film interact.
Thisinteraction is shown in Figure 7.8, for the width at the chill roll and for the thickness
at the line of symmetry. The simulation parameters are the same asthose in Table 7.1, but
with Ar = 0.2 and Dr = 15. Asthisfigure shows, the oscillationsin the thickness and width
are out of phase with one another. This is to be expected owing to the continuity
requirement. When the thickness increases, the width has to decrease to compensate and
vice-versa. Silagy et al. (1998, 1999) show this same phase difference in their simulation

results for the 2D film casting of aviscous fluid.
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Figure7.8  Normalized width and thickness histories at the
chill roll for film casting of a Newtonian fluid with
Ar =0.2and Dr =15



Chapter 7 Two-Dimensional Smulations 103

As mentioned in the introduction to this chapter, it is not possible to reliably
investigate instability for the 2D simulations in the same way as was done for the 1D and
1.5D simulations, because of the distortion of the mesh at higher draw ratios. The approach
for considering instability in 2D is to look at the number of oscillations in the indicator
variables at low draw ratios. If achangein operating conditions leads to more oscillations,
then this is a likely indication that the change in question has a destabilizing influence.
Using thisidea, the following conclusion can be reached from considering thetime histories
associated with the ssimulations of this chapter:

e thetrendsininstability for the 2D simulationswith changing constitutive parametersand
nonisothermal condtions are the same & for the 1D simulations:
* increased extensional thinning has a destabili zing influence
* higher relaxation times have adestabili zing influence
* increased extensional thickening has a stabili zing influence
* increased hed transfer has a stabili zing influence

® higher asped ratios have astabili zing eff ed, li ke that observed for the 1.5D simulations.
All of thetime histories used to makethe éove mnclusionsare not reproduced here, but an
exampleisprovidedtoill ustratethe goproach. The exampletime histories, which are shown
in Figure 7.9,arefor the threediff erent m value simulations discussed in Sedion 7.1.1.The
number of oscill ations in the W° history, before steady-state, increases with increasing
values of m, as shown in Figure 7.9. Furthermore, with Ar =1.4,m=1.5is gable, bu for
the 1D simulations, where Ar =0, m= 1.5isnat stable, as sown in Figure 5.6. Therefore,
in this case, a higher asped ratio appeas to have a stabili zing influence on the 2D

simulation. The same gproach was followed to examine the stability of the other
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constitutive parameters and for the nonisotherma conditions, in order to make the

conclusions listed above.

407
m=0.75

Rate of Energy Dissipation (W)
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Figure7.9  Rate of energy dissipation history for the three different m value
simulations discussed in Section 7.1.1



Chapter 8 A Comparison Between the Updated L agrangian and
Eulerian Algorithms

Asmentioned in Chapter 1, the UL approachisrarely, if ever, used for thesimulation
of continuous polymer processing operations. The purpose of this chapter is to determine
if thislack of attention is deserved, or if the UL formulation has potential to compete with
the E approach. To make this determination, the two formulations are compared for a
specific continuous process, that of isothermal film casting of a viscous fluid. The UL
agorithm for film casting has been described in the previous chapters and the E algorithm,
which is developed in Smith (1997), is summarized in Section 8.1. Sections 8.2 and 8.3
compare the E and UL algorithms with respect to their accuracy for the 1D case, and the
simulationresultsfor the2D case, respectively. A comparison of therelative complexity and
efficiency of the two algorithms is the subject of Section 8.4. The section that follows
discussestheadvantages of the UL approach over the E approach. Thereafter, thediscussion
turnsto the principa disadvantage of the UL agorithm: the application of spatial boundary

conditions to a material mesh.

8.1 An Overview of the Eulerian Algorithm
AnEulerianagorithmfor film casting isdevel opedin Smith (1997), and summarized

in Smith and Stolle (2000a). In this section a simplified version of the E algorithm is

105
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presented that is essentially equivalent to the UL agorithm previously presented, for an
approximately viscous fluid under nonisothermal conditions. Both algorithms employ the
following assumptions: the film can be treated as a2D membrane; the constitutive equation
isfor alinear viscousfluid; and inertia, self-weight, air-drag, surface tension, die-swell and
film sagareignored. Theonly difference between the two formulations, besidesthefact that
a different description of motion is being employed, is that the E agorithm is time
independent; it determines the steady-state solution directly and neglects the transient

behaviour.

8.1.1 Governing Equations and Boundary Conditions
For the coordinate system defined in Figure 8.1 the equations for the conservation of
momentum, mass and thermal energy, the constitutive equation and the equation describing

the free-surface are as follows:

LT(he) = O (8.1)

pChiT(VT) + o(T - T,,) - khVT(VT) = 0 (8.3
420

c =n°[2 4 O/DY (8.4)

001
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dlvu—v:o 8.5
ax (8.5)

where histhe half thickness of the film, Wisthe width, n*isthe viscosity,u =[u v]"isthe
velocity vector and ¢ and DY are the tensors for plane stress and the rate of deformation,
respectively. Asfor the UL governing equations, the tensors use the column vector notation
of Zienkiewicz (1977) and the vector components are summarized in Appendix A.
Equations 8.1 to 8.4 have ana ogous equationsin the UL formulation, whereas Equation 8.5,
which explicitly determines the free surface, is unique to the E formulation. In the UL
formulation the free surface is determined as a natural consequence of updating the

geometry.
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W= Wdle G, = 0
y T/ Free Surface 3:;8
Die
l:J: Uge B Roll
V= O i U uroII
h=hg [ v=0
T="Tge [ q,=0
| >
< L - > X
Line of Symmetry Gy =0
q =0

Figure8.1  Coordinate system, dimensions, boundary conditions and mesh for the
Eulerian algorithm

Asfor the UL formulation, theviscosity isconsidered to berelated to thetemperature

viaan Arrhenius relation

1) ©9)

nXT) = nge
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in which ng and T, are reference values of viscosity and temperature, Q is the adivation
energy, and Ris the gas constant (8.314J mol™ K™).
In general, the natural and kinematic boundary condtions for a thermomedanicd

problem are given by

6, =tonl,, u=u,onl,; q,=qg,onl, T=T,onTI; (8.7)

inwhich I, I', T',, and I'; are subsets of the problem boundry where the foll owing may be
spedfied, depending on conditions: tradiont, velocity u,, thermal flux g, and temperature
T,. The subscript nis used to represent the fad that the values are direded ouward and
normal totheboundng surface Figure8.1summarizesthe spedfic boundiry condtionsfor
the film casting problem, where, as for the UL formulation, orly half of the film’swidthis
required due to symmetry. The boundary conditions are equivalent to those for the UL
algorithm, except that velocitiesinstead o displacanents are considered in the E approad,

andit is necessary to explicitly prescribe the width at the die.

8.1.2 Numerical Algorithm

Figure 8.2 shows a flowchart of the E algorithm used for solving the governing
eguations to predict the width, velocity, thickness and temperature for a given cast film
problem. Sincethe equations are nonlinea, it is necessary to gradualy increase the draw

ratio in steps of ADr. Following the cmmmon finite dement natation, the finite dement
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equivalent of Equations 8.1 to 8.5,along with the gpropriate boundry condtions and
temperature dependent viscosity, may be written in compad form as

¥ =Kla -F' =0 (8.8)
where W' istheresidual load vedor, K' isthe stiffnessmatrix and F' isthe load vedor. Both
K' and F' are functions of the degreeof freedom vedor &', where the superscript i refersto
the iteration step. For the formulation summarized here, 3-noded triangular elements are
used, which are aranged as shownin Figure 8.1. All the dements have degrees of freedom
for the vel ociti es, the thickness and the temperature, andthe dements at the freeedge have
an additional unknown, the width. As shownin Zienkiewicz (1977. pp452454), Equation
8.8 can be expres=d in terms of atruncaed Taylor's expansion, to provide the foll owing

Newton-Raphson reaursion algorithm:

o _ . i o .
K;Aa = -¥! \Mﬂ1K}::(%?) and Aa' = d1-a (8.9)
a

The comporents of the tangential stiffnessmatrix K, of Equation 8.9are derived in Smith

(1997.
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Initial guessfor field
variables (u, v, h, T)
and for width (W)

Coupled Newton-
Raphson Finite
Element Method

Dr = Dr + ADr

Update Mesh

NO

Convergence?

Final Dr value?

Smulation Complete

Figure8.2  Flowchart for the Eulerian algorithm

As Figure 8.2 shows, an initial guess is needed to start the algorithm. For the
simulations conducted here, theinitial guess consists of arectangular domain of dimensions

W by L, inwhich v =0, and u and h are determined using the 1D closed-form solutions
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provided in Appendix G. For the mesh updhte step, the y-coordinates for eat column of
nodes, as ownin Figure 8.1, must be aljusted to agreewith the new predicted width. Each
noce in ead column is updated so that its new y value maintains the same ratio to the new
width asit had to the previous width. To determine mnvergencethe foll owing criterionis

tested:

IAa | [Aayl [AaL] [Aa,

, , , < toler (8.10)
la i la,l  lad  layl

inwhich a,, a,, a;, and a,, are the aurrent solutions for the velocity, thickness temperature
andwidth degrees of freedom, A representsthe changein thesevariablesand |-| denotesthe
Euclidean narm of thevedor. The E simulationresults presented in thisthesis use the same

value of the tolerance a the UL simulation results; toler = 102

8.2 Comparison of the Accuracy for 1D Film Casting of a Viscous Fluid

This ®dion reproduces the portion d Smith and Stolle (2001 that compares the
acauracy of the UL and E agorithms for the cae of 1D film casting. A comparison d the
acaracy is possble because in the cae of 1D film casting of a viscous fluid a theoreticd
solution exists. Appendix G provides the dosed-form solution for the rate of energy
disspation W € for 1D film casting of alinea viscousfluid. Thistheoreticd solutionisused
to cdculate therelative aror in rate of energy disspationfor the E and UL approacheswith
varying mesh densiti es, using theinput parametersof Table5.1. Figure 8.3summarizesthe

resultswith alog-log pot of therelative aror versus mesh density, where the mesh density
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refersto the number of lementsintheair-gap. Thedistinction that the elementsmust liein
the air-gap is made because, in order to simplify the book-keeping, the numerical algorithm
for the UL formulation stores elements inside the die and roll, but these elements do not
contribute to the actual solution. Moreover, the elements inside the die and on the roll are
not counted for the purposes of comparing the two agorithms because the degrees of
freedom for these elements are not part of the finite element equations, as their motion is

known a priori and thusit is unnecessary to include them in the solution.

