

Semantics of Pointers, Referencing and Dereferencing
with Intensional Logic

Hing-Kai Hung

380 Campus Drive #3
Snyder, NY 14226, USA
hung@cs.buffalo.edu

Abstract

We apply intensional logic to the semantics of an
Algol-like programming language. This associates
with expressions their senses, or meanings relative to
“possible worlds”, here interpreted as machine states.
These meanings lie in the semantic domains of a higher
order typed intensional logic.

The great advantage of this approach is that it pre-
serves compositionality of the meaning function, even
in “opaque contexts”.

Earlier work in this direction, by Janssen and Van
Emde Boas, dealt with the semantics of assignments to
simple variables, indexed variables and pointers, with-
out, however, considering “dereferenced” pointers on
the left or right hand side of assignments. More recent
work by Hung applied this approach to the semantics
of blocks and procedures with parameters (passed by
value, by reference and by name).

The present work extends this approach to pointers,
including dereferenced pointers on both sides of as-
signments. It is shown how this approach gives an
elegant solution to the problem of pointer semantics,
which is simple, compositional and implementation in-
dependent.

1 Background

1.1 Pointers and References

Most imperative programming languages such as Al-
gol 68, Pascal and C, have a basic command called
assignment which is of the form

erpry = expra.

The expression expr; delivers a reference and the ex-
pression exprs delivers an object. The assignment
causes the reference to possess the object as its single
value, and the object can then be accessed through the

*This research was supported by the National Science Foun-
dation under grant no. DCR-8504296, by a grant from the Sci-
ence & Engineering Research Board of McMaster University,
and by a grant from the National Sciences and Engineering Re-
search Council of Canada

Jeffery 1. Zucker

Department of Computer Science & Systems

McMaster University
Hamilton, Ont. L8S 4K1, Canada
zucker@maccs.dcss.mcmaster.ca

reference by an action called dereferencing [Reynolds
70{]. As the subsequent computation may cause the
reference to possess different values, expry is called a
variable when it is an identifier. In implementation,
references are usually addresses of memory locations,
and the action of fetching the memory contents cor-
responds to dereferencing. Note that the concepts of
reference and variable as used here are different, re-
spectively, from those of reference (denotation) as used
in philosophy, and wvariable, as used in mathematical
logic.

To provide the advantages of local updatable states
and data sharing in functional programming, refer-
ences can sometimes be created and manipulated.
Both Standard ML [Reade 89] and Scheme have the
primitive ref which creates updatable references to
objects. Only assignments can be used to update the
references.

A reference, which on dereferencing returns another
reference, is called a pointer. Indirect addressing is
just the implementation of pointers.

1.2 Blocks, Procedures and Parameter
Passing

A block is a definition mechanism in which identifiers
are declared and the declared identifiers are then vis-
ible inside the statement which follows the declara-
tions. Nested blocks are possible, so that the same
identifier name can be redeclared inside the nested
declarations. Procedure declarations allow the pro-
grammer to package computations and parameterize
their behavior. Our syntax for these is as follows.

Blocks :
begin new x :=e; S end

begin alias y = v ; S end

begin macroz = v ; S end

In the new-block above, the new identifier x is declared
with the initial value e and S is the body (statement)
of the block. The statement S is also referred to as
the scope of the identifier x. It is the region of text
over which x is in effect. This resembles A-binding in
the lambda calculus and quantification in first order

logic. In the alias-block, y is set equal to the reference
v and hence both y and v possess the same object.
The macro-block behaves the same as the statement
obtained by replacing all occurrence of (expand z)

in S by v. We call z a macro name and (expand z)

a name (mMacro) expansion.

Procedure Declarations :
G « < valuex > Send

G"< < refy > Send
G" < < namez > S end

where GY, G", G" are procedure identifiers, S the pro-
cedure bodies (statements), x is a pass-by-value pa-
rameter, y is a pass-by-reference parameter, and z is
a pass-by-name parameter. All the parameters in the
declaration are called formal parameters. They have
scopes over the procedure body. Procedures can be
invoked by procedure calls, say G¥(1+2), G"(a), G"(b).
We call 142, a, b the actual parameters.

We consider three different parameter passing mecha-
nisms, as follows. (1) Pass by Value: The value pos-
sessed by the actual parameter is copied and possessed
by the formal parameter. (2) Pass by Reference: The
actual parameter is a reference. The formal parame-
ter shares the same reference as the actual parameter
and both of them possess the same object. (3) Pass
by Name: This can be thought of as a textual substi-
tution of all free occurrences of the formal parameter
in the procedure body by the actual parameter.

We adopt a design principle for programming lan-
guages called the Correspondence Principle, which
states that for any parameter passing mechanism,
there should be a corresponding definition (block)
mechanism, and vice versa [Tennent 81]. Here pass-
by-value corresponds to new-block, pass-by-reference
corresponds to alias-block, and pass-by-name corre-
sponds to macro-block. This principle will be il-
lustrated by the semantic correspondences between
blocks and procedures (Section 4).

