Ambiguous Grammars

For now, we are only working with CFG’s.
Let G be a CFG over 2. Recall:
G is right-linear (RL) if all productions of G are of the form:

A—2x2B or A—=x
G is left-linear (LL) if all productions of G are of the form:
A— Bx or A—z=x

G is linear iff G is RL or LL.

Definition: G is semilinear iff
at most 1 non-terminal occurs on the r.h.s. of any production.

Note:
All linear grammars are semilinear, but not conversely.

5-13

Examples: (1)X ={a,b}, L = {a""| n=0,1,2,...}.

L is generated by grammar G :S — aSb| A
G is semilinear, but not linear.
Q. Isit possible that there is also a linear grammar for L?

A. No, since L is not regular by the PL.

(2) L = W N[= the set of well-nested strings over { [,] }.
Generatedby G : S — [S] | SS | A
Not even semilinear!

Q. Is L regular?

I.e. does L possibly also have a linear grammar?

A. No, again by the PL

Note: We will see:
Non-semilinear grammars are associated with
ambiguity of syntax.

5-14

Leftmost & Rightmost Derivations

Suppose G is a non-semilinear CFG.

Then there are generally more than 1 derivation of a word in G,

e.g. Suppose G has productions

Production #| Production
1 S — AB
2,3 A—aA| A
4.5 bbB | A

Then for example:
(HS Ly AB =25 aAB =25 0aAB == aaB = aabbB = aabb,
(2) S == AB =5 AbbB =2> Abb =25 a.Abb == aa.Abb == aabb,

3)S Ly AB =% 0AB == aAbbB == aaAbbB = aabbB = aabb,

(etc.) are all derivations in G of a?b?.

They all use the same productions, just in a different order

5-15

Derivations of a?b? in G on p. 5-15:

(1) is a leftmost derivation,

i.e. at each step, leftmost non-terminal is used,

(2) is a rightmost derivation,

i.e. at each step, rightmost non-terminal is used,
(3) is neither of these.

Note:
Such choices are only possible for non-semilinear grammars.

Want to say: these derivations are “really the same” in some sense.
The non-terminals are just eliminated in a different order.

We can say: they have the same derivation tree or parse tree:

5-16

Parse tree for aabb in G:

/S\
A B
/7 N\ /1IN
a A b b B
/7 N\ AN
a A A
AN

This shows a derivation of a word of G by reading leaves left — right.

Note:
For parse trees:

(1) The root is labeled S

(2) Every leaf is labeled by a terminal or A

(3) Every non-leaf is labelled by a non-terminal

If (2) is replaced by:

(2”) Every leaf is labelled by a terminal, A, or a non-terminal

- Have a partial parse tree:

shows a derivation of a sentential form in G.

5-17

Ambiguous grammars

Let G be the non-semilinear CFG

S — SS|[S]][]

This generates all non-empty well-nested bracket strings.

Consider 2 derivations of u =[] [][].
8= 85§=[]|5=[]5§=[][]5=[][]]]
2)8§=85=S[]=585[|=[]5[]=[][]I]

These have different parse trees!

Grammars like G which have more than 1 parse tree for the same
word are called ambiguous.

These are bad for programming languages!

5-18

Example:
Modified BNF (p. 1-14) is a form of CFG!

So e.g. consider grammar for arithmetic expressions e, €, ...
from variables z, y, ...,
numerals m, n, ..., and

arithmetic operators +, X, —
e:=xz|n|e+e|erxe| —e
This grammar is ambiguous!

Can generate expressions:
e1+ e+ e3

el X ey X e3

What is their parse tree?

If you say it doesn’t matter because of associativity of + and X,
what about
e1+ex Xes

For this, we need precedence rules

(‘x’ has higher precedence than ‘+’)

5-19

But better:

Rewrite the grammar s.t. only 1 parsing is possible:

Use... parentheses!

Read Linz §5.3:

“Context-Free Grammars and Programming Languages”

Warning!
Our terminology is not the same as Linz’s:

e Our linear grammar is called regular by Linz;

e Our semilinear grammar is called linear by Linz.