1E-

QS
-

1E-02

1E-03

Relative Error (%)

1E-04

1E-05 = + + i
1E+01 1E+02 1E+03 1E+04
Number of Elements

Figure8.3  Log-log plot of therelative error in rate of energy dissipation for the E (O)
and UL (V) algorithms

As expected for the E algorithm, the error decreased with a doubling of the mesh,
leading to approximately aquartering of theerror. The UL algorithm, on the other hand, did

not perform as well. For instance, the UL formulation has a greater error than the E
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formulation, and the error does not decrease as rapidly when the number of elements are
increased. Theapparent poorer performance of the UL algorithm relativeto the E algorithm
isattributed to: i) there are small oscillations in the solution even after it has reached steady
state; ii) the film casting problem is formulated in terms of spatia boundary conditions,
which the UL scheme can only approximate; and iii) the UL formulation has a viscoelastic
constitutive description, which only approximates a viscous fluid and the closed-form
solution for W°, presented in Appendix G, is for an Eulerian framework. The error
associated with the approximation of a viscous fluid by alow relaxation time viscoelastic
fluid was investigated further by decreasing the relaxation time, and looking at the
corresponding decrease in the relative error, as shown in Figure 8.4. Although the initial
trend with a decreasing relaxation time is a decreasing error, the benefit is seen to level off
below A~1073s. Thislevelling off islikely aconsequence of the round-off errors associated
with performing cal culationswith small floating point numbers. Apparently apractical limit
exists on how well a viscous fluid can be approximated by a viscoelastic fluid with alow
relaxationtime. Asan additional point, the small improvement associated with decreasing
the relaxation time below say 0.002 s, is not worth the additional computational effort.
Smaller relaxationtimesrequiresmaller timestepsto capturethe material response properly.
For instance, the simulations for Figure 8.4 required atime step of 10°s. Asaconsequence
of the small time step, a very large number of time steps, and a correspondingly large

simulation time, was necessary to reach steady-state conditions.
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Figure8.4  Log-log plot of the relative error in rate of energy dissipation for the UL
algorithm with changing relaxation time A ()

Although the UL scheme did not perform as well as the E scheme when comparing
numerical solutionsto analytical solutions, it isworth noting that with a reasonable number
of elements the UL scheme has acceptabl e results, with a maximum relative error less than
1%. Onemust also recognizethat each formulation solvesadlightly different problem, with

the real physical process having conditions that likely lie somewhere between the two.
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8.3 Comparison of the Solutionsfor 2D Film Casting of a Viscous Fluid

Unlike 1D film casting, a dosed-form solutionis not avail able for 2D film casting.
For the 2D case, the discusgon instead focuses on comparing the simulation results of the
various numericd algorithms. In Sedion 7.2results were presented for the UL and E
algorithms, and for other pulished studies on 2D film casting of a viscous fluid. The
comparisons showed disagreanent, at times considerable, between the geometry predicted
for thefilm by thevarious gudies. All the E approaches lvethe same governing equations
andbounary condti ons, andthe UL approacdh approximatesthese same governing equations
and boundhry condtions, so the differencesin the results must be dtributed to diff erences
in the numerica algorithms. Table 1.4 summarizes the diff erent numericd algorithms that
have been used for simulating film casting. In a general sense, the disagreanent in the
numericd predictionsisa consequenceof the highly nonli nea nature of the problem and the
strong couding between the velocity field and the film geometry. A more spedfic
explanation for differences in the simulation results is difficult to determine because the
information avail able from other studiesislimited to that provided in the puldi shed papers.
However, some insight into the diff erences between E and UL formulations can be gained
by comparing the E algorithm summarized in this chapter to the UL algorithm introduced in
thisthesis.

In this eaion, four potential explanations for diff erencesin predictions, associated
with dfferent algorithms, are explored:

. the dement shapes for the two algorithms are diff erent;
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. the UL algorithm only approximates the E boundary condtions,

. the solution d the UL algorithm may depend onthe initial guess and,

. athouwgh the E and UL solutions for velocity and geometry are dissmil ar, the two
solutions are difficult for afinite dement algorithm to dstinguish between becaise
they arerelatively close in an energy sense.

Before discussng the patential explanations for the differences in behaviour, the 2D UL

simulation results are mmpared to the 2D E results

8.3.1 UL versusE with Triangular Elements

Sedion 7.2.1shows the thickness at the dill roll for various gudies, using the
simulation parameters from d'Halewyu et al. (1990. The figure suggests mediocre
agreament between the UL and E formulations. However, when the numbers are put into
perspedive, the agreement is £en to bereasonable. For instance, the relative dhange from
the E to the UL formulationsfor thicknessat the line of symmetry and width at the dill roll
are gproximately 8 % and 9 %, respedively. Although this difference may appea
significant, it is of the same order of magnitude & typicd measurement errors. The
similarity of the simulation results between the E and UL formulations are shown more
dramaticdly by considering how the thickness changes over the entire plane of the film.
Figure 8.5 shows normali zed thicknesscontours, which eadt represent a 10 % deaeeasein
thickness for every step downstream, for the UL and E,; algorithms. The simulation
parameters are the same as those used in Sedion 7.2.1except that the number of elements

for the E,; Smulationwere varied, with 40< nelL < 52and 52< nelW < 81. The number of
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elements was varied to investigate the possibility of a dependency of the solution onthe
mesh density, and nomesh dependency was observed. Figure 8.5 was creded using the
simulationresultsfor nelL =52 and nelW=81. A comparison d thefirst two diagramsin
the figure indicates that the principle difference between the two studies is that E;; has
greder nedk-in than the UL agorithm. The other contour plots provided in Figure 8.5are

discussd in later sedions.

hhy=1.0 1.0 1.0 1.0

0.5
0.5 05 0.5

UL = Equec Ebe

Figure8.5  Thicknesscontoursfor film casting simulations reproducing d’ Halewyu et
al. (1990, with Dr = 10, wsing the Updated Lagrangian (UL) algorithm
and the Eulerian agorithm with triangular elements (E,;), quedril ateral
elements (E,,,,) and UL boundiry condtions (E,)

Although an argument can be made that the E and UL results are in reasonable

agreament for the d'Halewyu et al. (1990 simulation, when the Debbaut et al. (1995
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Dr = 20 simulationisreproduced, theresults of the E and UL algorithmsarevery different.
This is demonstrated in the thickness at the chill roll plot of Section 7.2.2, where the
magnitude of the relative difference in thickness at the line of symmetry and width at the
chill roll, between the E and UL formulations, isapproximately 36 % and 51 %, respectively.
Thethicknessdistribution over the planeof thefilm also varies considerably between thetwo
approaches, as shown in Figure 8.6. One possible reason for the difference in the thickness
distributions could bethat at the higher draw ratiosthefilmiscloser to instability. Although
the E algorithm discussed here completely ignores instability, the UL solution could be
influenced by phenomena associated with the approaching instability. Other possible
explanationsfor the observed differencesin thefilm geometries are discussed in the sections

that follow.

h/hs=1.0 1.0 1.0 1.0

0.5
0.5 0.5 0.5

UL Etri Equad EbC

Figure8.6  Thickness contoursfor the film casting simulations reproducing Debbaut
et al. (1995), with Dr = 20, using the Updated Lagrangian (UL) algorithm
and the Eulerian agorithm with triangular elements (E,;), quadrilateral
elements (E, ) ahd UL boundary conditions (E,)
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8.3.2 Use of Quadrilateral Elementsfor the E Formulation

The UL and E algorithms as originaly developed made use of different element
types, therefore, the passhility existed that the observed dff erences could be due to mesh
dependencies. To investigate this, the E agorithm was reformulated using quadril ateral
elements. Figures8.5and 8.6show that thethicknesscontoursfor the quadril ateral elements
(Eqe) are esentialy the same as those previously obtained wsing E,;. Consequently, the
difference in element shapes does nat explain the greder neck-in oltained with the E

agorithm.

8.3.3 Use of UL Boundary Conditionsfor the E Formulation

One of the principle distinctions between the UL and E algorithms is that the UL
mesh ony approximates the spatial boundary condtions of the E algorithm. To investigate
whether the boundry condtionscould acourt for the observed dff erences, the E algorithm
was implemented using the UL boundxry condtions. The simulation results are shown as
E,. in Figures 8.5and 8.6. For the simulations that reproduce the film problems discussed
by d Halewyu et al. (1990 and Debbaut et al. (1995, the thicknesscontours are essentialy
identica to those previously obtained using the E formulation; therefore, for the problem
anaysed the change in boundry condtions does not acourt for the larger ned-in of theE

simulations.
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8.3.4 Influence of theInitial Guesson the UL Formulation

Most of the UL ssimulations conducted for this thesis began with all the dements
inside the die andwith theinitia stresses andthe acamulated creep strain set to zero. One
may ask whether thisinitial guesshas some influenceonthefinal solution. To investigate
this posshility, a UL simulation was conducted with an initial guesscorrespondng to the
final geometry of the E,, Smulation shown in Figure 8.5. Convergence, as demonstrated
by the time historiesin Figure 8.7, accurred in 5x10* time steps, and the final solutionwas
esentialy the same as that previously obtained with the UL algorithm. Thisresult is not
unexpeded, giventhat theinitial E, ., elementswill eventually migrate out of the ar-gap and
thus their influence will eventually damp ou of the system. Interestingly, athough the
solutionstartscloseto thefinal solution,it still t akes approximately the same number of time
steps for the transient response to de out as when starting with all elementsinside the die.
Animportant observation shown in Figure 8.7 is that the W ¢ history isamost aflat curve.
Although the geometry of the film changes, in an energy sense thereislittl e to dstinguish
the two solutions; i.e., the E solution corresponds to t = 0 and the UL solution corresponds
tot > 0. The fad that the solutions are so close in an energy sense @uld explain why
different algorithmsfind dff erent solutions. Thefinite dement method ogimizesthe energy
disspated, but theoptimum isdifficult to determinebecause aljacent solutionsarevery close

to opgimal.
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Figure8.7

Histories for the UL algorithm starting from the E , final solution of
normalized thickness at the line of symmetry, normalized width at the chill
roll and viscous dissipation

8.4 Comparison of the Algorithms

In this section the UL and E algorithms are compared with respect to complexity,

speed, and storagerequirements. The comparisonisnot quantitative or rigorous; instead, the

ideaisto make some qualitative statements about how the algorithms compare in agenerd

sense.
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8.4.1 Comparison of Complexity
Thetwo agorithmsare of roughly equal intermsof their overall complexity. Inthis

context the definition d complexity refersto thedifficulty of formulating and uncerstanding
the mnceptua detail s of the dgorithms; it does nat refer to aformal court of the number of
computer operations. The judgement that the two algorithms are equal in complexity is
based on the experience of implementing both of the dgorithms. In the process of
implementing the dgorithms some general observations with resped to their complexity
were noted, as foll ows:

. The UL agorithm has the complicaions of time-stepping and the radia-return
agorithm, whereasthe E a gorithm hasthe compli caionsof afully couged Newton-
Raphson algorithm and explicitly solving for the freesurface

. The complexity of the E algorithm would increase if upwinding were introduced;
upwinding is metimes necessary for the transport equations, either for massor
thermal energy, in an E framework. The complication of upwinding isincorporated
in one 2D film casting study (Debbaut et al. 1999 in order to numericaly solve the

continuity equation.