1.3 Compositionality Principle

A meaning for expressions of a language is a function
[-] mapping syntactic entities to semantic entities.
Let A be a syntactic domain, and D the correspond-
ing semantic domain. For any § € A, we write [0] € D
to denote the meaning of §. We assume that all com-
pound expressions of a language are constructed from
primitive expressions by finitely many applications of
certain syntactic operators.

The meaning function of the language is said to satisfy
the compositionality principle if for every such n-ary
syntactic operator ® : A; X...x A, — A,y1, there
exists a function ¥ : Dy x...xD,, = Dp41 such that
for every compound expression ®(d1,...,0,) € Apt1
formed from the components §; € Aq,...,0, € A\,
with the syntactic operator ®,

[®(61,---,6,)] = ¥([01],---,[0n])

This principle says that the meaning of a compound
expression is obtained from the meanings of its parts.
It is carefully formulated and discussed in [Janssen 86).
Its significance for the correctness and verification of
concurrent systems is discussed in [Zwiers 89].

1.4 Earlier Approaches

The semantics of pointers and references are difficult
to handle [Manna & Waldinger 81]. One of the reasons
is that it is simpler to deal with expressions whose
values are rigid (§3.3). However, references can be
updated and may possess different values at different
states, and so fail to be rigid in general.

Motivated by the compositionality of intensional logic
and the fact that the left hand side of an assign-
ment statement is referentially opaque, [Janssen &
Van Emde Boas 77] and [Janssen 86] applied inten-
sional logic to the semantics of assignments. Assign-
ments to number pointers were considered, but not
dereferenced pointers on the left or right hand side of
assignments.

In the [Milne & Strachey 76] approach, addresses are
introduced as domain objects. The interpretation of
program expressions is relative to environments and
stores. The environments map identifiers into ad-
dresses (L-values), and the stores map addresses into
values (R-values). Such interpretation is very compli-
cated when aliasing occurs, that is, when two iden-
tifiers possess the same address. It also has a disad-
vantage that two program expressions which although
behave the same operationally, may have different
meanings [Brookes 85]. Using the intensional logic
approach, the treatment for two identifiers possessing
the same address is like that for two variables possess-
ing the same value, and no complexity is added to the
interpretation.

Blocks and procedures are also difficult to handle —
most semantic attempts involve modeling local mem-
ory allocation in terms of stacks. Interesting ap-
proaches include [Brookes 85], [Oles 85], [Meyer &
Sieber 88]. In all these models, however, pointers and
parameter passing mechanisms were not considered.

[Wegner 89] provided a uniform treatment of blocks,
data types, and pointers, in terms of transformations
defined using pushouts and reducts of algebra. Decla-
rations of procedures were not, however, considered.

Parameter passing was modeled by syntactic applica-
tion in [De Bakker 80]. The semantics, however, is
then not compositional.

Reynolds’ specification logic [Reynolds 81] did not deal
with pass-by-reference parameters.

Pursuing the direction of [Janssen & Van Emde Boas
77] and [Janssen 86], [Hung 89] and [Hung 90, Chap-
ter 2] observed that there are also intensional contexts
within parameter passing, and achieved a composi-
tional semantics for a language with blocks, procedures
and parameters. Pointers were, however, not con-
sidered because of the difficulties in obtaining “state
switcher free” conditions (§3.2).

1.5 Achievement of Present Work

We use intensional logic to develop a compositional se-
mantics which models pointers and references, in addi-
tion to blocks, non-recursive procedures, and the three
parameter passing mechanisms considered above.

Although pointers were considered in [Janssen & Van
Emde Boas 77, they occur there only on the left hand
side of assignments, since there is no dereferencing fa-
cility there. We show how dereferencing can be in-
corporated into the formalism (see Section 4), thus
permitting dereferenced pointers on the left and right
hand sides of assignments.

The inclusion of pointers in our programming lan-
guage in this way is important from the viewpoint of
programming language theory. It leads to non-trivial
modifications in the formulations and proofs of the
main results (see Section 5) compared with [Hung 90],
as well as to the new Substitution Lemma (Lemma 6)
of Section 5.

We will see how this approach gives an elegant solution
to the problem of pointer semantics, which is simple,
compositional and implementation independent.

2 Introduction

2.1 Intensional Logic

There are two important notions in connection with
the meaning of expressions in natural languages: (%)
its denotation, reference or extension, and (1) its sense
or intension. For example, the denotation of a sen-
tence is its truth value.

Frege was one of the first who investigated the notion
of sense [Frege 92]. Here is a well-known example.
Compositionality implies the principle of “substitutiv-
ity of equals”, which states that substituting one term
for another with the same meaning in an expression
should not alter the meaning of that expression. But
consider the sentence

Necessarily the morning star is the morning star.

The sentence is obviously true. Now the terms ‘the
morning star’ and ‘the evening star’ have the same de-
notation, the planet Venus, but different senses, since
we can easily imagine a world in which they refer to
different objects. Replacing the second ‘the morning
star’ by ‘the evening star’ in the above sentence, we
get

Necessarily the morning star is the evening star,

which is false! Hence the substitution of a co-
denotational name in the sentence does not preserve
its meaning (here: truth value). The text after ‘Neces-
sarily’ is said to be referentially opaque (as opposed to
referentially transparent, in which the truth value un-
der such a substitution would be preserved). Frege’s
insight was to propose that the meaning of a term in
an opaque context is not its denotation, but its sense.
Since ‘the morning star’ and ‘the evening star’ have

different meanings in this context (i.e., senses), we do
not have a counterexample here to the principle of
substitutivity of equals.

