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Abstract

We comnsider the distinction between abstract computability, in which compu-
tation is independent of data representations, and concrete computability, in
which computations are dependent on data representations. The distinction is
useful for current research in computability theories for continuous data and
uncountable structures, including topological algebras and higher types. The
distinction is also interesting in the seemingly simple case of discrete data and
countable algebras. We give some theorems about equivalences and inequiva-
lences between abstract models (e.g., computation with ¢ while’ programs) and
concrete models (e.g., computation via numberings) in the countable case.
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Research Council of Canada



1 Introduction

By a computability theory we mean a theory of functions and sets that are definable using
a model of computation. By a model of computation we mean a model of some general
method of calculating the value of a function or of deciding, or enumerating, the elements
of a set. We allow the functions and sets to be made from any kind of data.

With this terminology, Classical Computability Theory on the set IN of natural numbers
is made up of many computability theories. The computable functions and computably
enumerable sets are definable by scores of models of computation, based on scores of ideas
about machines, programs, algorithms, specifications, rewriting systems, and calculi. It
was an important early discovery, in 1936, that different models of computation can be
shown to define the same classes of functions and sets. The fact that diverse computability
models lead to the same classes of functions and sets on N is the main pillar supporting
the Church-Turing Thesis, which gives the classical theory on N its extraordinary unity.

Starting in the 1940s, computability theories have been created for other special sets of
data, including;:

e higher types over the natural numbers,

e ordinals and set hierarchies,

e real numbers and Banach spaces, and

e higher types over real numbers.
More generally, computability theories have been created for axiomatically defined classes
of structures, such as

e groups, rings, fields,

equational and first order theories of universal algebras,

topological and metric spaces and algebras,
e domains, and

e categories.

Over the years, however, the classification and the proofs of equivalences of models of
computation — and, hence, the search for generalised Church-Turing-type Theses and
the theoretical unity they represent — have proved much more difficult to achieve for
these data types. Cases exist where different models of computation that were of equal
conceptual value have been shown not to be equivalent. For example, in higher types, there
is Tait’s theorem that the fan functional on total functions is recursively continuous but
not computable in Kleene’s schemes S1-S9 [Tai62, Nor80]. Another more recent example,
in computability on real numbers, is the non-equivalence of the models of computability
studied in Computable Analysis [PER89, Wei00] and in the theory developed in [BSS89,
BCSS98].

There has been much research activity in the above areas in the past decade. For ex-
ample, Computable Analysis has been greatly extended by mathematicians and computer
scientists using competing models. Of course, seen from the point of view of Classical Com-



putability Theory, this exciting and rapid growth of Computable Analysis is also rather
messy.

In this paper, we seek a general explanation for this phenomenon of non-equivalent
computability theories by focussing on the treatment of the data in models of computation.
We classify computability theories into two types by introducing the following two concepts.

In an abstract computability theory the computations are independent of all the repre-
sentations of the data. Computations are uniform over all representations and are isomor-
phism invariants.

In a concrete computability theory the computations are dependent on some represen-
tation of the data. Computations are not uniform, and different representations can yield
different results. Computations are not isomorphism invariants.

Typical of abstract models of computation are models based on abstract ideas of pro-
gram, equation, scheme, or logical formula. Typical of concrete models of computation are
those based on concrete ideas of coding, numbering, or data representations using numbers
or functions.

Over the years, many people have considered particular problems where abstract and
concrete theories can be compared. Whilst the distinction can hardly be new, it is rarely
made even in particular cases. One example of the distinction is that of Dag Normann’s
internal (~ abstract) and exrternal (~ concrete) in higher type computability [Nor82].

For instance, studying examples and analysing algorithms are important in investigating
computation on topological algebras. This is usually done using pseudocode, a high-level
informal algorithmic language. Typically, the high-level programming and specification
languages are designed using abstract models, and low-level implementations are designed
using concrete models. It is to be expected there is a need for both abstract and concrete
models, and an understanding of their relationship.

Now the distinction of abstract versus concrete is also directly relevant to the seemingly
stable and unified classical world of computability on countable algebras. We will consider
the distinction in this special case.

First, in Section 2, we describe the basic concepts in more detail and define the ideas of
soundness, adequacy and completeness between abstract and concrete models. We point
out some examples of the difference between these kinds of computability theory for topo-
logical algebras and higher types. Then, in the rest of the paper, we examine the problem
of abstract versus concrete for countable algebras. In Section 3 we introduce our concrete
models based on codings or numberings of algebras using the natural numbers. In Section
4 we define our abstract models based on ‘ while’ programs equipped with arrays and non-
deterministic choice, which may interpreted over any algebra. In Section 5 we discuss the
soundness of the abstract for the concrete, under weak assumptions on countable algebras.
In Section 6 we discuss adequacy and completeness and give some simple completeness
theorems under stronger assumptions. Finally, we note connections with other work in the
countable case (e.g., the Ash-Nerode theorem), and pose some problems.

We wish to thank Ulrich Berger, Dag Normann and Viggo Stoltenberg-Hansen for help-
ful discussions on the subject of this paper, and an anonymous referee for useful comments.



2 Abstract and Concrete Computability Theories

In this section we elaborate the general ideas given in the Introduction. First, let us make
some relevant reflections on Computability Theory.

2.1 Reflections on Computability Theory and Computer Science

Over the past decade or so, a number of surveys and personal reflections on Computability

Theory have appeared. There have been the Handbook of Computability Theory [Gri99]
and the two-volume Handbook of Recursive Mathematics [EGNR98|, and chapters on the
subject in other Handbooks, for example [AGM92]. The reflection [S0a96] proposed a
modernisation or, at least, a “make-over” of the subject. The reflection [Fen02] looks back
at the distinction between structure and algorithm in generalised computability theory, de-
bated at the Oslo meetings in the 1970s. Some of the technical development of generalised
computability theory of that period was influenced by the reflection [Kre71].

Indeed, encouraged by the symbolism of the year 2000, there have been plenty of surveys
and reflections on mathematics. Several propose the idea that algorithms and computations
are returning to prominence throughout mathematics, enriched by the abstract mathemat-
ics of the 20th century [Sma98, Gro98] and encouraged by the new ubiquity of mathematics
in the contemporary world [Bou01]. The return to prominence of computation in mathe-
matics can be explained by reflecting on the origins of abstraction and structure in 19th
century mathematics. But it is, of course, more accurate to say that what helps make
the idea sweet enough for many to swallow is the ever growing, all pervasive influence of
computing.

The world is a lot more mathematical than it was, thanks to Computer Science.

This is good news for Computability Theory. Computability Theory is a pure mathe-
matical subject that can be said to have led the early development of Computer Science.
Since its inception, Computability Theory has provided deep conceptual insights, new al-
gorithmic and programming ideas and techniques, and mathematical theories on which to
found software technology. For example, in the standard courses on computability one
can find the origins of the following core ideas of Computer Science: universal computer;
recursion; lambda calculus; rewrite systems, formal specification of computations; higher
types; decision problems and their classification; data representations; data type imple-
mentations; computational complexity; and so on.