8.4.2 Comparison of Speed
The E agorithm was foundto be much faster than the UL algorithm. For the
simulationsdiscussedin Sedion 8.2 with Dr = 10,the E algorithm took 4iterations, whereas

the UL algorithm took 5x<10* time steps, with approximately 5 sub-iterations for each step.
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This diff erence was even more pronourced when Dr was increased to 20 the E algorithm
took 6 iterations andthe UL algorithm needed approximately 4.0x10° time steps (seeFigure
5.5. The reason for the dramatic difference between the two algorithms is that the E
algorithm finds the steady state solution dredly, whilethe UL agorithm hasto wait for the
transient behaviour to de out and the transient behaviour takes longer to damp ou as the
draw ratio increases.

If the E dgorithm were dhanged to incorporate time-stepping, thenit would likely be
slower than the UL algorithm because the E algorithm would require a many time steps as
the UL to read steady-state, but the solution d ead step would be more time cnsuming
becaisethe muded analysisof the E algorithm hasalarger bandwidth stiffnessmatrix than
the uncoupged UL algorithm. Also, the stiffnessmatrix for the E algorithm isunsymmetric,
so that the analysis cannat take alvantage, asthe UL algorithm can, d the fast solvers that

are avail able for positi ve definite symmetric systems of equations.

8.4.3 Comparison of Storage

Asto therespedive storage requirements of thetwo al gorithms, the UL requiresless
memory for the same number of elements, since, as mentioned abowe, its giffnessmatrix is
symmetric, whil ethat for the E algorithm isnaot. Of course asignificant advantage of the 1D
E algorithm in terms of storageisthat it requires fewer elements than the UL agorithm for
similar acaracy, as demonstrated in Sedion 8.2. However, for the 2D simulations the E

agorithm also needs a significant number of elementsto acamommodate the gradientsin the
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transverse diredion, espedaly nea the film’s edge. The UL agorithm does have some
additional storage requirements over the E agorithm, because in the UL agorithm it is
necessary to store the history dependent quantiti es, such asthe stressand the total effedive
cree strain. The alditional storage requirements however, are relatively small when

compared to the storage neaded for the stiff nessmatrix.

8.5 Advantages of the UL Algorithm

The principle advantages of the UL algorithm over the E algorithmisthat it isamore
intuitive and ratural approach. The gproad isintuiti vein the sense that the egquations and
theories of continuum medanics are first formulated with referenceto the material, andin
the UL approacd thefocusisonthe material. Inthe E agorithm it isnecessary to introduce
extramathematicsto acourt for thefad that the meshis gatially fixed, bu the materia is
moving. Ancther advantage of the UL agorithm isthat it does not mix different “types’ of
degrees of freedom in ore analysis. The UL agorithm works in terms of displacements,
whereas the E algorithm includes degrees of freedom for velocities and for the film
geometry. In the UL approad the geometry is naturally updeted as a mnsequence of
predicting the displacements, bu in the E approacd the values for the new thicknessand
width must be expli citly solved. Further advantages of the UL algorithm arediscussedinthe
sedions that follow. Sedion 8.5.1 dscusses how the UL agorithm determines instability
asaresporseproblem. Sedions8.5.2and 8.5.3 Inghli ght thefad that a constitutiveresporse

that depends onthethermomedanicd history of the material ismore naturaly implemented
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inaUL framework. The final advantage, which is discussed in Sedion 8.5.4,s the more

robust convergence daraderistics of the UL algorithm.

8.5.1 Deter mination of Instability

The UL agorithm diredly acoommodates the detedion o instability, since film
casting istreded asaresporse problem. If draw resonance occurs, then it will be observed
in the simulated solution. It is because the UL algorithm deteds instability as a resporse
problem that it takes longer to readt stealy state for Dr = 20 than for Dr = 10. The usud
approad usedinthepdymer processngliteraturetoidentify instabilit y islinea perturbation
anaysis. Appendix M summarizesthe linea perturbation analysis for 1D film casting of a
viscous fluid. Asthis Appendix shows, the processis mathematicaly complex even for a
simple constitutive equation and a 1D analysis. The analysis beames considerably more
involved for power-law (Aird and Y eow 1983 andfor viscoe astic fluids (Anturkar and Co
1988. If the analysisismodified for 1.5D simulations other complicaions are introduced,
as demonstrated by Silagy et al. (1996, 19961). A linea perturbation anaysis has
apparently not been pulished for 2D film casting. Insteal the studies that consider the
stabilit y of 2D filmsusethe gproach adopted in thisthesis of observing the draw resonance
asaresporse problem.

The E agorithm in its current form canna deted draw resonance and will i n fact
predict “impossble” solutions with draw ratios greaer than the aiticd draw ratio of 20.2.

The E algorithm can howvever be modified to deted instabilit y by adding thetransient terms
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to the governing equations (Barq et al. 199Q Barq et al. 1994 Silagy et al. 1998 Sil agy et
al. 1999. However, if this change is made, the E algorithm loses the alvantage of speed,
asdiscusedin Sedion 8.42. It isworth nding that, unli kethe UL agorithm, time-stepping
E algorithms are usualy supdied with an artificia perturbation d the solutionin order to
demonstrate instability. Inthe studies of Barg et al. (1990, 1994 and Silagy et al. (1999 a
perturbation is added to the roll velocity in order to induce oscill ations, which can be

monitored to determine whether the film is gable or not.

8.5.2 Constitutive Description

The resporse of most paymers is nat entirely viscous, and a more redistic
viscoelastic constitutive eguation is desirable. The UL algorithm arealy incorporates
viscoelasticity, as eat element is esentially a Maxwell body. Although the constitutive
eguation for the UL algorithm adopted in thisthesisisfairly simple, the changes necessary
for a more mmplex constitutive equation are straightforward. Different constitutive
eguations can be implemented by changing the state equation that predicts the rate of creg
straining (Equation 2.§. Thismay invave trading diff erent history dependent properties,
but because the property can be “stored” with the dement the dgorithmic bookkeeging
required is graightforward.

The complexity of the E algorithm increases dramaticaly when viscoelasticity is
introduced, since E algorithms are not naturaly set up to tradk particle paths or to take into

acourt deformation hstory. The extradion d the history of particles requires separate
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explicit integration along the streamlines (Luo and Mitsoulis 1990) or the use of convected
derivatives (Marchal and Crochet 1987). Moreover, the E framework can obscurethe extent
of past deformations, unless some special measures are taken to capture this information.
The UL approach, on the other hand, quickly summarizes the past deformation history

through the current shape of the finite e ements, as demonstrated viaFigure 7.1.

8.5.3 Temper ature Dependence

The E algorithm summarized in Section 8.2 is for a viscous fluid, for which the
temperatureonly effectstheviscosity. If anonisothermal viscoe astic fluidisintroduced, the
agorithm is more complicated as it is necessary to accommodate the influence of both the
temperature and the deformation histories. In an E framework, this is typically done by
shifting thetime scale, as shown for 1D film casting in the study of Alaie and Papanastasiou
(1991). The UL framework avoids the complication of shifting the time scale by explicitly
tracking the material. The temperature-dependent properties are updated as the mesh

deforms.

8.5.4 Convergence Characteristics

The UL algorithm has better convergence characteristicsthan the E algorithmin that
the UL algorithmisnot overly influenced by theinitial mesh. Whether the algorithm begins
with al elementsinside the die, or with some configuration of elementsin the air-gap, the

time-stepping generally leads to a steady-state solution for a stable film problem. On the
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other hand, the E algorithm does not converge if theinitia guessisnat close enough to the
final solution. Thisobservationislikely dueto the choiceof the Newton-Raphson method
for solving the system of equations, as the Newton-Raphson algorithm requires a solution
that is“sufficiently” close to the roat (Chapra and Canale 1990.

Ancther advantage of the UL algorithm isthat when convergenceproblemsdo accur,
they provideinsight into the physicd process Inthisway anegativeisturned into apaositive
fedure of the dgorithm. For instance, if the transient behaviour does not die out, or leals
to“bregage” of thefilm, theninstabilit y hasbeenidentified. Ancther example occurswhen
the UL algorithm halts because of an ill -condti oned stiff nessmatrix due to excessve mesh
deformations at the die or roll. The mesh distortions that lead to the ill -condti oned matrix
area ansequenceof high gradientsand/or rotationand dstortion d the dements; therefore,

the convergence problems are an indicaion d red fadorsin the physicd problem.

8.6 Spatial Boundary Conditionsand a Material Mesh

As discussed in Sedion 3.8,the UL algorithm, espedally for the 2D case, only
approximates the spatial locaion d the die androll where the boundary conditions on the
film aremodified. The uneven and changing boundxry condtions are partly resporsiblefor
limiti ng the draw ratio that can be obtained with the UL agorithm in a2D framework. In
defence of the UL algorithm, the imperfed satisfadion d the transition from one set of
boundry condtionsto ancther isamathematicd problem, na aphysicd one. Thered film

casting processwill probably not have die and roll | ocaions that can be preasely defined
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over time. The location of the boundary conditions likely migrate slightly over time, with
the boundaries seldom, if ever, corresponding to a straight line. The spatial boundary
conditions used for the E algorithm are attractive from a computational viewpoint, but in a

sense they are no more correct than the UL boundary conditions, as both are idealizations of

the real process.



Chapter 9 Conclusions and Recommendations

This thesis presented a new numerical algorithm for 2D nonisothermal simulations
of anonlinear viscoelastic cast film process. The agorithm is new with respect to how itis
implemented and with respect to the physical phenomena included in the governing
equations. Inthe caseof theimplementation, thealgorithm described inthisthesisisthefirst
to model film casting using an updated L agrangian description of the motion. Furthermore,
theal gorithm providesone of thefew examplesof determining draw resonance asaresponse
problem, as opposed to the more common approach of linear stability analysis. When
compared to the existing literature, the algorithm described in this thesis al so contributesto
the body of knowledge on film casting by removing some of the simplifying assumptions
used in previous studies. The new features of the model include the following:

)] The transient behaviour of a 2D film can be observed;

i) Use is made of a constitutive equation unlike those generally employed in polymer
processing. The constitutive equation accommodates viscoel asticity, extensional
thinning/thickening, and strain-hardening.