Frege’s insight might be summarized thus: taking
senses as meanings in opaque contexts, we restore the
principle of substitutivity of equals, and hence compo-
sitionality of meaning.

By means of intensional logic [Church 51], we can rea-
son about intensions or senses of expressions. A math-
ematical semantics for intensional logic was given by
Kripke [Kripke 63], who defined the sense of an expres-
sion as a function from possible worlds to (extensional)
values.

Montague [Montague 74] used Frege’s insight to give
a compositional semantics for a fragment of English,
including opaque contexts, by means of a translation
of that fragment into intensional logic.

Next, Janssen and Van Emde Boas [Janssen & Van
Emde Boas 77, Janssen 86] used a similar approach
to provide a compositional semantics for a fragment
of an Algol-like programming language. Their insight
was that the left-hand side of an assignment can again
be viewed as an opaque context, and a compositional
semantics can be given, similarly, by a translation of
the fragment into intensional logic. In this case, the
sense of an expression (say an identifier of number
type) is again a function from “possible worlds” into
objects (numbers), where each “possible world” is now
a computation state. Thus the meaning of the identi-
fier can be taken as a memory address or location.

Extending this approach, Hung [Hung 89, 90] provided
a compositional semantics for procedures with param-
eters (passed e.g. by value and by reference), noticing
now that pass-by-reference provides an opaque con-
text.

In the present paper, we extend this method to
deal with yet other opaque contexts: assignments to
pointer identifiers, and pass-by-name. Again, we pro-
vide compositional semantics for these.

Our framework for intensional logic, IL (along the
lines of [Montague 74], [Gallinn 75], [Dowty et al. 81]
and [Janssen 86]) is a higher order typed logic. There
are two basic types, N and B, which correspond re-
spectively to the natural numbers and booleans (truth
values). The higher order types of IL are compound
types of the form (7; — 72) which are the types of
functions from 7 objects to 5 objects. Senses of ex-
pressions have type (S — 7), which is the type of func-
tions from possible worlds or states (S objects) to
objects. IL does not allow possible worlds as domain
objects. (The type s is “hidden”).

To repeat, our major motivation in using intensional
logic is to provide a compositional semantics for a pro-
gramming language. Full discussions of these issues
of intensionality and compositionality in programming
lar]lguages can be found in [Janssen 86] and [Hung 89,
90].

2.2 Syntax of Our Programming Lan-
guage

The syntax of our language is now described. Let x, y
range over number identifiers, p over pointers, z over
macro names, m over number constants, a over array
identifiers, G over procedure identifiers. The syntax of
program expressions is as follows.

Number References
v:= x| ale] | (expand z) | (dref p)
Number Terms

e = le |(e1 + e2) |(e1 — 62) |(e1 X 62) |
if bthene; elsee; fi| ...
Booleans
b:= true|(e; = e2) | (&1 > e2) |
Blocks
K := beginnew x:=e ;S end |

begin aliasy = v ; S end |
begin macro z = v ; S end
Statements
Su= skip|vi=e| p:=v | (S1;52) |
if bthen S; else S, fi | K |
¢'(e) | &"(v) | 6"(v)
Procedure Identifiers
Gu=G'| G| 6"
Procedure Bodies
B:= B"| B"| B”
where
BY = < value x > S end
"= <refy>Send
B” = < name z > S end
Procedure Declarations
D:= < G «<B" >
Programs

Ru= <D;S$>

where ¢ € {v,r,n}

In the above, (dref p) is the dereference of the
pointer p. (This is a memory address in most language
implementations.) The statement p:=v is a pointer
assignment statement.

We will only consider well-formed programs, in which
all the procedures are declared before their calls ap-
pear, the macro expansions (expand z) occur only
inside the relevant macro-blocks or pass-by-name pro-
cedure bodies, and recursive procedures and nested
procedure declarations are not allowed. We do not
consider recursive procedures because we do not want
to deal with fixpoint domain theory. Similarly, for the
purpose of avoiding uninteresting complexity, we do
not consider arrays of pointers, or pointers to point-
ers. We believe there is no difficulty in extending our
semantic treatment to these [Janssen 86].

2.3 Correctness Formulas

We consider correctness formulas (Hoare formula) of
the form { ¢; } S { ¢, }, where S is a program (state-
ment), ¢, is a first order formula which describes the
computer states before execution of S, and ¢, is a for-
mula which describes the computer states after execu-
tion of S. When the correctness formula is valid, we

write = { ¢; } S { ¢» }. We consider total correctness,
since our programs will always halt. The syntax of our
assertion language is as follows.