From the standpoint of contemporary Computer Science, the mathematical investiga-
tions in Computability Theory that led to these fundamental ideas can be seen as brilliant
theoretical speculations whose intellectual and practical value is rising daily. Quite simply,
Computability Theory is pure mathematics at its best!

Today, computability retains this important speculative role in our quest to understand
the big ideas of algorithm, data, specification, program, machine, and, not surprisingly,
many computability theorists — including ourselves — are working as computer scientists.

Now, in Computer Science, it is obvious that a computation is fundamentally dependent
on its data. By a data type we mean (i) data, together with (i¢) some primitive operations
on data. Often we also have in mind the ways these data are (ii7) axiomatically specified



and (iv) represented or implemented. To compute, we think hard about what forms of
data the user may need, how we might model the data in designing a system — where
some high level but formal understanding is important — and how we might implement
the data in some favoured programming language.

Seen from Computer Science, we propose that
A computability theory should be focussed equally on the data and the algorithms.

Now this idea may be difficult to appreciate if one works in one of the classical com-
putability theories of the natural numbers, for data representations rarely seem to be an
important topic there. Although the translation between Turing machines and register
machines involve data transformations, these can be done on an ad hoc basis.

However, representations are always important. Indeed, representations are a subject
in themselves. This is true even in the simple cases of discrete data forming countable sets,
from Godel numberings of syntax to general numberings of countable sets and structures.
From the beginning there has been a great interest in the differences and non-equivalences
between numberings, for example in Mal’cev’s theory of computability on sets and struc-
tures [Mal71b]. The study of different notions of reduction and equivalence of numberings,
and the space or spectrum of numberings, has had a profound influence on the theory
and has led to quite remarkable results, such as Goncharov’s Theorem and its descendants
[EGNR98, SHT99a] These notions also include the idea of invariance under computable
isomorphisms, prominent in computable algebra, starting in [FS56]. In the general theory
of computing with numbered structures that are countable, there was always the possi-
bility of computing relative to a reasonable numbering that was standard in some sense.
For example, earlier work on the word problem for groups, such as [MKS76], and on com-
putable rings and fields, such as [Rab60], did not need to worry about numberings in order
to develop fine theorems. Indeed, some authors dispensed with explicit numberings alto-
gether and worked with algebras of natural numbers, thus removing what we consider to
be the basic notion of repesentation.

We see the importance of representations even more clearly when computing with con-
tinuous data forming uncountable sets. For example, in computing with real numbers, it
has long been known that care must be taken over the representations: if one represents
the reals by decimal expansions then one cannot even compute multiplication. But if one
chooses the Cauchy sequence representations then a great deal is computable [BH02].

Now there is a chasm between computing with discrete data in countable sets and
with continuous data in uncountable sets. Today, it is a prominent problem to under-
stand computability on continuous data because of the possible “new” role of computation
in mathematics (e.g., algebra and analysis), and because in computer science there are
problems in understanding exact computation with real numbers, and high level program-
ming languages for continuous data. Indeed, in physics there are applications to com-
puting by experiment (e.g., quantum computation) and the debate on the existence of
non-computable physical systems; see the survey in [BT04].

We need a unification of the many specialised computability theories that can handle
arbitrary data and enable us to integrate discrete and continuous data in specifications,



computation and proofs. This could have applications in understanding digital and ana-
logue data in hybrid computing and communication systems; first order and higher order
data in specifications, programs and verifications; and discrete and continuous data in
simulation, and experiments with physical systems.

2.2 Abstract and Concrete Models for Computing

We present a number of informal ideas about computing functions and sets on any kind
of data.

Definition (Model of computation). A model of computation is a mathematical
model of some general method of calculating the values of functions, or deciding, or enu-
merating, the elements of sets. A computability theory is a theory of functions and sets
that are definable using a model of computation.

In an abstract model of computation the idea is to compute strictly within a set D of
data using programs based on some primitive operations on ID. The choice of operations
on the data creates a structure which defines how data is created and tested in programs.
Here is an attempt to define this.

Definition (Abstract model of computation).
(a) An abstract model of computation for computing with a set D of data consists of

(i) a structure A containing the data D;

(ii) a set Prog(X)) of programs based on the signature X of the structure, naming
the primitive functions and relations of A; and
(797) a semantics
[ _]4: Prog(X) — Func(D)

that defines partial functions on D.

(b) A partial function f: D — D is computable (according to this model) if there exists
a program P € Prog(X) that defines it, i.e.,

f =[P
(c) A subset S of D is semicomputable if it is the domain of a computable partial function.

The intention is that since the programs can use only the functions and predicates of the
structure, the programs are at exactly the same level of abstraction as the primitive oper-
ations of the structure, as far as the data is concerned. In fact, we expect the programs to
be independent of the representations of the data and to generate computations uniformly
over all representations: a program P € Prog(X) can be run on different structures of
common signature Y. In an abstract model of computation, we may expect that the
programs and computations are invariant under isomorphisms. In symbols:

Invariance Principle Let ¢: A — B be a Y-isomorphism of structures. For all a € A,

$([P1*(a)) = [P1%(¢(a)).



Thus, an abstract model of computation is “abstract” in exactly the same way that an
abstract algebra is “abstract”: it ignores the “nature” of the elements and concentrates
on the properties of operations on the elements. This explains the choice of the name
abstract.

The structures we have in mind include:
e particular single-sorted structures (e.g., strings, natural numbers, integers, reals);
e classes of single sorted structures (e.g., groups, rings and fields);

e particular, and classes of, finitely sorted structures (e.g., hereditarily finite sets and
vector spaces, modules, normed spaces, metric spaces);

e particular, and classes, of infinitely sorted structures (e.g., functions of all finite
types).
In a concrete model of computation, the idea is to implement computations in a set

D of data using computations on another “simpler” set R of data, using a “simpler”
computability theory on R. Here is an attempt to define this.

Definition (Concrete model of computation). A concrete model of computation for
computing with a set of data D consists of

(i) a representation of the data in D by data from another set R via a mapping
a: R— A,

(73) a computability theory Comp(R) on R.

A partial function f: D™ = D is computable with respect to « if there is a computable
function ¢ € Comp(R) that tracks f in R in the sense that, for appropriate r € R,

fla(r)) = ale(r));

equivalently, if the following diagram commutes:

D™ ! D
a™ «
R @ R

In a concrete model the computations are dependent on some choice of data represen-
tation a. Computations need not be isomorphism invariant. In fact they need not be
uniform, and different representations can yield different results. An important task is to
define when one representation reduces, or is equivalent to, another.

A concrete model of computation is “concrete” in exactly the same way as a specific
concrete algebra is “concrete”. The term “concrete” is chosen as an opposite of “abstract”.

In most examples, the representation R is constructed from, or can be reduced to, the
natural numbers N and functions and functionals on N, and the computability theory
Comp(R) is some form of classical computability theory on N or N — N.