11)] The influence of temperature on the stability of 2D films can be observed.

The body of this chapter is divided into two main sections. Section 9.1, which

summarizes the simulation results and the differences between UL and E agorithms, and
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Sedion 9.2, which consists of recommendations for future work. Following these two

sedions, concluding remarks are provided in Sedion 9.3.

9.1 Summary

Parametric studies were mnducted for the 1D, 1.9 and 2D versions of the UL
algorithm. Theresults of these studies are summarized in Sedion 9.1.1.Besides presenting
the results of simulations, the thesis also discussed the differences between and the
advantages and dsadvantages of the UL and E formulations. Sedion 9.1.2 povides the

highli ghts of this discusson.

9.1.1 Summary of Simulation Results

The simulationsin Chapter 5 ill ustrated the influence of the material properties and
procesgng condtions onthe steady-state 1D velocity and thicknessdistributionsin the ar-
gap. Asthe paymer isasaumed incompressble, the product of the velocity and thickness
at any distancefrom the die must be mnstant. Therefore, the points used to summarize the
results only nedl to refer to the dhanges in the thickness with the understanding that the
conservation of masswill cause a orrespondng changein the velocity. Thesimulationsin
Chapter 5 lead to the foll owing conclusions:
* extensiona thinning (increasing m) deaeases the thicknessgradient at the die
» extensional thickening (deaeasing m) increases the thicknessgradient at the die

» strain-hardening (n < 1) increases the thicknessgradient at the die
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» the dadticity of the melt (increasing 1) deaeases the thicknessgradient at the die

* hed transfer (increasing a)) increases the thicknessgradient at the die

Chapter 5also considered draw resonancein 1D film casting andthefoll owing observations
were made:

» compared to aviscous fluid (m = 1), extensional thinning (m > 1) deaeases gahility,
whereas extensiona thickening (m< 1) increases gability

* increasesin strain-hardening cause deaeases in stability
* increasesin A leal to deaeasesin stability
e increasesin a leal to dramatic increases in stability

In Chapter 6 attention was focussed onthe so-cdled 1.9 simulations, where the
thicknessis not alowed to vary aadossthe width of the film. This kinematic assumption
abou the thicknessis a popuar simplifying assumptionin the film casting literature. The
discusgonin Chapter 6 suggests the foll owing conclusions:

* higher asped ratios (increases in the ar-gap length relative to the die width) lead to an
increase in ned-in and a higher thicknessat the dill roll

* higher asped ratios have astabili zing influence on the film

* thel.5D asaumptionisnot agoodapproximation d thefilm casting processbecaisethe
restraining influence of the edge-bead is nat acoommodated

The 1D and 1.9 assumptionswere dropped in Chapter 7, where the analysisturned
to 2D simulations. The steady-state simulation results presented in Chapter 7 show that, for
the draw ratios considered, changes to the material properties do nd have adramatic

influence on the film’s geometry. This observation suggests that, at least for the case of
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lower draw ratios, the solution for the film casting problem is continuity driven. The
instability of 2D films was also discussed in Chapter 7 and it was concluded that the trends
with changing constitutive parameters and nonisothermal conditions are the same asfor the
1D simulations and that higher aspect ratios have a stabilizing effect, like that observed for

the 1.5D simulations.

9.1.2 UL versus E Formulationsfor Film Casting

One of the principal questions asked by this thesis is whether UL algorithms hold
promisefor thesimulation of continuous polymer processing, in particular for thesimulation
of film casting. To answer thisquestion it wasfirst necessary to rel ate the terminol ogy used
in the polymer processing literature to the conventions adopted for the UL constitutive
eguation. Thiswasthe purpose of Chapter 4, where mathematical relations were devel oped
to relate the E versions of power-law viscous and linear viscoelastic fluids to the UL
constitutiveequation. However, inthe case of nonlinear viscoel asticity, Chapter 4illustrates
that the mapping between the two formulationsis unclear. Moreover, it is suggested that,
in some respects, the UL approach provides amore natural analog of the idealized Maxwell
fluid for two reasons: the rate of deformation tensor used in the E approach is not equivalent
to the rate of strain tensor, and the convected stress rates chosen for the E constitutive
eguations may not be conjugate to the rate of deformation tensor in the energy sense. This

second point is suggested by the common practise in the chemical engineering literature of
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deriving new constitutive equations by changing the definition of the objective stress rate
with no corresponding modification to the associated rate of deformation tensor.

The investigation of the potential of the UL agorithm to simulate film casting was
pursued further in Chapter 8, where the UL algorithm is compared to severa different E
algorithms. Table 9.1 summarizesthe Chapter 8 conclusionswith respect to the advantages

and disadvantages of each type of agorithm.
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Table9.1 A Comparison of the UL and E algorithms

Advantages Disadvantages
E * acarate for 1D viscous » would lose the speed advantage if time-
o fast stepping isincorporated

» more complex for treaing viscoelastic
congtitutive equations

* can be sengitiveto theinitial guess

o different dof “types’ (medhanicd and
geometric degrees of freedom are
included in the same analysis)

UL |« anatural andintuitive gproac * in boundry condtionsisonly
* draw resonanceis predicted as a approximated
resporse problem * dow to reat stealy-state
» complex congtitutive equations are | « the rotation and dstortion o thefinite
relatively easy to implement elements can lead to an ill -condti oned
* robust convergence behaviour stiff nessmatrix

 advedionisnot necessary for the
thermal analysis or for the
continuity equation

* the dof are of the same “type” (the
medhanicd analysis uses
displacement dof to predict the
velocity field and the geometry)

* the deformation d the materia
mesh provides a picture of the
deformation hstory of the material
particles

Table 9.1 shows that the UL description d motion is a viable dternative to the usua E
descriptionfor simulating film casting. Althoughthe UL approach hesitsdrawbadks, it does
provide a powerful framework for the numericd simulations and it acaoommodates a wide

range of materials and processng condtions. Moreover, some of the disadvantages of the
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algorithm can, in asense, be interpreted as advantages. For instance, the approximation of
the spatial location of the die and roll may be closer to the physics of the actual film casting
processthan the mathematical idealization of straight unchanging boundaries. Furthermore,
the distortion of the mesh, while potentially leading to an ill-conditioned stiffness matrix,
also provides a useful picture of where and how a given materia particle will deform over
time.

Chapter 8 a'so comparesthe solutions obtained for 2D film casting of aviscousfluid
using the UL algorithm and the E algorithm of Smith and Stolle (2000a). Although the
agreement is reasonable at low draw ratios and low aspect ratios, the differences can be
significant between theresults of the different algorithms. Several possibleexplanationsfor
the differences were investigated, including the element shapes, the approximation of the
boundary conditions, and the initial mesh used for the UL analysis. None of these factors
seemed to explain the differences between the solutions of the UL and E algorithms. Instead
the differences were explained by the nonlinear nature of the problem and the fact that the
agorithms cannot easily distinguish between dissimilar solutions because they are so close
in an energy sense. Furthermore, unlike the E agorithm in question, the UL algorithm
accommodates transient behaviour, so the observed increase in differences between the

solutions as the draw ratio increases might be related to the approaching instability.
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9.2 Recommendations for Future Work

Although thisthesis provides useful insight into the film casting process and the use
of aUL description of motion for continuous processing, futurework isrequired to improve
the constitutive description. The goal of this analysis was to provide a UL framework for
simulating film casting, not to exactly describe the complex rheology of polymers. Now that
the framework has been established it would be relatively straightforward to modify the
constitutive equation. The question then becomes: what is the best approach to use? The
answer to thisquestion would likely liein collecting experimental dataand in increasing the
understanding of the mapping between the E and UL frameworks for the complex
constitutive equations that have been devel oped and had success within the E description of
motion. Whatever approach isused in thefuture, it should take advantage of thefact that the
constitutive behaviour refersto the material and the UL algorithm isderived in terms of the
material.

Another improvement to the existing algorithm would be to increase the draw ratios
that can be simulated using the 2D analysis. Themain hurdleto overcome herewould bethe
deformation of the mesh and the associated problems for the conditioning of the stiffness
matrix. A desirable algorithm would be one that combines the material tracking nature of
the UL agorithm and the stable mesh features of the E approach. Theagorithm could make
use of the Arbitrary Lagrangian Eulerian (ALE) finite element method (Liu et al. 1988), or
it could use a spatial mesh and track the deformation history explicitly, as done by Van Den

Berg et al. (1996) for ageomaterial.
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Another suggestion for future work is to take the lessons learned in this thesis and
apply them to the similar process of metal casting. In fact, the physics of the film casting
process are similar enough to other industrial problems that some of the ideas of thisthesis
could be applied to problems in the following areas: polymer fibre spinning, downstream
secondary treatment of polymer films, biaxial drawing of films, continuous casting using

polymers or metals, pulp and paper manufacturing, etc.

9.3 Concluding Remarks

The choice of description of motion is an important consideration for the finite
element analysis of any problem. In the case of film casting, E algorithms have been
popular, and deservedly so for 1D film casting of viscous fluids, since the E scheme is
superior to the UL scheme in simplicity, speed and accuracy. The superiority of the E
scheme can be traced to the fact that it is specifically tailored to thistype of problem. Two
tradeoffs are associated with this specific tailoring: i) a lack of robustness; and ii) the
difficulty of extending the algorithm to more complex material descriptions and operating
conditions.

As presented in this thesis the UL algorithm is more robust than the E algorithm
because it naturally picks up the steady-state solution, with little dependence on the initial
guess. The UL algorithm can also model viscoelastic fluids and transient phenomena, such
as draw resonance. Although the E agorithm performs well for simple problems, the UL

agorithmisattractivefor complex problems, which include the addition of two-dimensions,
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complex viscoelastic constitutive equations, and nonisothermal effects. The advantage of
the UL approach liesin the fact that the principles of mechanics apply directly to the body,
not to the region in space that it momentarily occupies. Moreover, the numerical
bookkeeping necessary for history-dependent constitutive equations is easier for a UL
algorithm, sincethisinformation is explicitly stored for each element. The maor drawback
of the UL algorithm is the difficulty of applying spatial boundary conditions to a material
mesh, although this drawback can be mitigated by using afine mesh and by recognizing that
asmall migration of the spatial boundariesislikely morerepresentative of the actual physics.
In conclusion, UL agorithms are a viable alternative to E agorithms for simulation of

continuous polymer processing, such as film casting.
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Appendix A Components and Expansions for Various Variables

This appendix summarizes the components for the variables used in the body of the
thesis. Table A.1 shows the components of the linear differential operators and Table A.2
expands the vector and tensor variables. Tables A.3 and A.4 summarize the finite element
matrices for the thermal analysis and the deviatoric tensor invariants, respectively.