Number Variables n, ...
Number Terms

eii= nn|x [afd] |(dref p) |(e1 +) (o1 —) |

€1 X e) | if b then e else es fi

Booleans

b := true |(61 :ez) |(6‘1 > 6‘2) |—|b |b1 A bo
Assertions

¢ == b|—¢| (¢ Ady) | Ing

Hoare Formulas

F = {¢:}S{ ¢} [{ 1} R{ b2}

Note that we exclude name expansion (expand z)
from the number terms because we do not want to
use macro names in assertions. We use ¢; — ¢, as
an abbreviation for —~(¢; A =¢,), and ¢, V @, as an
abbreviation for —(—¢; A—¢,). Some examples of valid
correctness formulas are:

E{dnx+1=2xn}x=x+1{dnx=2xn}
= {i = 0Aa[0] = 0Aa[l] = 0} a[a[i]]:=1 {a[a[i]] = 0}

Suppose we have the procedure declaration
double <= < refy > p:=w; y:=y + yend
Then

= {w = 1Ax = 1} p:=x; double((dref p)) {w = 1Ax = 2}.

Mi)re interesting examples can be found in [Hung 89,
90].

3 Intensional Logic
3.1 Possible Worlds

We identify possible worlds in the context of inten-
sional logic as states, or the possible memory con-
figurations of computers. In programming languages,
dereferencing a number reference yields a number. We
therefore interpret references as functions from states
to numbers, of type (S — N). Arrays are rows of refer-
ences, or functions of type (N — (S — N)). A pointeris a
reference which yields a reference when dereferenced.
Hence a pointer to a number has, in a given state, a
reference as value. We therefore treat pointers as func-
tions from states to references, of type (S — (S — N))
[Janssen & Van Emde Boas 77]. A macro name de-
notes all possible values of the name in different con-
texts. We therefore treat it as the sense of a reference,
so that it also has type (S — (S — N)).

We denote the set of states (possible worlds) by
State and its elements by o,... , the set of natu-
ral numbers by A, the set of boolean values by B=
{true,false}. Let VAR, be the set of variable sym-
bols of type 7, CON, the set of constant symbols of
type 7, and M E, the set of meaningful IL expres-
sions of type 7. We have three disjoint countable sets:

REF C CON(s_)N), ARRAY C CON(N (S > N))s
and PTR g CON(S—)(S—)N))7 where REF is the
set of reference symbols, ARRAY is the set of array
symbols and PTR is the set of pointer symbols. Fur-
ther, the set REF is a union of two disjoint sets REF
and REF,, where REF are reference symbols for free
simple variables in programs, and REF, are reference
symbols for array elements. Intuitively, these sets of
constant symbols will play the roles of memory ad-
dresses or locations.

For each A € ARRAY and k € N, we can associate
a reference symbol Ak ¢ REF, such that

Ali A2 or kq # ky = A{clf,é A§2

We define the structure of State in two stages using
Stateg, State; as follows.

The set Stateg is a non-empty set of functions
o : REF — N, closed under variant or update,
where for any o € Stateg, X € REF, and n € N, the
variant of o at X, denoted by o{ X/n} , is defined

by:
o{ X/n} (X) = n

o{ X/n} (Y) = oY) for Y# X.

The semantics of REF and ARRAY are then as fol-
lows. For all X € REF,[X], is a function from Stateg
to N given by

and

[X]o(0) = o(X).

For all A € ARRAY,[A], is a function from N to
Stateg — N given by

[41o(k)(0) = [4*1y(0).
Let Refg = {[X], | X € REF} be the set of refer-

ences.

The set State; is a non-empty set of functions o :
PTR — Refy closed under variants. The meaning of
any P € PTR is:

[P],(0) = o(P).

Finally, the set of states State = Stateg @ State; is
the set of functions ¢ : REFUPTR — N URef, such
that

o[REF € Stateg

o[PTR € State; .
The semantics of REF, ARRAY and PTR relative to
State can then be defined accordingly (see §3.2).

This construction can be used to define layers of refer-
ences Ref;, Refs,..., which allow us to extend the
semantic values to hierarchies of pointers to pointers,
as in [Janssen & Van Emde Boas 77].

Note that there are one-one correspondences between
the symbols and their meanings:

Lemma 1
Xi#Xo = [Xi] # [X2]

A1# Ay = [A] # [4:]
Pi# P, = [P] # [P]

Proof: By the property of state variants. O

3.2 Syntax and Semantics

We now define the formal system IL of intensional
logic. The symbol set involves + (number plus) ,—,
x,= (number equality), < (less than), — (negation),
A (conjunction), 3 (existential quantifier over num-
bers) A (functional abstraction), -(-) (function appli-
cation), “(intension operator), ~(extension operator)
and - < - > (state switcher). We call *, ", and - < - >
the state or modal operators. The terms of IL are built
up from the basic terms (constants and variables) by
the operators in the symbol set, according to the typ-
ing rules. An expression is said to be state switcher
free if it does not contain any state switcher.

A function which maps IL variables to values of cor-
rect type is called a wvaluation. The set of valuations
is denoted by Val with elements p,... . The value
function of the expressions in IL is defined relative
to states (possible worlds) o and valuations p. Let x
range over IL variables, a, 8 over any IL expressions,
1 over expressions of type (S — (S — N)), £ over expres-
sions of type (S — N), € over expressions of type N
and k over N. Also let p{ z/d} denote the function
variant of p. The class of expressions in IL and their
meanings are defined inductively as follows.