2.3 Soundness, Adequacy and Completeness

In general, what is the relationship between abstract and concrete computability models
with a common set of data D?

Let AbstCompy (D) be the set of functions on the data set D that are computable
in an abstract model of computation associated with a structure A containing D. Let
ConcComp, (D) be the set of functions on D that are computable in a concrete model
of computation with representation c.

Definition (Soundness). An abstract model of computation AbstComp 4 (D) is sound
for a concrete model of computation ConcComp, (D) if

AbstComp (D) C ConcComp, (D).

Definition (Adequacy). An abstract model of computation AbstCompa (D) is ade-
quate for a concrete model of computation ConecComp, (D) if

ConcComp, (D) C AbstCompa (D).

Definition (Completeness). An abstract model of computation AbstCompa (D) is
complete for a concrete model of computation ConecComp, (D) if it is both sound and
adequate, i.e.,

AbstComp (D) = ConcComp, (D).

In general, when comparing abstract and concrete models of computation for a common
set D of data, we must compare a structure A and a representation a.

In the abstract model, the choice of X-structure A and the set of programs Prog(X) will
determine what is, and is not, computable on D. Change the operations or programming
constructs, and the model changes. In the concrete model, the choice of representation
a: R — D, and the computability model Comp(R) on R, will determine what is, and is
not, computable on D.

In comparing them, first we ask if the primitive operations on the structure A of the
abstract model are computable using the concrete model. If not then the abstract model
cannot be sound for the concrete model. If the answer is yes, then it is sensible to ask
about soundness and adequacy. We then meet the following problem. Let ConcRep(D)
be some class of concrete representations of the form a: R — D.

General Completeness Problem.

Is AbstCompy(D) = ﬂ ConcComp,(D)?
ac ConcRep(D)

Now, the abstract model relies exclusively on these primitive operations of A. However,
the representation « allows all the properties of the particular structure R to be used in
defining computations on D. Thus, we may expect that in practice,



if the primitive operations are concretely computable, then computing with a
concrete representation R of the data of D enables more functions on these
data to be computed than computing with abstract programs based solely on
the operations of a structure A containing these data.

For example, when A is some finite or countably infinite abstract structure without
an ordering and R is N, then a concrete model of computation is able to use the total
ordering of the data representations in IN as the basis of a global search operator, that is
then computable in the concrete model but may not be in the abstract model.

One reason for designing an abstract model is to abstract away from the details of data
representations and to define computations that are uniform over a class of representa-
tions, i.e., to design an abstract model that is sound for the concrete model. What about
adequacy and completeness? These properties we might expect to be possible in special
cases, where we can limit the class of representations, or allow access to low-level operations
in the high-level programs. But high-level languages that capture all the algorithms that
may be needed are clearly desirable. Designing high-level languages (= abstract models)
that can do this is a familiar problem.

2.4 Many-sorted signatures and algebras

We give a short introduction on many-sorted algebras. More details may be found in any
of [TZ99, TZ00, TZ04a, TZ04b].

Given a signature X' with finitely many sorts s, ... and function symbols
F:s1 XX sy —s, (2.1)
a X-algebra A consists of a carrier Ag for each Y-sort s, and a function
A,
Fo: Ay x -+ X Ay, — Ag
for each X -function symbol as in (2.1). In general, functions F'4 are assumed to be partial.

Special further possible properties of X' and the X-algebra A are:

(1) Standard algebras. X and A are standard if they contain the sort bool of booleans
and the corresponding carrier Apoq = B = {t,1}, together with the standard
boolean and boolean-valued operations, including the conditional at all sorts, and
equality at certain sorts (“equality sorts”);

(2) N-standard algebras. X and A are N-standard if they contain the sort nat of

natural numbers and the corresponding carrier Anat = N = {0,1,2,...}, together
with the standard arithmetical operations of zero, successor, equality and order on
N.

In this paper we will always assume (1), i.e.,

Assumption 2.4.1 (Standardness assumption). All signatures X and X-algebras
A are standard.

We will also usually assume N-standardness, but will state that assumption explicitly.
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In any case, any standard signature X' can be N-standardised to a signature N by
adjoining the sort nat and the standard arithmetical operations listed in (2) above. Corre-
spondingly, any standard X-algebra A can be N-standardised to an algebra AN by adjoining
the carrier N together with the corresponding standard functions.

(3) Array algebras. We also consider array signatures X* and array algebras A*, which
are formed from N-standard signatures 3’ and algebras A by adding, for each sort
s, an array sort s*, with corresponding carrier A} consisting of all arrays or finite
sequences over Ay, together with certain standard array operations, as specified in
[TZ00, §2.7] or (in an equivalent but simpler version) in [TZ99, §2.4].

2.5 Computability theories on many-sorted algebras

There are many abstract computability theories on algebras. Some have their beginnings
in

(a) generalisations of computability theory (e.g., prime and search computability of
Moschovakis [Mos69a, Mos69b], definability of Montague [Mon68], and the finite
algorithmic procedures of Friedman [Fri71] and Shepherdson [She73];

(b) the theory of programs (e.g., flow charts, program schemes, ‘ while’ programs).

A huge number of models of computation and computability theories have been classified,
and there many equivalence theorems between disparate models. Most models are based on
ideas about programming, but some are based on ideas about definability and specification.
The literature has been surveyed in [She85, TZ88, TZ00].

Abstract models of computability theories on algebras have decent mathematical the-
ories, inspired by, but distinct from, the theory of computable functions on the natural
numbers. In particular, the abstract case is well understood, and there are stable proposals
for generalised Church-Turing Theses [TZ00].

The primary method of modelling concrete representations for computing on algebras
is by means of numberings of the form

a:Q, — A (Qe € N).

for all, or part, of an algebra A, and in which the operations, or their restrictions, are
recursive on codes. If A is countable, o can be taken to be surjective.

The problem of “abstract versus concrete” for countable algebras is examined in the
following sections. We will choose the ‘while’ language and its extensions as our abstract
model of computation, and find conditions under which

WhileCC*(A) = N Comp,(A).
ac ConcRep(A)
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2.6 Example: Computability theories on topological many-sorted algebras

Consider many-sorted algebras equipped with a topology and continuous operations. Anal-

ysis makes heavy use of such algebraic structures, through topological groups and vector
spaces, Banach spaces, Hilbert spaces, C* algebras, and many more. These many-sorted
topological algebras specify

(i) some basic operations;

(73) normal forms for the algebraic representation of elements (e.g., using bases);
(#i1) structure-preserving operators (i.e., homomorphisms such as linear operators);
(iv) approximations, through inner products, norms, metrics and topologies.

We can create abstract computability theories by simply applying the abstract models of
§2.4 to these algebras. However, thanks to the method of approximation (iv), we obtain two
classes of functions: the computable functions and the computably approximable functions,
defined as follows:

Definition. Let A be an algebra with metric d: A2 — R. A function f: A — A is
computably approrimable in an abstract model if there is an abstract program P € Prog(X)
such that

d(f(a), [P]*(n,a)) < 27"
for all a € A.