TableA.1 Linear Differential Operators

Variable Components Variable Components
v [0/ox oloy]" L T
0 0
0 Z
oX oy
o & 9
ay oXx

TableA.2  Vector and Tensor Variables (written as column vectors)

Variable Components Variable Components
u, u [uv]|, [uv]" c [ Gy Oy Oy 1"

Ag [ Ag, Agy, Ay, 1T Ac [ Ao, Ao, Ao, 1T

Ag® [ AeS, Ae, AYS, 1 s [ SuSy Syl

147



148

Appendix A Components of Variables

Variable Components Variable Components
Dv [Dvxx Dvyy Dvxy]T D 4 2 0

G1{2 4 0

001

9Q (00 Q0 a0 oF oOF oF oF |
Jo 90, acyy acxy Jo 90, acyy acxy
9q a9 oq oq | [110]"
do 96, acyy acxy

In the above table the materia properties introduced are G, the shear modulus, and v,
Poisn'sratio. The shea moduusisrelated to the dastic moduusE, viaG = E/ (2(1+v)),

or G = E/3, for an incompressble material. The strains are cdculated using the standard

definitions; that is, Ac, = Y A, = Y Ac,= WV Ay, = M 4+ N Similarly, therates
oX ay 0z ‘ay ax‘

of deformationare cdculated asfollows: DY, = %,DV =N = W

X

= __ v:@+@
yy ay,

oz ¥ oy ox

TableA.3 Finite Element Variablesfor Solving for the Temperature
Variable Components Variable Components
N, [N, N, Ny N,] |B; [ON, ON, oN, oN,]

OX oX oXx X
oON; JN, JON; oN,
| dy ody ody ay]
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In Table A.3thevaluesof N;, N,, N,, and N, are the usual shape functions for aquadrilateral
element (Zienkiewicz 1977: p156). Table A.3 defines the matrices for shape function and
shapefunction gradientsfor thetemperatureanayss. Themechanical analysisusesdifferent
matrices, which are summarized in Appendix F.

TableA4 Expansion of Invariants using the Membrane Approximation

Invariant Expansion
2 2 2
%, (S * Sy * SeSy * So)
2 2
q \/3(Sxx+sw+sxxsw+s)2(y)
JE 2 2 2
2 (Agy + Aey, + Ag Ae, + Ag), Where
Ae, = Ae, - Ag /3
Ae,, = Ae, - Ag, /3
Ae,, = Ayxy/2
Ag, = Ag + Aayy + A,
Aeq [Hael + g, + Ae,he, + Ac)

In the above table Ae,, Ag,, and Aeg,, are the components of the in-plane incremental
deviatoric straintensor. For anincompressible material, asused inthisthesis, thedeviatoric
components are the same as the regular incremental strain components, since Ag, =0. The

expansion of the above invariants uses the membrane approximation to simplify the out-of -
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plane shear components, sothat s, =s,=0ande,=¢g,=0. Also, for the deviatoric tensors

the remaining out-of-plane components can be related to the in-plane values; that is,

S,= (S« S§y) and e, = - (g, + &)



Appendix B Derivation of the Elasticity Matrix for the Membrane
Approximation

The constitutive relation for an elastic material can be expressed as follows:

Ao = 2G Ag® - Apl (B.1)
wherethe 3D tensorsfor changein stressand elastic strain are used (in column vector form),
Apisthe changeinthepressureand | =[111000]". If the membrane approximation is
introduced, then the number of componentsin the changein stresstensor may be reduced by
three, since Ac,, = Ac,, = Ac,, = 0, but the change in pressureis still unknown. Using thefact
that the out-of-plane stressis zero (Ao, = 2GAe;, - Ap = 0), the pressure can be written
in terms of the elastic strain as

Ap = 2G Ag,, (B.2)
Using the assumed incompressibility of the elastic strain (Equation 2.2, using the elastic
components), the pressure can be expressed in terms of the in-plane elastic strains via
Ap = -2G(Ag;, + Agy) (B.3)
If Equation B.3 is substituted into Equation B.1, then the plane stress components of the

changein stress tensor are as follows:

Ao, = 2G Agy, + 2G(Aey, + Ag,)

Ao, = 2G Agy, + 2G(Agy, + Agy) (B.4)
e

Ao, = G Avyy
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where the relationship that Ay,, = 2Ae,, has been employed.
Using the column vector notation for thechangein stressand strain tensors, theabove

relation (Equation B.4) can be expressed as

420
Ac =DAg®, D=G-[2 40 (B.5)
001

in which the change in stress and strain tensors are now modified to only include the plane

stress components.



Appendix C Derivation of the Finite Element Equationsfor the
Implicit Creep Algorithm
The derivation of the finite element equations for creep follows the approach
presented by Stolle (1991). To estimate the displacements for the (i+1)"" time step the

residual for that time step (¥;,,) should be approximately zero, as shown below

lI'i+15f|3T6i+1dV -R=0 (C.2)
v

The stress change over the time step may be written as

6., = 6 + Ag, (C.2

Introducing the constitutive matrix allows the stress increment to be related to the total and
creep strain increments

Ac; = D (Ag, - Ag[) (C.3)

The creep increment can be calculated from the creep strain rate

i = Y (C4)
Gly

For afully implicit approach the variables are evaluated at the end of the time step, so the

creep strain increment is as follows:

Agl = Atg’, = Atgg v (C.5)
I+lac
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Now F isdefined as

F = Atgy = Ag, (C.6)

Taylor’ s expansion can be gplied to F to find F at the end o the time step (F,,,)

B B oF\ " oF , ¢ _ oF\ " oF
Fp=F «AF = F+ (g) Ac; + a_ggASq =F (%) Ac; + a_nghl (C.7)

If Equations C.3 and C.5 are substituted into the dowve eguation, then the foll owing results,

after rearanging

F.-cCI[F +| & TDAg.] (C.9)
i+l 1 i o6 i
where
B 3 [ oF) " oy __OF
Cl = [1 + (He+HC)] ) He - (%] D%, HC = g (Cg)

q
Equation C.8 and Equation C.5 may be used to expressthe aeep stressincrement (Equation

C.3), which in turn may be substituted into Equation C.1 to yield the required finite dement

eguations
fBTD"eB dVAa = R - fBTch + fBTAGCdV (C.10)
\% \% \%
with
pe - p - cpdf F)'p (C.11)
17 96\ 96 -
c _ 99
Ac® = CFD (C.12)

o6
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o O
Lo

06 88;

To actually use the above equations a specific function for y is needed, which in the

.
C, = [L+(HgrHJI ™ H, = [ﬁ) D (C.13)

06

current work isy = g. The gradient of F with respect to ¢ may be expanded as

oF oFQ g o
g 4 _ At—99q

i (C.19)
Jdo dq do dq do

An examination of the above equations shows that the gradient of g with respect to

6 occurs severa times. Thistermisequal to

9q _ 3 T
= 2q[ Sy Sy 2541 (C.15)

Another term that occurs frequently in the finite element equationsis termed v, which for

the membrane formulation is defined as

25XX+syy
aq 3G
v =D = 2X|s +2 C.16
& do q o Sy ( )
Sy

It is now possible to expand H, and H,. For the membrane formulations they are given by

aé; ég
H = SGAt.a—q, He = At— (C.17)
Gaq

With the above expansions the viscoel astic constitutive matrix may be written as

.C

0¢ T
D" = D - ClAtia—(;vecvec (C.18)
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with the creep stress increment being given by

Ac® = CAtéV (C.19)

17" ec
To complete the definitions of the above terms the creep strain rate and its derivatives must
be specified. For apower law strain hardening form, they are
. im o omio Qi E = L S im 1
Sq = nAnqn(Sq) " a_q = rnAnq " (gq) ", ; = (n_l)Anqn(Sq) " (CZO)
€
q

where s; = Ag ™t "for a constant stress creep test.



Appendix D Closed-Form Solution for the Effective Creep Strain
I ncrement

Intermsof differentials, the effective creep strain rate (Equation 2.8) may bewritten

asfollows:

Im 1
deq = NA"q "(gg) " dt (D.1)

The above equation can be rearranged and integrated over atime step At =t, - t,, wherethe

subscripts 1 and 2 refer to the beginning and the end of the time step, respectively

Sgl%s; n t,+At im
f (ep) " deg = f nA nq "dt (D.2)
&8 b4

a1

where Agg = &

G 8‘011 isthe effective creep strain increment. If thematerial propertiesand

g are assumed constant over the time step, then the definite integrals can be expanded to

1 1 im
n[(agl+Aa;)” - (sgl)”] = nAnq "At (D.3)
The above equation can be further rearranged to yield
c o ot im o1
(aql+Aaq)” = (sql)”(l + Anq ”(sql) "At) (D.4)
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The effective creep strain increment can be found by taking the n™ power of both sides of the

previous equation and rearranging terms

n

im0
nArg (e ) " At
Ae = eo| 1+ i - (D5)
c 1
naql

An examination of this equation shows the occurrence of s; as defined by Equation 2.8.