1. [0Jop = o, [1]op = 1,[true]op = true
2. [XJop = Ao’ -o'(X)

3. [Ak]op = Ao’ - o' (4F)

[Alop = Ak € N - Ao’ - o' (AK)

[Plop = Ao’ -o'(P)

[z] op = p(x) where z € VAR

NS ok

[ex + el op = [er]op + [e2]op
and similar for — and x

B _] true if [e1]op = [e2]op
8. [e1 = e2] op = { false otherwise

and similar for <.

_ false if [plop = true
9 [l op = { true otherwise
10. [e1 A 2] op
true if [pi]op = true,
= and [pz2]lop = true
false otherwise

11. [if o then e else ex fi] op

_ { [eiop if[elop = true
~ | [ez]op otherwise

12. [3ne] op
{ true if [pJop{ n/n} = true
= for some n €
false otherwise

13. [Mx-a] op = Ad-[a]op{ z/d} where de D
14. [a(B)] op = [eJop([Blop)
15. ["a] op = Ao’ -[a]o'p
16. [op = ([]op)(o)
17. [a<€/e>] op

{ [e]o{ X/[elop} p if [€]op = [X]
= for some X € REF
[a]op otherwise

18. [a<n/&>] op ‘
lelo{ P/[X]} p if [§]lop = [X]
and [n)op = [P]
= for some X € REF,
and some P € PTR

[a]op otherwise

Note that the interpretation of terms is “two-
dimensional”. Quantification and A-abstraction are
interpreted by means of valuations p, and state opera-
tors are interpreted by means of states . By Lemma
1, X and P (in clauses 17 and 18) are unique if they
exist. Intuitively, “a means the value of « in the cur-
rent state, ~« means the sense of a. As we can see, the
value of a<X/e> in a state o is the same as the value
of a in the state o{ X/[e]o} . (This is essentially the
Substitution Lemma for State Switchers: Lemma 5
in Section 5). The state switcher is thus a semantic
representation of the syntactic substitution in finding
weakest pre-conditions. It will be used in the transla-
tions of assignment statements (see Section 4).

3.3 Rigidity

The value of an IL term may vary according to differ-
ent worlds. A term whose value remains the same in
all worlds is called a rigid designator [Kripke 63]. In
our formalism, a term « is defined to be rigid if for all
states o1, 02, p, [a] o1p = [a] o2p.

In the A-calculus, we can simplify formulas of the form
(Ax - a)(B) by substituting the arguments 8 for the
free occurrences of x in a. (This is S3-conversion.)
This will not be correct in general, if we interpret the
execution of a procedure call as the effect of execut-
ing the procedure body obtained by replacing all the
free occurrences of the formal parameter by the ar-
gument (actual parameter). The problem lies in the
translation of pass-by-reference, in the substitution of
non-rigid terms into “modal” contexts. (In IL, only a
restricted form of B-conversion is valid: see Theorem
1 below).

Note that constants and variables are rigid in this for-
malism. In general, program expressions are trans-
lated into non-rigid IL expressions (see Section 4).
For example the expression a(“z + “y) (translation
of a[x+y]) is non-rigid. One of our techniques in
reasoning with parameter passing is to replace non-
rigid terms by rigid terms while preserving the overall
meaning.

3.4 Theorem on (-conversion

Let a, 8 range over IL terms, o over State and p over
Val. Let a[z/0] denote the term obtained by replacing
all free occurrences of z in a by .

Definition Two terms «, 3 are semantically equiva-
lent, denoted by a = g, if for all o, p [a]op = [B]op.

Theorem 1 (3-conversion) For any term (Az -
a)(f), if either one of the following conditions holds:
(1) B is rigid, (2) no occurrence of z in « lies inside
the scope of “or <>; then

(Az-a)(8) = afz/f]

Proof: By structural induction on «. See [Hung 90].
O

This says that if either the argument (3 is rigid, or
no modal operators are applied to the bound variable
z, then function applications can be modeled by syn-
tactic substitution. This extends the corresponding
B-conversion theorem in [Janssen 86, Dowty et al. 81].

For later use, we state
Lemma 2 (" "-cancellation) For any a € ME,,

A ~

(67 Q.