Despite the simplicity of this abstract approach, most computable analysis is done using
concrete models of computation. In the case of concrete computability, there have been a
number of general approaches to the analysis and classification of metric and topological
structures:

e Effective metric spaces [Cei59, Mos64];

Computable sequence structures for Banach spaces [PER89];

Type 2 enumerations [Wei00];
Algebraic domain representations [SHT88, SHT95];

e Continuous domain representations [Eda97];

e Numbered spaces [Spr98|.

In fact, for certain basic topological algebras, most of these concrete computability theories
have been shown to be essentially equivalent [SHT99b]

The comparison of abstract and concrete models of computation for topological algebras
is a promising research area.

First, we must look at the primitive operations of the algebras. In the concrete models
computable functions are continuous. Thus tests, like equality and order, which are total
functions with discontinuities, cannot be primitive operations. If the discontinuities are
removed and the functions are made partial then the functions become continuous and may
be allowed as operations. For example, the continuous partial form of equality =,: A> - B
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is defined by
T ifr=y
("E =p y) = {

f otherwise.

Thus, partial algebras play an essential role.

Next, the computably approximable functions have been found to be necessary to bridge
the gap between abstract and concrete in the case of total functions on the real numbers
[TZ99]. Furthermore, it has become clear that multivaluedness is necessary to bridge
the abstract and concrete for general classes of topological algebras. In [TZ04a] there is
a detailed comparison using our ‘while’-array language with nondeterministic countable
choice construct

x := choose z : b(z, x,y)

(see Section 4). Soundness is proved in considerable generality, but completeness demands
a number of special hypotheses, though there is no shortage of examples. These equivalence
results have been extended to include local coverings of metric algebras in [TZ04b]. We
show that for effectively locally uniformly continuous functions, and a wide class of metric
algebras, approximation by ‘while’-array programs with countable choice is equivalent to
a simple general concrete computational model based on effective metric spaces.

Briefly, let us consider the case of the real numbers. To compute on the set R of real
numbers with an abstract model of computation, we have to choose a structure A in which
R is a carrier set. There are infinitely many choices of operations with which to make
an algebra, and so there are infinitely many choices of classes of computable functions.
Thanks to the theory of computable functions on many-sorted algebras (§2.4), all these
classes of abstractly computable functions on IR will have decent mathematical theories.
For example, computability on rings and fields of reals, with and without orderings, forms
the basis of abstract computability theories in [BCSS98|, which have been extended to
complexity theory. A problem with these particular abstract theories is that, when in-
terpreted on R, equality and order are assumed total, violating continuity (see remarks
above). Earlier such theories have been given by Herman and Isard [HI70] and Engeler
[Eng68].

In contrast, to compute on the set R of real numbers with a concrete model of compu-
tation, we choose an appropriate concrete representation of the set IR, such as computable
Cauchy sequences. The study of the computability of the reals began with [Tur36], but
was only later taken up in a systematic way, in [Ricb4, Lach5, Grzb5, Grz57] for example.

For a special partial metric algebra ’Rf,v over IR, with continuous partial operations of

equality and order, and a special total metric algebra ’Riv over R, with a continuous total
division operation of reals by naturals, (both algebras containing the sort of naturals as
well as reals), the following can be shown [TZ04b, §4.4]:

Theorem. Let f: R" — IR™ be a total function that is effectively locally uniformly
continuous on a standard open exhaustion of R"™. Then the following are equivalent:

(i) f is Grzegorczyk-Lacombe computable on R;
(13) f is effectively trackable on the computable reals Rc;



13

(7i1) f is effectively locally Q-polynomial approximable on R;

(iv) f is locally ‘while’ approximable on RY ;

) [
(v) f is locally ‘while-array approximable on RY ;
(vi) f

There is much to explore on the borderline between abstract and concrete computability:
notions of approximation, limit processes, nondeterminism and multivaluedness. There
are the important results of Brattka [Bra96, Bra97] that show that by strengthening a
fundamental abstract computability model (relations defined by primitive recursion, min-
imalisation and a limit operation) it is possible to characterise a fundamental concrete
computability model (relations defined by type 2 enumerability). The implications of
Brattka’s results for other abstract models need further investigation.

is locally ‘while’-array with countable choice approximable on ’Rév .

2.7 Computability theories on higher types

The computation of functionals on higher types over the natural numbers N has been
analysed in many different abstract and concrete computability theories the classification
of which has been, and continues to be, a hugely important undertaking. Higher type
computations are technically complicated. One must consider total and partial functionals
on total and partial functions as arguments, which may or may not be continuous. See the
concise survey [Nor99] for an introduction and the invaluable historical survey [Lon04] for
a full description.

Abstract models for computable partial higher type functionals begin to be studied in
earnest with the Kleene schemes S1-S9, which were first proposed in [Kle59] for computing
on all the total functionals, and later reinterpreted on the total continuous functionals.
These schemes have an enumeration scheme (S9) involving algorithms — but not data —
and were refined by other equivalent abstract models based on the A-calculus, in [Pla66] and
[Mol77], for the hereditarily monotone functionals. A basic abstract model of computation
on higher types is a simply typed A-calculus with fixed points. An example in computer
science is the language PCF and its extensions, which are abstract models of functional
programming.

Different concrete models were also introduced by Kleene and Kreisel [Kle59, Kre59] for
total functionals with total arguments. Kleene’s recursively continuous functionals are the
total functionals on total functions that are continuous and have recursive associates. Other
concrete models include the hereditarily recursive continuous functions and the hereditarily
effective operators. Ershov proved the latter are equivalent, thus generalising the Kreisel-
Lacombe-Schoenfield Theorem to all finite types. However, they are incomparable with
the recursively continuous functionals.

The comparison of the early models of higher type computation encountered problems
of comparing abstract and concrete models. Up to type 2, Kleene’s S1-S9 computability
is complete for his notion of recursively continuous. Indeed, at all finite types, Kleene’s
S1-S9 computability is sound for the recursively continuous functionals. However at type
3, we have Tait’s theorem that the fan functional at type 3 is recursively continuous but
not computable by Kleene’s S1-S9. Thus, completeness fails at type 3 [Tai62, Nor80].
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However the first bridging theorems between abstract and concrete were proved for par-
tial (rather than total) continuous functionals defined on domains. Computable functions
on domains are defined to have recursively enumerable sets of approximations [SHLG94];
they generalise the recusively continuous functionals.

In the remarkable study [Plo77] of the language PCF, it was shown that whilst PCF was
sound for all the computable partial functionals over the domain of naturals, it was not
complete. However, PCF augmented with a parallel conditional and existential operator
was complete for the computable partial functionals.

Berger conjectured that if one restricts to total functions on total arguments then the
parallel constructs are not needed and PCF is complete w.r.t. the computable total con-
tinuous functionals [Ber93]. This striking fact was proved by Normann [Nor00].