Therefore, the effective creep strain increment can be rewritten in compact form as

Aa; = a;l[(nsgl)’”(nsgl + é;lAt)” - 1] (D.6)



Appendix E The Newton-Raphson Algorithm for Solving for g

If Equation 2.8 is substituted into Equation 3.11, then after some rearrangement a

nonlinear function f(q) is obtained
im0
f(a) = q + 3Geg[(neg) "(neg + NA" "(e) " AY"-1] - g, = O (E.1)

Theroot of the above equation is solved via the Newton-Raphson algorithm

(@)
(q)

i+1 i

(E.2)

wherethederivative f/(q) can be calculated by taking the derivative of Equation E.1toyield

fn2+2nfl m-n 1 m

1 —n~+2n-1 mn i m n1
f(q) = 1 + 3 "GA™(eg) " Atg " [ney + nA"q"(gg) " At]" (E3)

Theinitial valuefor g, in theroot finding schemeis g, and the iterations are ceased once the

following criteriais met:

abs[ q'lq') < Tolerance (E.4)
q
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Appendix F The Average Shape Function Gradientsfor the Film
Element

Thefinite dement equationsto determine the displacements for the UL film casting
algorithm described in this thesis use arerage strain elements (Stolle 1992 Stolle et al.
2000. Thisappendix summarizesthederivation d the average shape functiongradientsfor
thed™ sub-element, so that Equation 3.23can be expressed using ead sub-element’ saverage
BYmatrix. To perform theintegration o Equation 3.23theintegral istransformed from the
x-y-ztothelocd r-s-t basis. Inther-s-t system the dement isacube centred at the origin,
with ead side having alength of 2. Therelationship between the x-y-zandther-s-t systems
is expressed using the brick element shape functions (N°) via:

X = Nibxi ;Y = Nibyi ;2= Nibzi ;U= Nibui ;v o= Nibvi ;W = Nibwi (F.1
where index naotation and the summation convention are ssumed and x, v, Z, U;, v, and w,
are the noddal values for the ordinates and dsplacements. For a brick element, which is
illustrated in Figure F.1in the x-y-z system and in Figure F.2 for the r-s-t system, the shape
functions are (Zienkiewicz 1977 p169:

NP = %(1 Fr)@ s s 9+ tY) (F.2)
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wherei isthe node number, (r, s, t) are the coordinates in the transformed basis and (r;, s,

t.) arethecoordinatesof thei™ node. Thesummation convention doesnot apply to thisequation.

39,

FigureF.1 A typical brick element in FigureF.2 A typical brick element in
the x-y-z system the s-r-t system

In the case of a film element, the above shape functions can be ssimplified by
recognizing that some of the information is redundant. With referenceto Figure F.1, it is
assumed for the film that for x, y, u and v, the i nodal value is equal to the (i+4)" nodal

value, for 1 < i < 4 and for zand w, the i™ nodal values are zero, for 5 < i < 8. If these

relations are substituted into Equation F.2 then

X=Nx; y=Ny; z=tNz; u=Nu; v=Nv; w=tNw
where N, = %(]ﬁl‘ I‘)(1+ss) and t = % (F.3)
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The shapefunctions N;, which do not use the summation convention, correspond to the shape
functions for a quadrilateral element (Zienkiewicz 1977: p156).

Now that the finite element approximation for u, v and w are available, the average

BY matrix can be expressed in terms of the average shape function gradients:

d d d
1y O 0 N,y O 0 Ny O 0 N,y O

» 0 0 @, 0 0 (N,), 0 0 (Ny), 0 0 (N, -
e d d d d d d d d )
Nl,y Nl,x 0 N N2,x 0 N3,y N3| X 0 N4'y N4' X 0

27y
Ny, 0 @NS, N, 0 @), N, 0 (@Ng), N7 0 (N,

0ONY, (NS, 0 NG (N, 0N, (N, 0 NS, @N))

with a comma used to represent partial differentiation. For the membrane formulation,
parasitic shear is suppressed by cal cul ating the gradients associated with the shear termsfor
the entire element, instead of for each sub-element.

In Equation F.4, the average shape function gradientsin the x, y and zdirections are
needed, both for the quadrilateral shape functions and for the quadrilateral shape functions
multiplied by t . Thesegradientsare cal culated by using the Jacobian of transformation (),

which can be written for agiven variable f = f(x(r,s,t), y(r,st), z(r,s;t)) asfollows:
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[of] [ox dy oz||of] [ of |
or| |or ar arl||ox ox
o |ox oy azf|of | |of
os 0s 0s o0s||ay Ul oy
of ox ody oz||of of
ot] |ot ot ot]| oz oz

(F.5)

Equation F.5 isinverted by using the rule that the inverse of amatrix is equal to the adjoint

of the matrix divided by its determinant

o] Ed of]
B e
a_y - ‘]ijil a_s = ﬁpﬂ_Mu My, Mg, g
of of Mz My Mg of
oz, Ed Ed
where M;; are the minors of the J; and are defined as follows:

My, = e ; My, = e » My = e
Y o Zy Xy Zy Xy Yy

My, = o ; My, = e ; My, = o
Y o Zy Xy Zy Xy Vi

Mg = o ; My, = A ; Mg; = e

Yie  Zg Xg  Zig Xis  Yis

Using Equation F.6, Equation 3.23 is transformed to the r-s-t basis:

(F.6)

; (F.7)
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Asd

XX

d
yy

d
z

Asg

Asg

Agd §
Ay Xy

d
Ay,

d
Aty

all]

r Udsudt Ud

|dsldt|d

—Mlzu,r +M22u,s—M32u,t + I\/Illv,r —M21v,s+M31v,t

M ur-Mus+Mgut + My, w,r-M,,w,s+Mj w,t

Mllu,r —MZlu,s+ M31u,t
-M Al +M22v,s—M32v,t

M w,r =M, w,s+M_ w,t

_Mlsv,r —M23v,s+ M33v,t - Mlzw,r +M22w,s—M32w,t_

165

drdsdt (F.8)

One should note that the determinant of the Jacobian cancels out of the above equation. The

values of the integration limits for each sub-element, and for the entire element, are

summarized in Table F.1.

TableF.1 Integration Limits to Define each of the Sub-Elements and the Entire

Element
Sub-element d | r, rg s¢ o t t ¢
1 -1 0 -1 0 -1 1
2 0 1 -1 0 -1 1
3 0 1 0 1 -1 1
4 -1 0 0 1 -1 1
entireelement | -1 1 -1 1 -1 1
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The minorsin terms of the finite element discretizations are given by

1
My = ¥isZy YnZs = Nl SN Yig
1
M12 - X’sz’t_x’tz’s - NI ij X
M13 = X,Sy,t—xytyys = 0
1
My = ¥ Zi7¥u2e = SN N Yig
_ _ 1 F.9
M22 = Xl Xy = NI I‘Nj Xlzj (F-9)
M23 = X,ry,t—xyty,r = 0
M31 = y,rz,s—y,sz,, = t(N| I’Nj s |s ]I’)yzl
M32 = X’rZ’S_X’SZ’ = t(N| r'Y,s | S, r)x Z]
My = X, Vi XYy = (Ni‘rNLs - Ni,ij,r)Xiyj

The above expansion of the minors takes advantage of the fact that x,, = y,, = 0.
The minors can be substituted into Equation F.8, along with the displacement

gradientsin ther-s-t basis (with u,, = v,, = 0) to yield

I\Ik(Ni,rNj, le Jr)uyzk
-N(N; NLS N N ) vy z
rls N(N. N. |s JI,)ij

B R

I'Sl

drdsdt (F.10)
II’]SNISjI’)u Zk+N(NII’]S IS]I’)Vy]

i,r'j,s le Jr)W Zk+Nk(N|r jS |s jl‘)yIZWk)
t( Nk(Nlr j,S le ]I’)W Zk Nk(Nlr is |s Jr)XZWk)

E(N(N, N

A common expression appearsin this cal culation, which motivatesthe following definition:

Lie = NN N = NN ) (F.11)

i,s j,r
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Using the definition of |, and integrating Equation F.10 over t (t, =-1,t, = 1 for al d), the
following equation is found:

d.

A iUy, 2
Agjy 1 VX 2
d Beg| g nm i ; W
- - = drds F.12
Ae d Vdf %z + TV (F.12)
Ayxy X .
AYSZ E[lijkwiyjzk AN
1
AYSZ __E[lijkwiszk + liijiZjWk]_

This equation shows that the expression |;;, contains the terms that depend only onr and s,

which suggests the following definition:

d.d
TuSh

Aje = [ [l drds (F.13)
rldsld

Using Equation F.13, Equation F.12 can be expressed as.

oy _
Ay Azl
Agjy “AyX BV,
| Aed 1 A X B W,
Act = Ay Ty AR EL T AYiAY, (F.14)
Y xy .
d E(Aijkyjzk * AYiZIW,
Ay,
1
AYSZ __E(Aijkszk * AjkinZk)Wi_

From Equation F.14 the average shape function gradients can be expressed as
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| Nifi‘ Aijdkyj Z
Nii/ —Aijdkxj z,
NG| g 0
| VI AL T ADYE (F.15
(N _é(Aij(Ii * Ajlfi)szk
_(fNi) (zj _ Ajlfi X Yy

EquationF.15showsthat the average shapefunctiongradientsfor thed" sub-element
can be determined using the dement’s nodal coordinates and the Aij‘f( expresson. An
examination of Equation F.13showsthat the cdculation o Aij‘f( only dependsonintegration
in r-s space therefore, the integration can be performed orce and the results can be reused
throughou the analysis. Aijdk was evaluated using Maple and, after some rearranging, Aiji

can be expressd asfoll ows:

A= T3, B 8 + (1@ B3r ST 5831 8B NS4S+ p+1,1)7s]

where a=r;s - r;s; B=rri(s-s); and y= ss(r; - r)

(F.16)

In Equation F.16the summation convention deesnat apply, r, =[-1 1 1-1],s =[-1,-1, 1, 1,

and the remaining terms are summarized in Table F.2.
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TableF.2 Termsused for the Calculation of A,

Sub-element d g(d) r S
1 1 -1 -1
2 1 1 -1
3 1 1 1
4 1 -1 1
entire dement 4 0 0

The volume caculation can also be dore using Aiji, asfollows:

r Udsudt Ud Udsud
Vv = [axdydz = [ [ [detildrdsct = [ [1;,xy, z.drds - ARX Y% (F.17)
vd d.d

r|ds|dt|d ns

This appendix has shown how the entriesin B® are cdculated. These entries can be
used to construct the B matrix used to cdculate the in-plane incremental displacenents and
the B, matrix used to cdculate the out-of- plane incremental displacements. The B matrix

uses the Nifi and Ni’dy terms and the B, matrix uses the (fNi)ij terms.






Appendix G The Closed-Form Solution for 1D Isothermal Film
Casting of a Power-Law Fluid

The governing equations for 1D isothermal film casting of a power-law fluid in an

Eulerian formulation are as follows:

d(ho,)
el 0 (G.1))
d(hu)
T 0 (G.2
o = MK (@)ﬁ (G.3)
XX dX .