Proof: By the semantic definitions of ~ and . O

4 Translations

The program semantics is given by translating the ex-
pressions of the programming language into the ex-
pressions in IL. The meaning is then obtained by
interpreting the IL expressions. Since number identi-
fiers are references and we want to treat formal pa-
rameters as lambda variables, we translate number
identifiers as variables in VAR _,). We take an

array as a row of references. (This is the approach
taken by [Wagner 89], in which an array is a tuple
of “locations”, but different from that in [Janssen
86], in which an array is an intension of a row of
numbers). An array identifier a is therefore trans-
lated into a variable a in VAR _, (s - ny)- Simi-

larly, a pointer p is translated into a variable p in
VAR(S 5 (5= N))> and a macro name z is translated

into a variable z in VAR(s _, (s -, n))- Realizing that

a subset of State can be characterized by a state
predicate of type (S — B), we regard a program as a
backward state predicate transformer [Dijkstra 76],
which we will show is expressible in IL (Theorem 2
in Section 5). Intuitively, it transforms a predicate

(postcondition), which defines some set of states af-
ter the execution of the program, to the predicate
(precondition) which defines the set of all those states
before its execution which result in the given post-
condition. We follow Janssen’s approach in that the
translations of statements and programs have type
((S— B) — B). Procedure names are translated into
functional variables whose values are functions from
parameters to predicate transformers. The parameter
type for pass-by-value is a number N, the parameter
type for pass-by-reference is a reference (S — N), and
the parameter type for pass-by-name is the sense of a
reference (S — (S — N)). We have two special variables
Jj € VAR(S_)N) and | € VAR(N_) (S = N)) for the

translation of new-blocks. Intuitively, is a linear ar-
ray and j is an index which points to next available
element in [.

We give the translation as follows. From now on, let
q € VAR _,) (state predicate variables), n,m €

VARy. For any expression F, its translation is de-
noted by E'.

4.1 Translations of Program Expressions
Identifiers

To each identifier we associate a unique variable of IL.

™
Il

"= g€ VAR(S —N)
z = ze€ VAR(S - (S = N))
(

a' = a€VARN (s N))
PP = peVARs (s N)
6" = g¢"€VARs , (N ((s > B) - B))
¢ = g €VARs , (s N) - (5~ B) - B)
" = ¢g"€VARs _, (5 (S N)) = ((S— B) - B))

Number References (M E(s _, y)

x' as above
(ale])’ = 2'(¢)
(dref p)) = p'
(expand z)! = 7'

Note the extensionalizing effect in the translations of
(dref p) and (expand z).

Number Terms (M Ey)

m = mEe CONy
Vo=
(v' as above)

(67 + e5)

(Similarly for — and x)
(if b then e; else e, fi)) = if b’ then e else e}, fi

Note that the translation of v/, considered as a number
term, is the extensional value of its translation when
considered as a number reference. Also, the number
term (dref p) is translated into ~p.

Boolean Terms (M Eg)

ot
R
=
m\

1Tl
o~
3
I
)

Statements (ME((S —B) > B))

Note that ¢ € VAR5 _,).

skip) = M-7¢q
(vi=e) = Ag-"g<v'/e>
(p:=v) = Ag-Tg<p'/V'>
(S1:52)" = Ag-S1("(S2(9))
ifbthenS; else S fi' = M- (b'ASi(q)) V
(=b" A S5(a))
G’(e) = “av'(e)
G"(v) = “G"'(v)
G*(v)! = “e"'("V)

Note how the state switchers are used with the assign-
ment statements.

Blocks (ME((S — B) — B))

(begin new x := e ; S end)’ =
Ag - In[((Ax" - S")(U(n)))
(Cln="7A"g<i/"j +1>])<i(n)/e'>]

wheren € VARy, ' =j € VAR(5_> N) and1'=1¢
VARN - (s 5 n)) (see explanation below).

(begin alias y = v ; S end)' = (\y' - §')(V)

(begin macro z = v ; S end)’ = (A\z' - S")("V')
Procedure Bodies
(< value x > S end)’ =

Am - Ag - In[((Ax" - S")(U(n)))
([n="3A"g<j/"j +1>]))<l(n)/m>]

(see explanation below).
(<refy >Send) =)y -9

(< name z > S end)’ =)z’ -5’

Programs
(<< Gy <= By,..., <G < B >;5¢ >)
= (AG] - (- (AGL - So)("By) ..)("BY)

The above translations show that our semantics is
compositional. They also illustrate the semantic cor-
respondence between pass-by-value and new-block,
pass-by-reference and alias-block, and pass-by-name
and macro-block, as predicated by the Correspon-
dence Principle (§1.2).

Explanation The translation of a macro-block re-
sults in a B-redex, because "V’ is rigid. Hence, §-
reduction can be carried out as given by Theorem 1.
Since (expand z)' is "z, we can apply Lemma 2 to
eliminate " operators after the (8-reduction, and we
can then establish

(begin macro z = v ; S end)’ = (S[z/v])".

A straightforward suggestion for a translation of new-
blocks would be

(begin new x := e ; S end)’ = (A\x' - §')(¢').

By simple type checking, we would discover that it is
incorrectly typed and came up with

(begin new x := e ; S end)’ = (Ax' - S')("¢).

This is also incorrect because "€’ is rigid and permits

a (-reduction, and after ~“eliminations it will result
in

(begin new x := e ; S end)’ = (S[x/e])’

which is clearly incorrect, since this could result in
substituting e for x on the left hand side of an assign-
ment in S.

Our translation of new-blocks relies on an array of new
references. Intuitively, there is a number n = "5 such
that execution of the new-block is equivalent to the
execution of the following statement:

n:=¢; S[x/1[n]}; j:=3 +1,

where S[x/1[n]] denotes the replacement of all free x
inS by 1[n].