Although PCF and S1-S9 are equivalent over partial continuous functionals, this result
does not contradict Tait’s Theorem, because in that case S1-S9 are interpreted over argu-
ments that are total, or total continuous, functionals (c¢f. scheme S8), whereas (as stated
above) the domain semantics of PCF is defined over partial arguments.

Recently, computability in higher types has also been studied over the real numbers.
Escardo [Esc96] shows that a language Real PCF, containing parallel extensions, is com-
plete with the computable partial functionals over the interval domain representation of
the reals. However, the corresponding version of Berger’s Conjecture is open.

Other examples of abstract versus concrete models at higher type can be extracted from
[Lon04]. An overview on totality, continuity, computability can be found in [Ber02].

3 Concrete computation: Numbering of algebras

In this section we assume A is a countable N-standard partial X-algebra.
3.1 Numberings
Definition 3.1.1 (Numbering). A numbering of A is a family
a = (as: Qs > As | s € Sort(X))
of surjective maps a,: Q4 s — As, for some family
Qo = Qa5 | s€ Sort(Y))

of sets Qs C N, the code sets of o; we say that that A is numbered by . If u =
81 X o+ X Sy, we write Qy =gf Qg x -+ x Q, . We assume that anat = id)y and that
Qpool: 0 — f, n(#0) — t.

Let a: Q — A be a fixed numbering of A.
Definition 3.1.2 (Kernel). The kernel of « is the family of relations

=4 = {Za:C N?|sc Sort(X)}
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where for all 3-sorts s

as = {(k,1) € Qg , | as(k) = as (1)}

Definition 3.1.3 (Tracking function). Let f: A - A, and ¢: Qy — Q4 s. Then
@ is called an a-tracking function for f if the following diagram commutes:

A / A,
e oo
N 5 N

in the sense that for all k£ € Q,

fle*(k) L = ok) L€ Qas A fla"(k)) = as(e(k))
and fla*(k)t = (k)1

Note that a possible alternative definition of “a-tracking function” would replace the second
clause above by

fla“(k)T = k)T V o(k) I¢ Qa,s-

However the completeness proof for WhileCC* computability given in [TZ04a, Thm B]
requires this (apparently) stronger definition of a-tracking function.

Note also that nothing is said about the behaviour of ¢ off Q.

3.2 Computable functions and semicomputable sets

Definitions 3.2.1 (a-computability and a-semicomputability).

(a) A function on A is a-computable if it has a computable (i.e., partial recursive) a-
tracking function.

(b) A relation on A is a-computable if its characteristic function is a-computable.
(¢) A relation on A is a-semicomputable if it is the domain of an a-computable function.
We write Comp,(A) for the set of a-computable functions on A, and SComp,(A) for

the set of a-semicomputable relations on A.

We say that Q4 is recursive (or r.e., or co-r.e.) if Q4 5 is recursive (etc.) for each X-sort

s. There is a similar meaning for =, being recursive (etc.).

Lemma 3.2.2. Let U C A". Then U is a-semicomputable <=

(@)"HU] = SNQ“ for some r.e. S C N. (3.1)
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Proof: (=) Suppose U is a-semicomputable. Then U = dom(f), where f: A* = Aj
is a-computable. Let ¢: Qp — Q, s be a computable tracking function for f. Let
S = dom(yp). Then S is r.e., and it is easy to check that

(@")7HU] = SNnQ¥.
(<) Suppose (3.1). We must show:
U = dom(f) for some a-computable f. (3.2)
Define f: A* 5 N and ¢: N™ 5 N by

0 if z€U
1 otherwise

@) =

0 if ke S

1T otherwise.

and o(k) ~ {

Then, since S is r.e., ¢ is computable. Also it is easy to check that ¢ is an a-tracking
function for f, thus proving (3.2). O

Corollary 3.2.3. Suppose €2, is r.e. Then for U C A%,

U is a-semicomputable <= (a%)7![U] is r.e.

3.3 Computability of numberings, code sets and kernels

We are interested in various computability aspects of «, namely a-computability of the
X -operations, and computability or semicomputability of the code set and kernel.

Definition 3.3.1 (X-effective algebra under ). The partial algebra A is X-effective
under «, or a-X-effective, if for every F € Func(X), F4 is a-computable.

We also describe this by saying that o has computable 3 -operations.

Note that in [TZ04a, TZ04b] the concepts defined in Definitions 3.1.3, 3.2.1 and 3.3.1
were called strict a-tracking, strict a-computability and strict X -effectivity of a respec-
tively.

Definition 3.3.2 (Effective algebra under «). The partial algebra A is effective
under «, or a-effective, if A is Y-effective under «, and also €2, is r.e.

Definition 3.3.3 (Computable algebra under «). (a) The partial algebra A is
computable (or semicomputable, or cosemicomputable) under «, or a-computable (or a-
semicomputable, or a-cosemicomputable), if A is a-effective, and also, for all X-sorts s
there is a recursive (or r.e, or co-r.e.) relation R C N? such that

RN, = =q,.
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(b) A is said to be computable (etc.) if it is computable (etc.) under some numbering.

We also say that « is a X-effective (or effective, or computable, etc.) numbering of A if
A is Y-effective (etc.) under a.

Let X-EffNum(A) and CompNum(A) be the set of all Y-effective and computable
(respectively) numberings of A.

Note that the following are equivalent:
(i) « is a-computable by idg,_, which is computable on N,
(77) Qg isr.e.

This is clear from the diagram:

Qg
N A,
(anat :) zd]N Qg
N Q
ido s

a,s

Lemma 3.3.4. Suppose €}, is r.e., i.e., () s is r.e. for all s. For all s, let vs be a total
recursive function with range Q4 s. Let 3: N — A be the numbering of A defined by

B =a aov =4 {asov,|se Sort(X)}.
Then

(a) If a function f: A" — As is a-tracked by ¢, then it is B-tracked by the function 1)
defined as follows:

Av !/ A,
A A
o Qs
B e e
Vu VS
N™ '%b N
(b) For any X-sort s, if
=a,s = RN Qa,s

for some computable (or semicomputable, or cosemicomputable) relation R on N, then
=g s Is computable (or semicomputable, or cosemicomputable, respectively).

Proof: For (a), the algorithm for ¢ is: with input k € N™, compute ¢(v,(k)). (If and)
when this converges, find an [ such that vs(l) = ¢(vy(k)) (which exists, by surjectivity of
v on ). Output such an [.
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Part (b) is proved by noting that Qg s = N.

Corollary 3.3.5. Suppose €2, is r.e. Then, with 8 defined as in Lemma 3.3.4:
(a) If A is a-effective, then A is [-effective.

(b) If A is computable (or semicomputable, or cosemicomputable) under «, then A is also
computable (or semicomputable, or cosemicomputable) under 3.

Remark 3.3.6. Hence if A is a-effective, or a-computable, or a-(co)semicomputable,
then we can assume without loss of generality that €, =N for all s.

