Ambiguous Grammars

For now, we are only working with CFG's.
Let G be a CFG over Σ. Recall:
\boldsymbol{G} is right-linear (RL) if all productions of \boldsymbol{G} are of the form:

$$
A \longrightarrow x B \quad \text { or } \quad A \longrightarrow x
$$

\boldsymbol{G} is left-linear (LL) if all productions of \boldsymbol{G} are of the form:

$$
A \longrightarrow B x \quad \text { or } \quad A \longrightarrow x
$$

G is linear iff G is RL or $\mathbf{L L}$.
Definition: $\quad G$ is semilinear iff
at most 1 non-terminal occurs on the r.h.s. of any production.
Note:
All linear grammars are semilinear, but not conversely.

Examples: (1) $\Sigma=\{a, b\}, \quad L=\left\{a^{n} b^{n} \mid n=0,1,2, \ldots\right\}$.
L is generated by grammar $\quad G: S \longrightarrow a S b \mid \lambda$
G is semilinear, but not linear.
Q. Is it possible that there is also a linear grammar for L ?
A. No, since \boldsymbol{L} is not regular by the PL.
(2) $L=W N_{[]}=$the set of well-nested strings over $\{[]$,$\} .$

Generated by $G: S \longrightarrow[S]|S S| \lambda$
Not even semilinear!
Q. Is L regular?
I.e. does L possibly also have a linear grammar?
A. No, again by the PL

Note: We will see:
Non-semilinear grammars are associated with ambiguity of syntax.

$$
5-14
$$

Leftmost \& Rightmost Derivations

Suppose G is a non-semilinear CFG.
Then there are generally more than 1 derivation of a word in G,
e.g. Suppose G has productions

Production \#	Production
1	$S \longrightarrow A B$
2,3	$A \longrightarrow a A \mid \lambda$
4,5	$b b B \mid \lambda$

Then for example:
(1) $S \xlongequal{1} A B \xlongequal{2} a A B \xlongequal{2} a a A B \xlongequal{3} a a B \xlongequal{4} a a b b B \xlongequal{5} a a b b$,
(2) $S \xrightarrow{1} A B \xlongequal{4} A b b B \xlongequal{5} A b b \xlongequal{2} a A b b \xlongequal{2} a a A b b \xlongequal{3} a a b b$,
(3) $S \xlongequal{1} A B \xlongequal{2} a A B \xlongequal{4} a A b b B \xlongequal{2} a a A b b B \xlongequal{3} a a b b B \xlongequal{5} a a b b$,
(etc.) are all derivations in G of $\boldsymbol{a}^{2} \boldsymbol{b}^{2}$.
They all use the same productions, just in a different order

$$
5-15
$$

Derivations of $\boldsymbol{a}^{2} \boldsymbol{b}^{2}$ in \boldsymbol{G} on p. 5-15:
(1) is a leftmost derivation,
i.e. at each step, leftmost non-terminal is used,
(2) is a rightmost derivation,
i.e. at each step, rightmost non-terminal is used,
(3) is neither of these.

Note:
Such choices are only possible for non-semilinear grammars.

Want to say: these derivations are "really the same" in some sense.
The non-terminals are just eliminated in a different order.
We can say: they have the same derivation tree or parse tree:

Parse tree for $a a b b$ in G :

This shows a derivation of a word of \boldsymbol{G} by reading leaves left \rightarrow right.
Note:
For parse trees:
(1) The root is labeled S
(2) Every leaf is labeled by a terminal or $\boldsymbol{\lambda}$
(3) Every non-leaf is labelled by a non-terminal

If (2) is replaced by:
(2') Every leaf is labelled by a terminal, λ, or a non-terminal

- Have a partial parse tree: shows a derivation of a sentential form in G.

$$
5-17
$$

Ambiguous grammars

Let G be the non-semilinear CFG

$$
S \longrightarrow S S|[S]|[]
$$

This generates all non-empty well-nested bracket strings.
Consider 2 derivations of $\boldsymbol{u}=[][][]$.
(1) $S \Longrightarrow S S \Longrightarrow[] S \Longrightarrow[] S S \Longrightarrow[][] S \Longrightarrow[][][]$
(2) $S \Longrightarrow S S \Longrightarrow S[] \Longrightarrow S S[] \Longrightarrow[] S[] \Longrightarrow[][]$

These have different parse trees!

Grammars like G which have more than 1 parse tree for the same word are called ambiguous.

These are bad for programming languages!

$$
5-18
$$

Example:

Modified BNF (p. 1-14) is a form of CFG!

So e.g. consider grammar for arithmetic expressions e, e^{\prime}, \ldots from variables x, y, \ldots,
numerals \bar{m}, \bar{n}, \ldots, and
arithmetic operators,$+ \times,-$

$$
e::=x|\bar{n}| e_{1}+e_{2}\left|e_{1} \times e_{2}\right|-e
$$

This grammar is ambiguous!
Can generate expressions:
$e_{1}+e_{2}+e_{3}$
$e_{1} \times e_{2} \times e_{3}$
What is their parse tree?
If you say it doesn't matter because of associativity of + and \times, what about

$$
e_{1}+e_{2} \times e_{3}
$$

For this, we need precedence rules
(' x ' has higher precedence than ' + ')

$$
5-19
$$

But better:
Rewrite the grammar s.t. only 1 parsing is possible:
Use... parentheses!

Read Linz §5.3:
"Context-Free Grammars and Programming Languages"

Warning!

Our terminology is not the same as Linz's:

- Our linear grammar is called regular by Linz;
- Our semilinear grammar is called linear by Linz.