The translation of procedure bodies with value param-
eters works similarly.

Note that in our semantics, a-equivalence (renaming
of bound variables) holds for the formal parameters in
the procedure bodies and also for the new, alias, and
macro identifiers in blocks. This is a good property
of static scope semantics, and is not always the case
with dynamic scope semantics [Hung 90, Chapter 3].

4.2 Translations of Assertions
Number Variables (VARy)

To each number variable n we associate a unique IL
variable n:

n =n
The translations of number and boolean terms are
same as the above.

Assertions (MER)

b’ as above
(—¢) = -¢'
(91 A ds)' = ¢1 A ¢
(3n¢)’ = 3n'¢’

Hoare Formulas (M Eg)

{¢rs{v}) = ¢Sy
{4} R{¢}) ¢' = R("¢)

5 Results

Definition Two terms «, (3 are equivalent relative
to instantiation, denoted by a ~ (3, if for any set
of distinct X1,... X € REF,, distinct A;,...,A; €
ARRAY, distinct Py,...,P, € PTR,

ol7,d,p/ X, &, P| = §[#,d,5/ X, A, P
where #,d,p include all the free variables in o and (.

This notion of equivalence ~ is needed for the state-
ments of Lemmas 5, 6 and Theorem 2 below, since the
state switcher reductions of Lemma 4, which are used
in the proofs, apply only to constants.

5.1 State-Switcher Reductions
Lemma 3 (Reduction Lemma 1) For all ¢ €

ME(S—)N)76761;52EMEN:nEME(S—)(S—)N))’
1. C<€fe> = C forall C € CON
2. v<€fe> = vforallve VAR

3. (61 + ea)<Efe> = e1<€fe> + ea<€fe>
similar for —, x, =, <, 1, A, i f-then-else- f1i.

4. (Inp)<€/e> = In[p<€/e>]
where n ¢ free(§) U free(e)

5. Az -a)<€/e> = Az - (a<€/e>)
where z ¢ free({) U free(e)

6. a(B)<€/e> =2 a<€/ex>(8<E/e>)

(Ca)</e> e

~

1%

The same results hold for state switchers <n/&>.

Proof: By the semantic definition of state
switchers. O

Lemma 4 (Reduction Lemma 2) For all XY €

REF, X;éY A,B € ARRAY, AgéB PP1€PTR
P¢P1,85€MEN, €§1€ME(5—>N)

1. (X)<X/e> = ¢
2. (Y)<X/e> = Y
3. (X)<(A(0))/)e> = °X
4. (F(A@0))<X/e> = "(A(6<X/e>))
5. (T(A(0"))<(A(9))/e> =

if (6'<(A(d))/e> = 9)

then € else “(A(d'<(A(d))/e>)) fi
6. ("(B(d"))<(A(d))/e> = "(B(6<(A(9))/e>))
7. "X<P/&> = X
8. "(A(d))<P/&> = "(A(6<P/E>))
9. CP)<P/X> =2 X
10. ("P)<P/A(8)> = A(6)
11. (P)<P/ P> = P,
12. ("P)<P/E> =2 P

13. (""P)<*Ple> = ¢

14. Suppose ¢ is rigid, then
Oé<£1/61><P/€>
= a<P/E><E1<P[E>[e1<P[E>>

15. a<€/e><P/ P>
= a<P/"Pi><&<P/ P >[e<P/"Pi>>

Proof: By the semantic definition of state
switchers. O

Lemma 5 (Substitution Lemma 1 for State
Switchers) Suppose ¢ is an assertion which contains
no pointer dereferencing, and d, e are number terms,

then
¢'<x'[e'> = (¢[x/e]),
and we can find an assertion ¥ such that
¢'<ald]' /e'> ~ .
Proof: By structural induction on ¢, and Lemmas 3

and 4 (Parts 1-6). O

This shows that we have correctly found a semantic
representation for the syntactic substitution in [Hoare
69].

Lemma 6 (Substitution Lemma 2 for State
Switchers) For any assertion ¢, pointer p, and num-
ber reference v,

¢'<p'/V'> = (g[(drefp)/V])'.

Proof: By structural induction on ¢, and Lemmas 3
and 4 (Parts 7-15). O

This is the new “pointer version” of Lemma 5.
5.2 State Switcher Free Pre-Condition

Program statements are interpreted as state predicate
transformers. It is very easy to apply a transformer
associated with a statement to a post-assertion to get
a pre-assertion which contains state switchers. It is
more interesting to know whether a state switcher free
pre-assertion can be found.

Theorem 2 gExpressibility of the Weakest Pre-
condition) (a) For any statement S which contains
no procedure calls and with all its pointers initialized
to number identifiers or array elements, and for any
assertion 9, we can find a assertion ¢ such that

S(Y) = ¢,

(b) For any well-formed program R which has all its
pointers initialized to number identifiers or array ele-
ments, and any assertion 1), there exists an assertion

¢ such that
R(y) =~ ¢

The proof, which uses the above Substitution Lem-
mas for state switchers, will be given in a forthcoming
publication.