Further, under this assumption on €, the definition (3.3.3) of computability (etc.) of
an algebra can be simplified to:

A is a-computable (or a-semicomputable, or a-cosemicomputable) iff A is a-
effective, and also =, is recursive (or r.e., or co-r.e.).

Lemma 3.3.7 (Canonical extension of numbering to N-standard and array al-
gebra). A numbering o of A can be canonically extended to numberings oY of AN,
and o* of A*, such that if A is X-effective, effective, computable, or (co-)semicomputable
under o, then so are AN under oV, and o* under A*.

4 Abstract computation: the While language and its extensions

Again, we assume that A is a countable N-standard Y '-algebra.

4.1 The WhileCC* programming language

The programming language WhileCC(X) (‘CC’ for “countable choice”) is an extension
of While(X) [TZ00, §3] with an extra ‘choose’ rule of term formation. The idea of the
semantics for ‘choose’ is to select all possible implementations satisfying a given property.
The complete description of its syntax and semantics, as well as motivation for it, are given
in [TZ04a, TZ04b]. Here we give a brief review.

The language WhileCC has a ‘choose’ construct in the context of an assignment state-
ment, which has one of three forms:

(1) x := t (simultaneous assignment),
(#i) x := choose z: b(z, ...),
(i51) x := choose z: P(z, ...),

where z is a variable of sort nat, and in (4i) b(z, ...) is a boolean term, and in (iii) P(z,...)
is a semicomputable predicate of z (and other variables), i.e., the halting set of a boolean-
valued WhileCC procedure P with z among its input variables.

Thus the semantics of WhileCC is given by a many-valued function.

In [TZ04a] an algebraic operational semantics is given for WhileCC, whereby a
WhileCC procedure P :u — v has a meaning in an N-standard X-algebra A:

PA:A* — PHAYU{T)
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where P} (X) is the set of all countable non-empty subsets of X, and “4* represents a
divergent computation. This is also written in “multivalued function” notation:

PA:Av =t oAt
where X1 denotes X U {1}.
4.2 WhileCC* computable functions and semicomputable sets

Definitions 4.2.1. (a) A partial function on A is WhileCC*(X') computable on A if it
is WhileCC(X) computable on A*.

(b) WhileCC(A) is the class of all WhileCC(X) computable partial functions on A.
(¢c) WhileCC™*(A) is the class of all WhileCC*(X) computable partial functions on A.

Lemma 4.2.2. If A is total then
(a) WhileCC(A) = While(A).
(b) WhileCC*(A) = While*(A).

Proof: We can implement choose z : b(z) as pz : b(z), since by totality, for each value
n=0,1,2,... of z, computation of b(n) converges to a value t or f.

Definitions 4.2.3 ( WhileCC-semicomputability).
(a) The halting set of a WhileCC procedure P: u — v on A is the set
{zea" | PA)\{1} #£0}.

(b) A set is WhileCC-semicomputable on A if it is the halting set on A of a WhileCC
procedure.

(¢) WhileCC™ semicomputability is defined similarly.
(d) SWhileCC(A) is the class of WhileC C-semicomputable relations on A.
(e) SWhileCC™*(A) is defined similarly.

If R is the halting set of the procedure P, then a code or Godel number of R is given
by a code of P.

4.3 Closure under projections and countable unions

Definition 4.3.1 (Minimal carrier). A carrier A; of an algebra A is said to be
X -minimal if every element of it is the value of a closed X-term of sort s.

Definition 4.3.2 (TEP). (a) The term evaluation representing function on A relative
to a tuple of variables x : u and Y-sort s is the function

ted - TTermy s ' x A" — A

X,s "
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where Termy ; is the class of Y-terms of sort s with variables among x only, and for any
term t € Termy s and a € A, tef,s ("t a) is the value of ¢ when x is assigned the value
a.

(b) The partial algebra A has the term evaluation property (TEP) if for all x and s, the
function teg , is While(A) computable.

Lemma 4.3.3. The function teZ, is always While*(A) computable.

X,$

Lemma 4.3.4 (Closure under projection).

(a) SWhileCC(A) and SWhileCC*(A) are closed under projection off nat, i.e., existen-
tial quantification over IN.

(b) If A is minimal, then SWhileCC*(A) is closed under projection off sort s, i.e.,
existential quantification over Ag.

(c) If Ay is minimal and A has TEP, then SWhileCC(A) is closed under projection off
sort s, i.e., existential quantification over Ag.

Proof: (a) Note that InR(z,n) <= R(z, choose n: R(z,n)).
(b) Note that JyR(z,y) <= InR(zx, ted(n, ())).
(c) Like (b). Use Lemma 4.3.3. [

Lemma 4.3.5 (Closure under effective countable unions). If A has TEP, then
SWhileCC*(A) is closed under effective countable unions.

Proof: From TEP there follows a Universal Function Theorem for WhileCC*: namely
there is a WhileCC* function
Nx A" - B

A .
Un'vu—>bool :

which is universal for Proc,_,poo on A, in the sense that for all P € Proc,_,poo and
r e A",
UnivA (TP, z) ~ PA(x).

u—bool

This can be proved by an adaptation of the methods of [TZ00] (cf. [Jia03]). Now let
f:IN — N be a total computable numbering of a sequence of codes of WhileCC*
semicomputable relations R,, C A" (n = 0,1,2,...). We may assume w.l.o.g. that the
procedures enumerated by f all have range type bool. Then

U, Bn = {z €AY | 3P (z) L}
= {z € A* | In Univ? (f(n), z) L}

u—bool

which is in SWhileCC* by Lemma 4.3.4(a). O
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4.4 Locality of Computation

The locality of computation theorem, proved for the deterministic Whele language in
[TZ00, §3.8], also applies to WhileCC*. The proof, in broad lines, follows the proof
in [TZ00]. (For X C A, we write (X)# for the retract to AV of the Y-subalgebra of A
generated by X.)

Lemma 4.4.1 (Locality for terms). Ift¢:s and var(t) C x then

[t1]%0 < (olx])7"

Proof: By structural induction on ¢, as in [TZ00, §3.8]. The interesting new case is
t =choose z:b. [

Lemma 4.4.2 (Locality for computation trees). If var(S)C x: u, then for alln
CompTreeStage” (S,0,n)[x] C (o[x])2.

Here the 1.h.s. means the set of u-tuples o’[x] for all states o’ in Comp TreeStage”(S,o,n),
i.e., the first n stages of the computation tree of statement S at state o [TZ04a, §4.2(e)].

Proof: By induction on n. [

From this follows:

Lemma 4.4.3 (Locality for procedures).
If PA:u— v is a WhileCC* (X)) procedure, then for all a € A,

PAa)\{1} C (a)y.

Theorem 4.4.4 (Locality for functions).
If f: A* 5 A, is WhileCC* computable on A, then for any a € A%, if f(a) ] then

fla) € (@)

5 A general soundness theorem

Again, A is a countable partial X-algebra. However we need not assume N-standardness
of A in this section.

