
Ambiguous Grammars

For now, we are only working with CFG’s.
LetGGG be a CFG over ΣΣΣ. Recall:
GGG is right-linear (RL) if all productions of G are of the form:

A −→ xBA −→ xBA −→ xB or A −→ xA −→ xA −→ x

GGG is left-linear (LL) if all productions of G are of the form:

A −→ BxA −→ BxA −→ Bx or A −→ xA −→ xA −→ x

GGG is linear iffGGG is RL or LL.

Definition: GGG is semilinear iff
at most 1 non-terminal occurs on the r.h.s. of any production.

Note:
All linear grammars are semilinear, but not conversely.
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Examples: (1) Σ = {a, b}Σ = {a, b}Σ = {a, b}, L = {anbn | n = 0, 1, 2, . . . }L = {anbn | n = 0, 1, 2, . . . }L = {anbn | n = 0, 1, 2, . . . }.

L is generated by grammar G : S −→ aSb | λG : S −→ aSb | λG : S −→ aSb | λ

GGG is semilinear, but not linear.

Q. Is it possible that there is also a linear grammar for LLL?

A. No, since L is not regular by the PL.

(2) L = WN[ ]L = WN[ ]L = WN[ ] = the set of well-nested strings over { [ , ] }{ [ , ] }{ [ , ] }.

Generated byG : S −→ [S] | SS | λG : S −→ [S] | SS | λG : S −→ [S] | SS | λ

Not even semilinear!

Q. Is LLL regular?
I.e. does LLL possibly also have a linear grammar?

A. No, again by the PL

Note: We will see:
Non-semilinear grammars are associated with
ambiguity of syntax.
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Leftmost & Rightmost Derivations

SupposeGGG is a non-semilinear CFG.
Then there are generally more than 1 derivation of a word inGGG,

e.g. SupposeGGG has productions

Production # Production
1 S −→ ABS −→ ABS −→ AB

2,3 A −→ aA | λA −→ aA | λA −→ aA | λ
4,5 bbB | λbbB | λbbB | λ

Then for example:

(1)S 1
=⇒ AB

2
=⇒ aAB

2
=⇒ aaAB

3
=⇒ aaB

4
=⇒ aabbB

5
=⇒ aabbS

1
=⇒ AB

2
=⇒ aAB

2
=⇒ aaAB

3
=⇒ aaB

4
=⇒ aabbB

5
=⇒ aabbS

1
=⇒ AB

2
=⇒ aAB

2
=⇒ aaAB

3
=⇒ aaB

4
=⇒ aabbB

5
=⇒ aabb,

(2) S 1
=⇒ AB

4
=⇒ AbbB

5
=⇒ Abb

2
=⇒ aAbb

2
=⇒ aaAbb

3
=⇒ aabbS

1
=⇒ AB

4
=⇒ AbbB

5
=⇒ Abb

2
=⇒ aAbb

2
=⇒ aaAbb

3
=⇒ aabbS

1
=⇒ AB

4
=⇒ AbbB

5
=⇒ Abb

2
=⇒ aAbb

2
=⇒ aaAbb

3
=⇒ aabb,

(3)S 1
=⇒ AB

2
=⇒ aAB

4
=⇒ aAbbB

2
=⇒ aaAbbB

3
=⇒ aabbB

5
=⇒ aabbS

1
=⇒ AB

2
=⇒ aAB

4
=⇒ aAbbB

2
=⇒ aaAbbB

3
=⇒ aabbB

5
=⇒ aabbS

1
=⇒ AB

2
=⇒ aAB

4
=⇒ aAbbB

2
=⇒ aaAbbB

3
=⇒ aabbB

5
=⇒ aabb,

(etc.) are all derivations inGGG of a2b2a2b2a2b2.
They all use the same productions, just in a different order
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Derivations of a2b2a2b2a2b2 inGGG on p. 5-15:

(1) is a leftmost derivation,
i.e. at each step, leftmost non-terminal is used,

(2) is a rightmost derivation,
i.e. at each step, rightmost non-terminal is used,

(3) is neither of these.

Note:
Such choices are only possible for non-semilinear grammars.

Want to say: these derivations are “really the same” in some sense.
The non-terminals are just eliminated in a different order.
We can say: they have the same derivation tree or parse tree:
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Parse tree for aabbaabbaabb inGGG:
S

A

A

A

a

a

B

Bb b

λ

λ

This shows a derivation of a word ofGGG by reading leaves left→ right.

Note:
For parse trees:
(1) The root is labeled SSS

(2) Every leaf is labeled by a terminal or λλλ

(3) Every non-leaf is labelled by a non-terminal

If (2) is replaced by:
(2’) Every leaf is labelled by a terminal, λλλ, or a non-terminal

- Have a partial parse tree:
shows a derivation of a sentential form inGGG.
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Ambiguous grammars
LetGGG be the non-semilinear CFG

S −→ SS | [ S ] | [ ]S −→ SS | [ S ] | [ ]S −→ SS | [ S ] | [ ]

This generates all non-empty well-nested bracket strings.

Consider 2 derivations of u = [ ] [ ] [ ]u = [ ] [ ] [ ]u = [ ] [ ] [ ].

(1) S =⇒ SS =⇒ [ ] S =⇒ [ ] SS =⇒ [ ] [ ] S =⇒ [ ] [ ] [ ]S =⇒ SS =⇒ [ ] S =⇒ [ ] SS =⇒ [ ] [ ] S =⇒ [ ] [ ] [ ]S =⇒ SS =⇒ [ ] S =⇒ [ ] SS =⇒ [ ] [ ] S =⇒ [ ] [ ] [ ]

(2) S =⇒ SS =⇒ S [ ] =⇒ SS [ ] =⇒ [ ] S [ ] =⇒ [ ] [ ] [ ]S =⇒ SS =⇒ S [ ] =⇒ SS [ ] =⇒ [ ] S [ ] =⇒ [ ] [ ] [ ]S =⇒ SS =⇒ S [ ] =⇒ SS [ ] =⇒ [ ] S [ ] =⇒ [ ] [ ] [ ]

These have different parse trees!

Grammars like GGG which have more than 1 parse tree for the same
word are called ambiguous.

These are bad for programming languages!
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Example:
Modified BNF (p. 1-14) is a form of CFG!

So e.g. consider grammar for arithmetic expressions e, e′, ...e, e′, ...e, e′, ...

from variables x, y, ...x, y, ...x, y, ...,
numeralsm,n, ...m, n, ...m, n, ..., and
arithmetic operators +,×,−+,×,−+,×,−

e ::= x | n | e1 + e2 | e1 × e2 | − ee ::= x | n | e1 + e2 | e1 × e2 | − ee ::= x | n | e1 + e2 | e1 × e2 | − e

This grammar is ambiguous!

Can generate expressions:
e1 + e2 + e3e1 + e2 + e3e1 + e2 + e3

e1 × e2 × e3e1 × e2 × e3e1 × e2 × e3

What is their parse tree?
If you say it doesn’t matter because of associativity of +++ and×××,
what about

e1 + e2 × e3e1 + e2 × e3e1 + e2 × e3
For this, we need precedence rules
(‘×××’ has higher precedence than ‘+++’)
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But better:
Rewrite the grammar s.t. only 1 parsing is possible:

Use... parentheses!

Read Linz §5.3:
“Context-Free Grammars and Programming Languages”

Warning!
Our terminology is not the same as Linz’s:
• Our linear grammar is called regular by Linz;
• Our semilinear grammar is called linear by Linz.
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