The significance of a state-switcher free formula of
type B of IL is that (in the context of Theorem 2)
it is the translation of an assertion in our assertion
language. This Theorem thus shows that the weakest
precondition is expressible in the assertion language.

6 Conclusion

It will be interesting to extend this approach to proce-
dures with procedures as parameters, passed by value,
reference, or name, as in [Kfoury & Urzyczyn 89].

References

[De Bakker 80] De Bakker J.W., Mathematical The-
ory of Program Correctness, Prentice-Hall, 1980.

[Brookes 85] Brookes S.D., A Fully Abstract Seman-
tics for an Algol-like Language with Sharing,
Technical report, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, 1985.

[Church 51] Church A., A Formulation of the Logic of
Sense and Denotation. In: Structure, Method and
Meaning, ed. Henle P. et. al, 1951.

[Dijkstra 76] Dijkstra E.-W., A Discipline of Program-
ming, Prentice-Hall, 1976.

[Dowty, Wall & Peters 81] Dowty D.R., Wall R.E.,
Peters S., Introduction to Montague Semantics,
D. Reidel, 1981.

[Frege 92] Frege G., Uber Sinn und Bedeutung,
Zeitschrift fiir Philosophie und philosophische
Kritik 100, 1892, 25-50. Translated as “On sense
and Reference” in Translations from the Philo-
sophical Writings of Gottlob Frege, ed. Geach
P.T. & Black M., Basil Blackwell, Oxford, 1977,
56-85.

[Gallin 75] Gallin D., Intensional and Higher-Order
Modal Logic With Applications to Montague Se-
mantics, North-Holland Mathematics Studies 19,
1975.

[Hoare 69] Hoare C.A.R., An Axiomatic Basis for
Computer Programming, Communications of
ACM, 12, 1969, 576-583.

[Hung 89] Hung H.K., Application of Intensional
Logic to Program Semantics, Proceedings of the
7th Amsterdam Colloguium, December 1989, Am-
sterdam.

[Hung 90 | Hung H.K., Compositional Semantics and
Program Correctness for Procedures with Param-
eters Ph.D. Thesis, SUNY-Buffalo, Computer
Science Dept. Technical Report 90-18, 1990.

[Janssen, Van Emde Boas 77] Janssen T.M.V., Van
Emde Boas P., On the Proper Treatment of Ref-
erencing and Dereferencing and Assignment, Au-
tomata, Languages, and Programming (Proc./th
Collog. Turku), Lecture Notes in Computer Sci-
ence 52, Springer-Verlag, 1977, 282-300.

[Janssen 86] Janssen T.M.V., Foundations and Appli-
cations of Montague Grammar. Part 1: Philoso-
phy, Framework, Computer Science, CWI Tracts
19, Centre for Mathematics and Computer Sci-
ence, Amsterdam, 1986.

[Kfoury & Urzyczyn 89] Kfoury A.J., Urzyczyn P.,
Algol-like Languages With Higher-Order Proce-
dures and Their Expressive Power, Logic at Botik
’89, Symposium on Logical Foundation of Com-
puter Science, Springer-Verlag, 1989, 186-199.

[Kripke 63] Kripke S.A., Semantical Considerations
on Modal Logic, Acta Philosophica Fennica 16,
1963, 83-94.

[Manna & Waldinger 81] Manna Z., Waldinger R.,
Problematic Features of Programming Lan-
guages: A Situational-Calculus Approach, Acta
Informatica 16, 1981, 371-426.

[Meyer & Sieber 88] Meyer A.R., Sieber K., Towards
Fully Abstract Semantics for Local Variables:
Preliminary Report, ACM 15th Symposium on
Principles of Programming Languages, 1988, 191—
203.

[Milne & Strachey 76] Milne R., Strachey C., A The-
ory of Programming Language Semantics, Parts
1 & 2, Chapman and Hall, 1976.

[Montague 74] Montague R., The Proper Treatment
of Quantification in Ordinary English. In: For-
mal Philosophy: Selected Papers of Richard Mon-
tague, ed. Thomason R.H., Yale University Press,
1974, 247-270.

[Oles 85] Oles F.J., Type Algebras, Functor Cate-
gories and Block Structure, Algebraic Methods in
Semantics, ed. Nivat M., Reynolds J.C., Cam-
bridge University Press, 1985.

[Reade 89] Reade C., Elements of Functional Pro-
gramming, Addison-Wesley, 1989.

[Reymnolds 70] Reynolds J.C., GEDANKEN: A Sim-
ple Typeless Language Based on the Principle of
Completeness and the Reference Concept, Com-
munications of the ACM 13, 1970, 308-319.

[Reynolds 81] Reynolds J.C., The Craft of Program-
ming, Prentice-Hall, 1981.

[Tennent 81] Tennent R.D., Principles of Program-
ming Languages, Prentice-Hall, 1981.

[Wagner 89] Wagner E.G., On Declarations, IBM Re-
search Report RC-14657, May 1989.

[Zwiers 89] Zwiers J., Compositionality, Concurrency
and Partial Correctness: Proof Theories on Net-
works of Processes, and Their Relationships,
Springer-Verlag, 1989.