5.1 Soundness theorem

Theorem 5.1.1 (Soundness of WhileCC* computation). Suppose A is X-effective
under «. Then
WhileCC*(A) C Comp,(A).
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This is Theorem Ay in [TZ04a, §7]. A complete proof is given there. Here we present,
as an indication of the proof, the last part of the main lemma (Lemma Scheme 7.3.1(g))
from which the theorem easily follows.

Lemma 5.1.2 (Tracking of procedure evaluation). For a specific triple of lists of
variables a : u, b : v, ¢ : w, let Procay . be the class of all WhileCC procedures of
type u — v, with declaration ‘in a out b aux ¢’. The (many-valued) procedure evaluation
function localised to this declaration:
PEf,b,c : Procapc x A" =t AVt
defined by
PEZ, (P, a) = P%(a),

a,b,c

is a-tracked by a computable function
pef,b,cz TProcapc' xS, — Qp,

i.e., the following diagram commutes:
PE}

a,b,c
Proc,pc x AY + Avt
(enum, o) a’
TProcap,c' X Qy Qy
be a,b,c

in the sense that

pely ("PLk) Ll = a(l) € PEZ, (P, k),

a,b,c

pef’b’c ("P k)t = t¢ PEf,b,c (P, a(k)).

A
a,b,c

think of pe f,b,c as giving one possible implementation of PE

Here pe is a combination “tracking function” and “selection function”. We can

A
a,b,c*

Proof of Theorem 5.1.1: Suppose f : A = A, is WhileCC™* computable on A.
Then there is a deterministic WhileCC™* procedure

P:u — s

such that for all a € A",

I

f@)ly = P%)
fl@)t = P=)

{v},
{1}

|
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Hence by Lemma 5.1.2 (substituting a suitable constant for "P7) there is a computable
(partial) function

0: Qy 5 Qo
which a-tracks f, as required.

Note that in applying Lemma 5.1.2 to prove Theorem 5.1.1, we are implicitly using the
canonical extension a* of a given by Lemma 2.3.8. [

5.2 Applications

Corollary 5.2.1. Suppose A is X-effective under oe. Then for any relation on A,
WhileCC*-semicomputability —> «-semicomputability.
Proof: By the Soundness Theorem 5.1.1. [

Let ‘=%’ be the family of equality relations (=2 | s € Sort(X)).

Corollary 5.2.2.
(a) If =4 is WhileCC*-computable, then o has a computable kernel.

(b) If =4 is WhileC C*-semicomputable, then o has a semicomputable kernel.
Definition 5.2.3. (a) A DE (disjunctive-ezistential) X-formula is one of the form

\X/i:OHYi b; (X7 yi)
i.e., an infinite disjunction of a computable sequence of existentially quantified Y'-booleans,
X = (X1,...,%) and y; = (Vi1 -5 Var, )-
(b) DE(A) is the class of DE(X) definable relations on A.

Theorem 5.2.4 (Invariance of a-semicomputability). Let A be a countable X-
algebra. Then

DE(A) C ﬂ SComp,(A).
aeX-EffNum(A)

Proof: Straightforward. To deal with evaluation in A of the sequences y, of bound vari-
ables (of finite but unbounded length), we need term evaluation on A*, which is While*-
computable on AN [TZ00, §4.7], and hence (by Lemma 3.3.7 and the Soundness Theorem
5.1.1) a*-computable. [

It follows from Engeler’s Lemma [TZ00, §§5.11/12] and the above theorem that

proj. While semicomputability —> D E-definability
= «a-semicomputability for all o € X-EffNum(A).

The converse directions, i.e., finding “reasonable” side conditions under which the above
arrows can be reversed, remain to be investigated.
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6 Examples of Completeness Theorems

We begin with an example of incompleteness of abstract w.r.t. concrete computation, and
then find conditions on the algebra which guarantee completeness.

6.1 An example of incompleteness

Consider the single-sorted algebra
A = (N,0,pd)

where pd is the predecessor function on N: pd(0) =0, pd(n+ 1) =n.

This algebra is clearly computable (in the sense of Definition 3.3.3), since it is com-
putable under e.g. the identity numbering 2d: N — IN. For a more general kind of concrete
representation of A we have the following incompleteness result. Let suc: N — IN be the
successor function, suc(n) =n + 1.

Theorem 6.1.1. For any computable numbering o of A, we have
suc € Comp,(A) but suc ¢ WhileCC*(A)
and hence

WhileCC*(A) G N Comp,(A).
a€ CompNum(A)

Proof: First, suppose suc € WhileCC*(A). Then by the locality of computation theorem
(4.4.2), we would have n + 1 € (n)*. But

(ny* = {0,1,...,n},

and so suc ¢ WhileCC*(A).

Next, let a: Q, — N be a computable numbering of A with 0 a-coded by c € €2, and
pd recursively a-tracked by ¢: Q, — Q. Define y: N - N by

Y(k) ~ somel[l € Qy N IFqc A p(l)=ak].
Since (2, is r.e. and =, is recursive, ¥ is recursive. Since ¢: Q, — (1, it follows that
P: Qo — Qy
and for all k,1 € Q:

Bk L1 = 12ac A p(D=ak
& a(l) #0 A pd(a(l) = ak)
& ak)+1=a(l).
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So ¢ recursively a-tracks suc.

Call the above sort of naturals (with 0 and predecessor) nat™. Note that essentially the
same counterexample to completeness can be constructed on nat™ even if we N-standardise
A, i.e., adjoin the standard sort nat of naturals with 0 and successor, in addition to nat™.

6.2 Sections, equality and completeness

We turn to conditions which guarantee completeness, i.e., a sort of converse of the Sound-
ness Theorem 6.1.1.

We assume again that A is an N-standard partial Y-algebra.
Definition 6.2.1 (Sections). A section of « is a right inverse of «, i.e., a family
& = (Gs | s € Sort(Y))
of mappings
Gg: Ay — N

such that
aod = tda, (6.1)

i.e., for all s € Sort(XY),
asohs = tda,.

Note from (6.1) that (by the property of left and right inverses) « is onto (which we
already knew) and & is 1-1. So for all a € A, &(a) selects an element of a~!({a}) (which
is not empty, since « is onto).

Thus a section & of « always exists, by the Axiom of Choice. The interesting question
is: when does « have a computable section?

Lemma 6.2.2. Suppose o is While* computable. Then the following are equivalent:
(1) « has a WhileCC™ computable section &,

(2) =4 is WhileCC* computable,

(3) =4 is WhileCC* semicomputable.

Proof: (1)=-(2): Assume (1). Then for all a,b € Aj:

a=b < d&s(a) =as(b) in N,
which gives a WhileCC* decision procedure for =4.
(2)=(3): trivial.

(3)=(1): Suppose =4 is WhileCC* semicomputable. Define é&,: A, — N as follows.