Equations G.1 and G.2 are the 1D versions of Equations 8.1 and 8.2, respectively. The

constitutive equation, Equation G.3, is found using Equation 4.1 along with 6, = -p + 1,

6,= - P+ 1, =0 (membrane approximation), ? = —? (incompressibility constraint) and
X z
li= 2%. The boundary conditions for the 1D film casting problem are
X
At x i 0 u i l:fdie a_nd.h = hdie G4
At x = L U = Ug = UgeDr
Integration of Equations G.1 and G.2 yields
ho,, = F (G.5)
and
hu = Q (G.6)
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where F represents the force per unit width and Q is the volume flux per unit width. Now
Equation G.3 and Equation G.6 (rearanged to explicitly cdculate h) are substituted into

Equation G.5 and rearanged as foll ows:

2B*1Kg[ %]B =F

ul\ dx
EEpR 2
a4 ) _F P ¢ (G.7)
dx | 28KQ
-1
U fdu = C.dx

u 1 X
U fdd = [C.dX
1
jores]
B
m(u B - l.]dig) = C1X (G8)
p-1 b1
- -1
ub -ut = BTClx = C,X

Applyingtheboundary condtionfor velocity at x=L, thetheoreticd velocity profileisfound
to be

i

E X ﬁ*l
U=ugll+ (Dr? i (G.9)

Substituting this result into Equation G.6 and wsing Q = ug"hy., the theoreticd thickness

profileisfoundto be

B
b1 Ty
h-hy|l+@r P -X"" (G.10)

X
L
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The gradients of velocity and thickness can be found by differentiating Equations G.9 and
G.10, respectively

1

. B-1 p-1 —
. u . L — L — _
du P or P -pl1+ o P X" (G.11)
dx  (B-1)L L
1-2B
“Bh.. b1 b1 oL
oh ey 5 yl1 L or B o X|T? (G.12)
dx  (B-1)L L

Using Equations G.3 and G.11, the stress in the machine direction can be expressed as

- i
Plge (Dr P -1)
(B-1L

Another quantity of interest is the rate of energy dissipation over the domain W°.

o, = 2K

XX

(G.13)

For the 1D domain this quantity may be expressed as follows:

L .
W= [[[o,DV = [[[o,DuaV = [ h(x)oxx(x)$dx (G.14)
\Y \Y 0

where W° is the steady state rate of energy dissipation per unit width of the film. If

EquationsG.10, G.13 and G.11 are substituted into Equation G.14, the energy dissipated can

be expressed as

-1 B
B(Dr p -1)

(B-1)L

A specia case of the power law fluid is the linear viscous fluid, where p = 1. The

W = 2"*Khg g, (Dr-1) (G.15)

above equations for velocity, thickness, stress and energy dissipation are undefined for
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B = 1; however, the solutions for these variables can be derived in an analogous manner to
the above derivation. If the above steps are repeated for the Newtonian fluid, then the

following results are found:

X

U = udieDrt (G.16)
X
h = hdieDr L (Gl?)
h, X
dn _ Tdejyprypr T (G.18)
dx L
U, X
G, = 4n5%|n(Dr)Dr L (G.19)

W® = 4nh, 0 In(Dr)(Dr-1)L (G.20)



Appendix H Relating UL to E Constitutive Parametersfor the Power -
Law and Linear M axwell Fluids

The constitutive equation presented in Section 2.5, which is expressed in a UL
framework, can be related to two constitutive models commonly employed within an E

framework: the power-law fluid, and the linear Maxwell fluid.

The Power-Law Fluid
In the E framework most often used in fluid mechanics, the power-law constitutive
eguation can be written as
t; = K17y, 1 = /2D D, (H.1)
where T; is termed the extra stress tensor, D; is the rate of deformation tensor, K is a
constant, and i is proportional to the second invariant of the rate of deformation tensor.
If there is no strain hardening (i.e. n = 1.0), then the creep strain rate tensor

introduced in Section 2.5 can be written, using index notation, as

m-1
& = 88_\|I = Aqm(isl.) = SAq

S.
i anij 2q (H.2)

2

Equations H.1 and H.2 can be related by taking the following into account:
) the extra-stress tensor has the same definition asthe deviatoric stresstensor (t;=));

i) for viscous materials (low relaxation times) the elastic strain rate is small, so that

& is approximately equal to & and,
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11)] for small displacement gradient components, éijis approximately equa to D;
(Malvern 1969: p162).

Using the above statements, Equation H.1 can be written as
s, = 2KIi g (H.3)

and Equation H.2 can be written as

3Aq™
i 2 S; (H.4)

Equation H.3 includes an invariant of the strain rate tensor, while Equation H.4 contains an
invariant of the deviatoric stresstensor. To relate the two equationsit is necessary to relate

theinvariants. Thisis done through the constitutive relationship for the UL description

1
m (H.5)

£
= _q
q A

Equation H.5isonly valid in the case of viscous flows, when the stress can be assumed to
only depend on the current rate of strain; that is, when the stress is independent of the
previousdeformation history. If Equation H.5 issubstituted into Equation H.4 and the strain
rate is isolated in Equation H.3, then the two forms of the constitutive equation can be

eguated, which after rearranging yields

m-1

1
3AM, ™ = Kt P (H.6)

To further relate the two expressions, the strain rate invariants can be introduced into the

above, so that after rearranging
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1

1 m-1 1-B
|: (3m+l 2m71)5A 2

- i
() ™ = K2 2

i) (H.7)

If the powers of &8 for both sides of Equation H.7 are equated, then the following result

isfound:

m - (H.8)

1
B
Similarly, if the constants for both sides of Equation H.7 are equated, then the following

relation holds:

i e
A:32ﬁK[} (Hg)

EquationsH.8 and H.9rel atethe parameterscommonly avail ableinthechemical engineering
literature (B and K) to the UL constitutive parameters adopted in thisthesis (mand A).

A specia caseof the power-law fluid isthe Newtonian fluid, which is obtained when
B =1. Inthis case Equations H.8 and H.9 simplify to m= 1 and A = 1/(3K). To further
highlight the Newtonian fluid, two new symbols areintroduced: n®* and n°, which aretermed
the shear and creep viscosities, respectively. These viscosities are related to K and A, and

to each other via

3
K=n", A= , andn® = on® (H.10)
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TheLinear Maxwell Fluid
In the chemical engineering literature the linear Maxwell fluid is written as (Joseph

1990: p6)

Tt AL = 2Dy, A= (H.11)

n S
G
In the UL constitutive equation, with m=n =1, therate of change of the deviatoric stressis

written as follows:

. . b & 3
S”. = ZGSS = 26(8” - 8,(]) = ZG(SH - ES”) (H.12)

The above equation can be rearranged and simplified to

& (H.13)

If the statementsi) and iii) from above are used, along with Equation H.10, then Equations
H.11 and H.13 are shown to be identical. Therefore, severa aternative definitions for the

relaxation time are as follows:

r=21 -4 - - =
G 3G 3GA EA (H.14)

The above equation uses the relationship between the elastic and shear moduli for an

incompressible material; that is, E = 3G.



Appendix | The UCM Solutions for Constant Rates of Uniaxial and
Equibiaxial Extension
This appendix summarizes the closed-form solutions for stress as afunction of time
for aUCM materia under a constant rate of natura strain for two material tests: uniaxial
extension and equibiaxial extension. The two tests are shownin Tablel.1.

Tablel.1 Summary of the Uniaxial and Equibiaxial Material Tests

Uniaxial Extension Equibiaxial Extension
Figure of
Material Test
il 0 Yartrrra
x = T
. TS —.
— VI —u
) L <3
Strain Rate éﬂ:@:é éx)(:@:éyy:ﬂ:é
Assumption X oX oy
Velocities u = sLe” u=c¢le®; v=ewe
o ow  1ou  1.|ow _ (ou  ov) .
Incompressibility | — = — = ~=— = - =¢| — = | — + —| = -2¢
and Symmetry gy oz 2 0x 2 0z ox oy

Thefirst row of Tablel.1 summarizesthe material tests by showing the dimensions,
boundary conditions and coordinate system, for which the z-axisis directed out of the page.

Table 1.1 also shows the constant natural strain rate assumptions for each test and the
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velocities (U, V) necessary to maintain the constant strain rate (¢ ), asafunction of time (t)
and the initial length (L,) and width (W;). The final row of Table I.1 uses the assumed
incompressibility of the material to express the strain rates in the directions where the
velocity isnot controlled. In the case of the uniaxial extension test, useis aso made of the
fact that the strain rates in the y and z directions should be equal, as neither direction should
strain preferentially.

The equation for u in the third row of TableI.1 isfound by using the fact that the
strain rate is constant. For a constant rate of natural strain (¢) the natural strain (¢) can be
determined by integration; that is, ¢ = &t. The length (L) as a function of time can be

determined using the definition of natura strain, asfollows:

e =In(—) =&, - L=Lge" (1.2)

where the exponential function has been applied to each side of the equation to remove the
natural logarithm. Equation 1.1 can be used to determinethe variation of u required to keep
the extension rate constant

) dL o g
u = & eLe (1.2)

An analogous approach is used to determinev for the equibiaxial extension test.
Now that the kinematics of the material tests have been summarized, the discussion
can move to the description of the upper convected maxwell fluid (UCM), for which the

extra-stress relation can be written as
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Ay o+t = 20Dy (1.3)
with the upper conveded derivative defined as

Dt
Tij = Ft” - Lyt~ Tk (1.4)

whereL; isthe velocity gradient tensor and D/Dt isthe material derivative, which simplifies
to d/dt for the current problems, as the stress is uniform throughou the body and
consequently thereis no advedion o stress

For bath the uniaxial and biaxial cases there is no sheaing; therefore, the velocity

gradient, rate of deformation and extra-stresstensors can be written as

g, 0 O 7, 0 O
L, = D; = 0 €y 0l: T = 0 Ty 0 (1.5
0 0 ¢, 0 0 1,

In this equation the rate of deformationisrelated to the rate of change of the natural strain.