S

With input a € Ag, the output is given by

choose k: a4(k) = a.
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where we are choosing an item satisfying a WhileC C*-semicomputable predicate. [
Note that in the proof of (1)=-(2), WhileCC™ computability of & was not used.

Theorem 6.2.3 (Adequacy of WhileCC* computation). Suppose a is While*
computable. Then any of the conditions (1), (2) or (3) of Lemma 6.2.2 implies:

Comp,(A) C WhileCC*(A).

Proof: Assume any of (1), (2) or (3) of Lemma 6.2.2. (We will actually use (1).) Let f
be a-computable on A by a recursive ¢:

A !/ A,
a¥|| Gy Qs
Qy Qq.s
12
Then
f = asopody,

which is WhileCC™ computable. [

Note that Y-effectivity of A under « is not assumed in the proof of adequacy (Theo-
rem 6.2.3) or Lemma 6.2.2. It is, however, assumed for the reverse inclusion, soundness
(Theorem 5.1.1).

Combining Theorems 5.1.1 (soundness) and 6.2.3 (adequacy) we have

Theorem 6.2.4 (Completeness of WhileCC* computation, Version 1). Suppose
A is X-effective under «, and « is While* computable. Then any of the conditions (1),
(2) or (3) of Lemma 6.2.2 implies:

Comp,(A) = WhileCC*(A).

Combining this with Lemma 6.2.2 provides another formulation of completeness:

Theorem 6.2.5 (Completeness of WhileCC* computation, Version 2).  Sup-
pose A is Y-effective under «, and « is WhileCC™* computable. Then the following are
equivalent:

(1) « has a WhileCC™ computable section,

2) =4 is WhileCC* computable,

3) =4 is WhileCC* semicomputable,

4) Compy(A) = WhileCC*(A) and « has a semicomputable kernel,

(
(
(
(5) Comp,(A) = WhileCC*(A) and « has a computable kernel.

)
)
)
)
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Clearly, if A satisfies the assumptions of this theorem, and also has equality at all sorts
in its signature, then

Comp,(A) = WhileCC*(A).
For our next corollary, we suppose that A is a finitely generated X'-algebra, say
A = (cf,...,cﬁ)A.
Then A has a canonoical numbering o, defined as the composition

A
Y tec

N T(X, x)

A

where x = (x1,...,%p) is a tuple of variables of the same type as ¢ = (cq,...,¢p), T(X,x)
is the set of X-terms generated from x, < is a standard effective numbering of T(X, x),
and tef is the evaluation of terms in T(X,x) determined by the assignment (x — c*).
By [TZ00, Corollary 4.7], ac is For* (and hence While*) computable. This yields the
following Corollary of Theorem 6.2.5.

Corollary 6.2.6 (Completeness for algebras with canonical numberings). Sup-
pose A is a finitely generated 3'-algebra, and is Y-effective under the canonical numbering
ac. Then the following are equivalent:

1
2

ac has a WhileCC™ computable section,

=4 is WhileCC* computable,

3) =4 is WhileCC* semicomputable,

4) Comp,.(A) = WhileCC*(A) and a. has a semicomputable kernel,
5) Comps.(A) = WhileCC*(A) and ac has a computable kernel.

~ o~ o~ o~ o~
— N e S

A similar result holds when A is generated not by a finite set of Y-constants, as above,
but by an infinite set cg,c1,cCo,..., where the function n — ¢, isin Y.

6.3 Invariance, definability and the Ash-Nerode Theorem

In concrete computability theories based on numbered structures, invariance questions of
the following kind arise:

Invariance Problem. Let A be a computable Y-algebra. What are

ﬂ Comp,(A) and ﬂ SComp,(A)?
ac CompNum(A) ac CompNum(A)

Viewed from the theory of numbered algebras, our work on soundness and completeness

can be seen as trying to answer these sorts of questions using abstract computability
theories.
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However, recalling the role of the arithmetic hierarchy for computability theories on N,
it is also natural to ask if definability in logical languages based on X’ can characterise the
computability of functions and sets on a numbered algebra A. Definability problems of this
kind, first considered in [Mal71a], can provide some answers to the Invariance Problem.
Not surprisingly, very special properties of A are needed for completeness, and it seems
that to progress we must consider either

(i) particular structures, such as matrix groups, or

(74) structures satisfying stringent conditions that are hard to satisfy.

We will discuss one source of illumination of the latter kind.

Now, thanks to soundness, we already have the general observation (Theorem 5.2.4)
that, for any countable A, effective infinite disjunctions of existentially quantified X-
booleans are a-semicomputable under every X-effective numbering « of A.

We will look at the Ash-Nerode Theorem which contains strong sufficient conditions on
A that imply the converse and, hence, a completeness result. The Ash-Nerode Theorem
was first proved in [ANS81]; a new account can be found in Chapter 11 of [AK00]. We
modify the original definitions, in keeping with the theory of numberings.

First, the kind of invariance Ash-Nerode studied is captured by the following definition.

Definition 6.3.1. Let A be a X-algebra computable under a numbering «: 2, — A.
Let R C AF. Then R is intrinsically semicomputable if for any Y-algebra B computable
under §: Qg — B, and any Y-isomorphism ¢: A — B, ¢(R) is S-semicomputable.

Note that, if R is intrinsically semicomputable, then (taking B = A, 8 = «, and ¢ = 14),
it follows that R is a-semicomputable.

It is easy to connect this notion with the Invariance Problem:

Lemma 6.3.2. Let A be an a-computable X -algebra, and R C A¥. Then the following
are equivalent:

(1) R is intrinsically semicomputable,
(2) R is semicomputable in every computable numbering of A, i.e.,

R € N SComp,(A).
a€ CompNum(A)

The special condition of the Ash-Nerode Theorem is based on the decidability of this
property:

Definition 6.3.3. Let A be a Y-algebra computable under o, and R C A*. The satisfi-
ability problem outside R is the following decision problem: For any finitary existentially
quantified X-boolean

dyb(x,y) (x=(x1,.-,%k), Y=(Y15--->¥1), 1 >0)
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and any a € A*, is there b € A! such that

b¢ R and A | bla,b]?

Note that if the existential diagram of (A, R) is a-decidable, then the satisfiability problem
outside R is a-decidable.

The Ash-Nerode Theorem says that if the satisfiability problem outside R is a-decidable,
then R is intrinsically semicomputable if, and only if, R can be expressed as a DE(X)-
formula (see Definition 5.2.3). Combining this with Lemma 6.3.2, we have

Theorem 6.3.4. Let A be a X-algebra computable under o and let R C A¥. Suppose
the satisfiability problem outside R is a-decidable. Then the following are equivalent:

(1) R is intrinsically semicomputable;
(2) R is semicomputable in every computable numbering of A, i.e.,

R € N SComp,(A);
a€ CompNum(A)

(3) R is expressible as DE(X)-formula:

o
reR — \X/izoﬂyibi(x, ¥,)-
The equivalence of (2) and (3) is a form of completeness theorem.
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