To prove that thisis possble, one can consider the foll owing relation from Malvern (1969:

pl62:

— U -F . D,F (1.6)

which relatesthe Grean' sfinite strain E; to the material deformationgradient F; andtherate
of deformation tensor D;;. For the smple uniaxial extension problem, the terms in this
eguation can be expanded, rearanged andinterpreted in terms of the natural strain,to oltain

Equation|.5.
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UsingtheL;; and D, tensors and the definition of the upper convected derivative, the

x-component of the extra-stress tensor in Equation 1.3 can be written as

X(T:X - Zé)o(txx) T, = 2%, (1.7)

This linear nonhomogeneous differential equation, which has constant coefficients, can be

solved using theinitial condition that t,, = 0 to yield

2n%,, @Dyt % @2s-Ly
L= —— X (1-e “F)y=_4ANE (1 _¢g 1.8
x = T 2MXX( ) 1 ZM:( ) (1.8)

where the symbol for the constant strain rate (£) has been substituted in for the strain rate

inthe x-direction. Similarly, the other two extra-stress values in Equation 1.3 can be solved

2n% (26,2}t
1= — W (1-e "N 1.9
W T 2M:W( ) (1.9)

2n%,, (2, L)t
- m (1 7 .10
= T2, ) (1.10)

For theuniaxial extension €y = —%é. If thisrelationissubstituted into Equation 1.9,
then the following results

1
_Se (-&-)t
T, - 1?;é(1—e ) (1.12)

As there is no resistance to deformation in the y-direction, the stress 6,, in that direction is

zero; therefore, from the definition of the extra-stresstensor p = 1, and o,, = T, P = T, T,y
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Using thisfinal relation and the previously derived values for the extra-stress components,

the stress in the x-direction may then be written as

@yt 1

2n’% x n% )
— 1 - e + 1 - e |12
O = T ) ¢ ) (112)
which can be rearranged to yield
.1 .1
S (26-=)t (-&-o)t
oy = ne (2(xé+1)e Moo (2w-)e - 3) (1.13)

2(0&)% + A& - 1
The stressfor the equibiaxia case can be derived in an analogous manner to that for
the uniaxia case. First, the relations ¢, = €y = & and &, = -2¢ are substituted into

Equations|.8, 1.9 and 1.10. Second, the equation c,,=0isusedtofind 6., =1, - 1,,. Third,

the first two steps are combined, to yield

.1 .1

21’]38 (ZS*K)t 4T158 (*4€*I)t
o, = 1-e + 1-e .14
X 1—2xé( ) 1+4M—:( ) (149

which can be rearranged and written as

.1 .1

Sg (2e-=)t (-4&-=)t
o, = 2ne ((1  hie P - 2-BDee b - 3) (1.15)

8(Ae)? - 28 - 1






Appendix J Fitting to Virtual Experimental Data

Idedly the mnstitutive parameters would be found ly fitti ng to experimental data,
but unfortunately there is a paucity of extensional data avail able in the literature. For this
reason, and becaise it highlights the diff erences between the E and UL approades, the
constitutive parameters are found ly fitting the UL equation to “virtual” experiments
conduwted using the E congtitutive equations. It is worth emphasizing that the virtual
experiments differ from red experiments becaise exad data points are generated; that is,
thereisno nase or randam experimental error in the data. Asthe film casting problem is
extensiona in nature, the virtual experiments are dhosen to be constant rate of uniaxial
extension and equibiaxial extension problems. The dosed-form solution for uniaxial and
equibiaxial experiments using anonlinea Maxwell fluid are presented in Appendix I.

The best fit is determined using a Hooke and Jeeves agorithm (Smith et al. 1983

p180-183) with the foll owing objedive function and constraints

ndata
MmNz = ) (Oyep ~ Opgm)’
i-1

st. n>0
n>0

3.0)
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where z is the squared error, ndata is the number of data points, and o,,, and o, are the
stress values for the virtual experiment and the numerical simulation, respectively. The

constraints are enforced using a penalty function.



Appendix K Elastic Limit of the UCM Equation

Theintegral form of the UCM constitutive equation is given by (Joseph 1990: p14)

gt _(t-1)
T, = % [e? (Bj(x) - §,)dr (K.1)

where Bi}(r) is arelative strain tensor, called the relative Finger tensor or the relative left
Cauchy Green tensor and §; isthe Kronecker delta. The relative Finger tensor depends on
the relative deformation gradient tensor Fi}(t) , which isthe gradient of the current position

of the material particle at timet with respect to some past configuration at time t; that is,

Fif(t) L (9)

= m (K.2)

Using the relative deformation gradient tensor, the relative Finger tensor is defined as

ox,(t) 9%, (9]

Bijt(r) = F () F(t) = ax, (1) 9% (1)
K k

(K.3)

Using the properties of integrals, Equation K.1 can be split into two integrals, as follows:

s O _(t-1) . st _(t-7) t
7, () = %fe " (Bj0) - )dk + Lfe * (Bi(n) - §)ck (K .4)
oo 0

ll
xZ
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whereinthefirstintegral the relative Finger tensor will be constant with respect to t because
the material is assumed not to deform until t is greater than zero. Thefirst integral can be
evaluated to yield

_(t7)

50 - Le MBI - 3) + % [e 7 @ - 3)dr K.5)
0

Now A =n%G can be substituted into this equation to produce
16 t _(t0G
T,(t) = Ge 5(85(0) - §) + G_: fe T(Bi}(r) - 3¢k (K.6)
LG
The elastic limit of the extra-stress tensor occurs when 1° approaches infinity. In this case
the exponential function in thefirst term will approach one, and the exponentia functionin
the second term will approach zero; therefore, in the elastic limit
T = OB - %) (K.7)

where the reference to time has been dropped because for an elastic material the stress will
only depend on the current deformation, not on any past configurations. The Finger tensor
for the élastic case depends on the deformation gradient of the deformed position with

respect to the original configuration.



Appendix L Closed-Form Solution for 1.5D Film Casting

Given the drawing force (F) in the film, Avenas et al. (1986: pp359-369) and
Agassant et al. (1991: pp239-250) present relationsto find the following variables: the draw

ratio (U, ,,/Uy,), the neck-in (W,,/W;,) and the thickness change (h,,/he). Thetheoretical

roll
relations assume that the process is isothermal and that the fluid is Newtonian. Also,
restrictions are made on the admissible velocity field, so that the problem is 1.5D, with the
kinematic assumptionslistedin Table 1.1. Therefore, asmentionedin Section 1.4.1 thefilm
maintains a rectangular shape from the die to the roll, as the thickness does not vary in the

transverse direction.

The neck-in at theroll is calculated from the following transcendental equation:

Zg~L
-4AL = -z.) + In——
Zor ~ Zgo) 2,1

F
where A = % Q = UyhyWyies

Zoy = 1 + BAPWSG, and zg, = /1 + BAZWS,

Once W, /W, is known the following relation is used to solve for h,,/h.:

(L.1)

W h
In roll + 2In roll - —BAL (L.Z)
die die

The continuity equation can then be used to determine the draw ratio (Dr) via
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U Waihgie
Dr = W.h (L.3)
die roll” “roll

In addition to the above relations, Avenas et al. (1986) and Agassant et al. (1991) present a

theoretica limit for the neck-in

o -1 -2 (L.4)



Appendix M Linear Stability Analysisfor 1D Film Casting

The most common approach for determining the stability of continuous polymer
processing is linear stability analysis, as described by Denn (1975). In alinear stability
anaysis the steady-state solution is perturbed by some infinitesimal amount and the
behaviour of the linearized governing equations is considered. If the small perturbation
damps out, then the processis stable. If the perturbation continuesto grow, then the process
is considered unstable.

i) Governing Equations
In an Eulerian framework, the conservation equations and the constitutive equation

for transient isothermal film casting of aviscous fluid are as follows:

oh  o(uh)
—_— —_— = 0
. (M.1)
3(ho)
— = 0
™ (M.2)
au
o = dn (M.3)

An equation can be eliminated from the above by substituting Equation M.3 into Equation

M.2 to obtain
o(.ou
—)h=}| =0
ax[ ax) (M.4)
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192 Appendix M Linear Sability Analysis
The boundry condtions for Equations M.1 and M.4 ae u(0,t) = Uy,
ulL,t) = u,, and h(0,t) = h,. . Asusud, thedraw ratioisdefined asDr = U, /U,-

roll roll

ii) Steady-State Solutions
The steady state solutions for velocity and thickness (U and hy) are derived in

Appendx G and are repeaed here for convenience

X
U, = ugDrt; hg=hgDrt (M.5)

iii) Linearize for Infinitesimal Disturbances
The solutions for the velocity and thicknessmay be expressd as the stealy-state
solutions plus sme small perturbations (&, ), as follows:
uixt) = ugx) + &xt);  hxt) = h () + uxt) (M.6)
If Equation M.6 is substituted into Equations M.1 and M.4, and if terms over first order in
& and L are negleded, by assuming that higher order perturbations are negligible, then the

following is obtained:

oM dy. B

E * &(USH * h$§) =0 (M.7)
0 o0& U

Ylph e s = =0 M.8
ax[ Sox | ox Il] (M-5)

Equations M.7 and M.8 take advantage of the simplificaion that results becaise u_and hy

are solutions for Equation M.1 and M .4, respedively, and thus drop ou of the eguations.
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The steady-state and perturbed vel ociti es and thicknesses are assumed to satisfy the
same boundhry condtions; therefore, the boundary condtionsfor the perturbation variables
ae&(0) =¢(L,t) = n(0y) =0.

iv) Separation of Variables

The following separation d variables is assumed to apply:

Ext) = 0,(0w(x);  Hxt) = 0,()e(x) (M.9)
If Equation M.9 is substituted into Equation M.7, dvided by 0,¢ and rearanged, then the

foll owing equationis obtained:

6
- _%(u;(p <o’ + (hly+hgy)I0,6,]) = 2 (M.10)

N

wherethe superimposed da () andthedash () represent diff erentiationwith resped to time
and pasition, respedively. Thefirst ratio isindependent of x andif 8, = 6, then the second
ratio isindependent of time; therefore, the equality can orly hald if A isa constant (A does
not represent the relaxation time in this usage). The ordinary differential equation for the

first ratio can be solved, to yield

0, =0, =e" (M.12)

The differential equation correspondng to the seandratio is

(U + U’ + (hay+hy) = 0 (M.12)
Ancther differential equationin xisfound ly substitution o Equations M.9 and M.11into

Equation M.8 and rearanging to yield
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ugp + Uge’ + (hgy'+hgy”) = 0 (M.13)
Toreducetheorder of the aboveequation, let ® = y’. Thesystem of differential equations,

after substitution of Equation M.5 and rearranging, becomes

2X 2X

h X h, & =
o' = —2(nDrDr Ly - —0pr Ly - MOy Ap T, (M.14)
u,L Uy L Uy
v = (M.15)
2X 2X
u — u -
o = DT 04nDry%or T - — (InDr)Dr Lo’ (M.16)
L~ oL

and the associated boundary conditions are ¢(0)=y(0) =y(L) = 0.

Equations M.14 to M. 16 are the same as those obtained by Fisher and Denn (1975),
except that their equationsarewrittenin dimensionlessform. The system of equationsforms
a linear eigenvaue problem, which Fisher and Denn (1975) solve by direct numerical
integration, assuming ®(0)=1 and varying A until the downstream boundary condition,
y(L)=0, issatisfied. The integration for various draw ratios shows that the real part of the
eigenvalue first becomes positive at a critical draw ratio of 20.2. Below this draw ratio
Equation M.11, and thus the perturbations in velocity and thickness, will decay over time,

but above this value an arbitrarily small disturbance will grow over time.



